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We explore patterns, regularities, and correlations in the evolving landscape of
Ethereum-based tokens, both ERC-20 (fungible) and ERC-721 (non-fungible)
to understand the factors contributing to the rise in certain tokens over
others. By applying network science methodologies, minimum spanning trees,
econometric autoregressive–moving-average (ARMA) models, and the study of
accumulation processes, we are able to highlight a rising centralisation process.
Not only do “rich” tokens get richer, but past transactions also emerge as
more reliable predictors of new transactions. Our findings are validated across
different samples of tokens.
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1 Introduction

The introduction of the ERC-20 and ERC-721 token standards within the Ethereum
blockchain has led to a remarkable ease and flexibility in creating new cryptoassets, all
sharing a common technical foundation. This standardisation enables large-scale studies of
these assets, which display fascinating complexity and variety.This paper aims to investigate
Ethereum-based tokens and cryptoassets through various lenses, including network science,
autoregressive methods, and accumulation processes. We consider a comprehensive sample
of assets, ranging from established tokens with extensive trading activity to ones that have
no off-chain market but are used in a large number of on-chain transactions. Using a
combination of correlation filtering via minimum spanning trees and econometric models,
we analyse the relations between tokens based on their on-chain transaction records and
off-chainmarket prices. Our findings substantiate the fact that even among tokens, the “rich
get richer.”

1.1 An introduction to Ethereum-based cryptoassets

Blockchain is a distributed and decentralised technology that stores a list of
transactions, while ensuring their consistency and integrity [1]. Satoshi Nakamoto
introduced this technology in 2008 to solve the double-spending problem in digital
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currencies [2]. Buterin [3] first proposed and soon launched
Ethereum, a public blockchain that included a Turing-complete
computing platform using smart contracts, i.e., programs that are
stored and executed directly on the blockchain. Smart contracts,
with their flexibility, gave rise to a myriad of cryptoassets including
tokens, both fungible (FTs) and non-fungible (NFTs), which currently
underpin many decentralised finance (DeFi) applications.

The Ethereum Request for Comments 20 (ERC-20) [4] sets
the standard for fungible (identical and interchangeable) non-
native tokens running on top of the Ethereum network. This
specification defines an interface including methods to transfer
value and visualise the current balance. Subsequently, the Ethereum
Request for Comments 721 (ERC-721) [5] defined a similar set
of specifications for unique, non-fungible digital assets. These
two interfaces, together with new specifications that have further
extended them, define a transfer method that records an event on
the Ethereum blockchain, which we are then able to capture and
analyse. The number of such tokens has been increasing steadily,
from 272,600 in May 2021 to 510,211 in July 2022 [6] and 1,178,667
by 4th May 2024, or block 19,800,000, the end date we considered in
this study.

Cryptoassets are increasingly regarded as viable investment
options, not only by technology-savvy specialists but also by a
broader, less specialised audience of investors. Unlike traditional
markets, these emerging markets may lack a comprehensive
regulatory framework, a condition that presents both risks and
opportunities. For instance, NFTs are transforming the digital arts
and alternative asset markets, serving diverse purposes from art
collection to granting unique titles that claim ownership of real-
world assets. Investigation of the interrelationships among various
cryptoassets, including cryptocurrencies, tokens, NFTs, and DeFi
products, can reveal whether the success of one asset influences the
performance of others. Such analyses enable investors to optimise
their portfolios and mitigate the cascading effects of shocks and
crises. The study of regularity in price fluctuations has attracted
not only investors but also scientists, who have frequently drawn
inspiration from financial markets to make seminal contributions
to hard sciences. For example, the concept of random walks, as in
Bachelier [7], and fractal theory, as inMandelbrot [8], emerged from
examining price variations and financial data. Investors typically
analyse past correlations to formulate reliable predictions for future
trends, with the goal of achieving higher returns.

The scope of this paper is to compare the most relevant
Ethereum-based ERC-20 and ERC-721 cryptoassets to extract
patterns and regularities.

1.2 Literature and contribution

Numerous studies on cryptoassets have adopted a complex
network perspective; for instance, Bovet et al. [9], Kondor et al. [10],
and Vallarano et al. [11] focused on Bitcoin transaction networks.
Other research studies, such as Campajola et al. [12], Kondor
et al. [13], Ferretti et al. [14], and Guo et al. [15], investigated
Ethereum but did not specifically address Ethereum-based tokens.
In contrast, Somin et al. [16, 17] modelled the entire Ethereum
ERC-20 token ecosystem as a dampened oscillator, an approach we
find very inspiring. However, the most influential studies for our

research are Victor and Lüders [18] and Chen et al. [19], which
have pioneered the application of network science framework to the
study of tokens. These studies were conducted using data up to 2018
and 2019, respectively; in comparison, our analysis incorporates a
richer dataset, including data up to 2024 and additional market
data. Moreover, we have explored preferential attachment on a
longitudinal level, an aspect not considered in earlier papers. Chen
et al. [19] also explored the networks of creators and asset holders
to understand the dynamics of individual asset holders, which is
an interesting line of research that we do not pursue in this paper.
Previous studies from some of the authors of this paper, such as De
Collibus et al. [20] and De Collibus et al. [21], also used network
science to investigate tokens, but with a more limited scope.

Given the relatively young age of cryptoasset markets, their
interdependencies have not been studied to the same extent as
those of traditional financial markets. Dependencies, correlations,
mechanisms, cycles, booms, and busts in the crypto sector are
still under-researched. There have been notable studies, such as
Griffin and Shams [22], which analysed the hidden interactions
between the USDT Tether market and Bitcoin market prices. In
contrast, other research studies, such as Taleb [23], projected
extremely pessimistic outcomes for Bitcoin and crypto investments.
Although many economic studies, such as Acharya and Schnabl
[24], have explored crises and connections between traditional
markets, assets, and stock exchanges, these themes are not yet
well-explored for cryptoassets. Liu and Liu [25] used the available
institutional investment data to construct a co-investment network
but did not use transactional data directly from the blockchain.
A comprehensive study by Watorek et al. [26] analysed the 100
most capitalised cryptocurrencies, both native and tokens, across
different exchanges like Kraken and Binance, employing high-
frequency trading data and the minimum spanning tree (MST)
methodology. Our contribution focuses more on tokens, analysing a
greater number of such cryptoassets and considering token transfer
events as well. Tokens are often at the center of “rug pulls”, i.e.,
fraudulent activities, where a token is offered to the public as an
investment in a project, but the proceedings are then cashed out
by the scammers rather than being invested in the development.
Cernera et al. [27] studied Binance and Ethereum ecosystems and
found out that 60% of the tokens have less than 1 day of active life
cycle and are used for rug pulls. Similar activities have been observed
in the NFT market [28]. For a more general introduction about
NFTs, their usage, and future perspectives, Ali et al. [29] provide a
good overview.

Regarding market prices, Heinonen et al. [30] constructed a
network of ERC-20 tokens based on their cross-correlations for price
fluctuations but could not identify any hierarchical structures or
groupings. The authors expressed the desire to analyse, in future
research, a larger sample than the 458 tokens considered up to 2019.
We aim to contribute to this research goal by expanding the sample
size and employing different analytical techniques.

Regarding the application of complex networks in finance,
Bardoscia et al. [31] provide a good overview and introduces most
relevant methodologies. The initial intuition about the correlation
matrix between the stocks traded in a financial market and the
possibility of deriving a minimal spanning tree was first suggested
byMantegna [32] and further expanded upon by Bonanno et al. [33]
and Coronnello et al. [34].
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2 Methodology

2.1 Dataset

For this study, we analyse token transfers taking place on
the Ethereum blockchain. Transactions that result in a token
transfer produce digital records, which can be extracted from
Ethereum logs using tools such as Ethereum-ETL [35] and a fully
synchronised Ethereum client (such as Go Ethereum, geth, or any
other compatible client such as Erigon).This data collectionmethod
allows us to efficiently gather all token transfer-related events. From
now on, we will refer to such events with the expression “token
transactions” as well.

The utilised data have been extracted locally for speed of
processing, but are freely available from other sources as well, such
as Medvedev [36]. We aggregate all these transactions per token and
sort them according to the Ethereumblock number, hence obtaining
time series with the token transactions.

In this way, we are able to obtain approximately 1,178,667
different tokens up to 4 May 2024. Of course, not all tokens are
equally relevant; the vast majority of them do not have enough
“traffic” in terms of number of transactions to be deemed relevant.
These tokens might be created as experiments, as a temporary
collateral asset to lend or stake, or they might have simply failed
in gaining further traction. In our study, we set a threshold of
significance of 10,000 minimum transactions for a token to be
considered relevant; this threshold corresponds to 14,958 tokens
or 1.27% of all the existing tokens. The consequences of applying
this threshold are discussed more in depth in the Section 4.
Transfer events are considered independently from the type of assets
transferred. It could be the amount of tokens or the identifiers of
unique digital assets. For the computational issues in filtering token
and token events in Ethereum, see the study by Cernera et al. [27].

We first build a full, cumulative undirected network formed
by unique addresses (represented as nodes taking part in the
transaction networks) for each token. Then, given the multilayer
nature of these networks sharing their address space on the same
Ethereum network, we verify if the networks share addresses
or edges. As a complementary criterion, we consider tokens
that have been actively traded on public markets, which are
tracked by coinmarketcap [37] and coingecko [38], two popular
market aggregators, from which we obtain the information about
market capitalisation for every token. We use different sources to
complement and integrate the range of our available data; fromApril
2016 to May 2024, we obtain 2,530 Ethereum-based ERC-20 tokens
that have or have had in the past a market capitalisation. We do
not consider NFTs because of the differences in unique asset prices,
which make it difficult to express the daily fluctuations of a whole
collection.

For our analysis, we use market capitalisations and their log-
return correlations rather than prices as the latter would not be
particularly informative, for example, in the case of stablecoins,
which are designed to be pegged to a fixed value in time (typically
1 US dollar). Other tokens dynamically increase and burn part of
their supply, so employing market capitalisation avoids potential
pitfalls caused by the large variety of token designs.We then consider
the number of transactions in terms of time series of daily token
transfer events, which, contrary to the cumulative network, can

occurmultiple times. For this time series, we consider once again the
14,958 tokens with more than 10,000 transactions. We need to note
that the tokens with a market capitalisation are a fraction (2,530)
of the sample considered by number of blockchain transactions
(14,958) and that not all the traded tokens have more than 10,000
transfer events, but only 1,744 satisfy the condition.

3 Results

3.1 Token networks

We calculate the undirected cumulative network of transactions
for the resulting top 14,958 tokens (in terms of the number of token
transfer events) and the overlap in terms of nodes that appear in
all the other networks. We can do this because the networks are
multilayered, sharing the same address space as in Ma et al. [39].
For every pair of networks, we compute the Jaccard index J between
their node sets A and B, which is defined as

J (A,B) =
|A∩B|
|A∪B|
.

The average Jaccard index J for nodes shared between the tokens
considered in pairs is 0.00151. We repeat this computation of the
average Jaccard index for edge sets, where the two networks share
exactly the same edge (considering the undirected edge), and obtain
a value of 0.00024. We show the similarities in Figure 2.

We observe a cluster of tokens characterised by a higher average
Jaccard index. Tokenfy (TKNFY), with the highest average Jaccard
index among nodes, is indeed a legitimate token playing the role of
main currency within its own ecosystem. However, the subsequent
ten tokens with the highest average Jaccard indices are either fake or
have been associated with scams. These include counterfeit tokens
purportedly representing brands such as Louis Vuitton, Dolce and
Gabbana, andMercedes Benz.Thehigh Jaccard index of these tokens
likely results from sharing a common pool of addresses within
dubious networks, which may facilitate the artificial generation of
traffic with fraudulent purposes. This result is consistent with what
has been observed by Cernera et al. [27].

Among the tokens with the lowest Jaccard indexes, we find
instead “authentic” tokens such as Pony Token (PNT), Inanomo
Nominum (INOM), BinaCoin (BCO), and POMZ, which appear
to be regular projects with their own specific audiences and target
communities, probably more isolated from the mainstream ones,
which would explain the low Jaccard index.

3.2 Correlation analysis

We now focus on the analysis of market prices. We concentrate
our analysis on a total 2,530 ERC-20 tokens with recorded market
caps from January 2016 up to May 2024. From the market
capitalisation mi(t) of cryptoasset i on day t, we can compute the
corresponding log return ri(t) as

ri (t) = ln(
mi (t)

mi (t− 1)
) .

It is then possible to examine all potential pairs of assets and
calculate the correlation between their respective returns r. We
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FIGURE 1
Overview of the analyses and the results conducted.

FIGURE 2
Heatmap of the Jaccard index between the 14,958 token transaction networks with more than 10,000 transactions. Nodes are on the right, and edges
(considered undirected) are on the left. For a better visualisation, the tokens are ordered according to the average of the Jaccard index for nodes in
both heatmaps. It emerges a cluster of token networks sharing addresses and edges.

set a minimal amount of 30 corresponding entries and a p-value
lower than 0.05 to consider the correlation valid. Cryptoasset i
and cryptoasset j are correlated if the log returns of their market
capitalisations ri and rj behave in a similar way. To quantify such
a relation, we compute the Pearson correlation ρij(Δt) between the
log returns over time Δt:

ρij (Δt) =
⟨rirj⟩ − ⟨ri⟩⟨rj⟩

√(⟨r2i ⟩ − ⟨ri⟩
2)(⟨r2j ⟩ − ⟨rj⟩

2)
,

where ⟨…⟩ is the average operator over all observations
within Δt.

By definition, the correlation can vary from −1, where two
variables are completely anti-correlated, i.e., an increase in one
results in a decrease in the other, to 1, where they are completely
correlated. Additionally, we consider the time series of added daily
transactions for the same tokens during the corresponding time
period so as to render the results comparable. As a precaution,
given the long time period considered (8 years), we only consider
correlations to be meaningful if we have pair observations for
at least 30 days or when the p-values of correlation ρ were
higher than 0.05.

In this way, we obtain a N×N correlation matrix for both
log returns in market capitalisations r and daily transaction increase
t.Wemeasure t by taking for every token time series of the number of
daily transactions.The length of day is approximated by 6,500 blocks,
by considering an average mining time of 13.3 s per block.

Figures 3, 4 depicts the resulting correlation matrices as
heatmaps. For convenience of representation, the ordering of
cryptoassets c ∈ C follows the average ⟨ρci⟩∀i ∈ C.

We observe on average a relatively strong correlation between
asset prices, pointing to the fact that ERC-20 cryptoassets behave
cohesively as an investment class. The ones whose log returns on
average are most correlated to the rest of the market are Gem
Exchange and Trading (GXT) token, which, according to Etherscan
[40], is a decentralised big data platform, with “the goal to store DApp
users’ data as blockchain, and transparently manage and provide the
data”. The second token with the largest average correlations is Fei
USD (FEI), which “represents a direct incentive stablecoin which is
undercollateralised and fully decentralised. FEI employs a stability
mechanism known as direct incentives - dynamic mint rewards and
burn penalties onDEX trade volume tomaintain the peg”, as shown in
the study by Etherscan [40].The third token by average correlation is
theGlobal Rental Token (GRT),which according to Etherscan [40] is
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FIGURE 3
Heatmap of Pearson’s correlation ρij between log returns of market caps of examined cryptoassets. Records with p-value >0.05 or with insufficient
reciprocal matches < 30 have been filtered. For the sake of visualisation, the tokens are ordered according to their average correlation.

“a project that will provide brokerage services for rent vehicle between
customers and vehicle rental companies from all over the world”.These
three projects appear quite heterogeneous and cover very different
aspects of the crypto and token world.

On the opposite side of this spectrum, we find the tokens that
have the least average correlation to the rest of the market. These
tokens are Ontology (ONT) token, “a project designed to bring trust,
privacy, and security to Web3 through decentralized identity and data
solutions” [40];Hashmask (uMASK), a project regarding hashmasks;
andGENRE (GENRE) token, the social token of LeavingRecords, an
independent record label in Los Angeles as in coinmarketcap [37].
For the last two tokens, the information is very scarce, implying that
the two projects might not have been very successful.

For daily new token transaction instead, we find the asset with
the highest average correlation to be Wrapped Ether (WETH), a
tokenised version of the native cryptocurrency Ether. The second
token is the SushiSwap Liquidity Provider (SLP), tracking ownership
of liquidity positions on the decentralised exchange SushiSwap,
and the third token is the relatively obscure token GREENMEM,
with scarce information available. On the contrary, the least
correlated assets on average are Compound DAI, a version of the
algorithmic stablecoin DAO for the compound interest protocol,
Sablier, which provides infrastructure for money streaming and
token distribution, and lastly, the AIMutant (AIM) is a project

related to the Digital Art NFT market (all the descriptions are
taken from Etherscan [40]).

We observe DeFi applications at both ends of our analysis, with
the top ones apparently more successful than the least correlated
ones. However, the results of correlating the number of transactions
suggest that they may provide a better indicator of token dynamics,
especially over such an extended period.

3.3 Minimum spanning tree and labels

The relationship between tokens can be modelled as a graph,
where nodes are linked with weighted edges reflecting their strength
of interaction. Trees are a convenient way of representing data
because they connect a fixed number of vertices through the
minimal number of edges, and they are frequently used to compress
information in complex systems. Using the correlation values
obtained in the previous steps, we can first form a complete
undirected graph, where each edge weight is determined by the
correlation value, and then obtain aminimum spanning tree (MST).

The MST (see Battiston et al. [41]) is a subset of the edges of
a connected, edge-weighted undirected graph that connects all the
vertices together, without any cycles andwith theminimumpossible
total edge weight. Calling the set of vertices V and the set of edges
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FIGURE 4
Heatmap of Spearman’s correlation ρij between daily numbers of new transactions for the examined 14,958 cryptoassets. Records with p-value > 0.05
or with insufficient reciprocal matches < 30 have been filtered. For the sake of visualisation, they are ordered according to their average correlation.

E of a graph G = (V,E), weighted with a function w(u,v) for each
(u,v) ∈ E, a minimum spanning tree (MST) for G is then defined as
the subset of edges such that

w (MST) =min
T∈S
∑
(u,v)∈T

w (u,v) ,

where S is the set of all spanning trees T of G, i.e., all the list of
subgraphs such that T ⊆ E and (V,T) are connected, i.e., all the
vertices are reachable from all others.

The correlation ρ we computed in the previous example cannot
be used as a metric distance (see Mantegna [32]) to construct the
tree, so we have to adapt it to a new measure d obtained as in
Bonanno et al. [33].

di,j (Δt) = √2(1− ρij (Δt)).

With this choice, di,j(Δt) fulfils the three axioms of a
metric distance:

• di,j(Δt) = 0 if and only if i = j
• di,j(Δt) = dj,i(Δt)∀i, j
• di,j(Δt) ≤ di,k(Δt) + dk,j(Δt)∀i, j,k

With our correlationmatrix ρij converted to amatrix of distances
dij, we can build a complete graph with all the distances between our
cryptoassets C.

Following the example from Caldarelli and Chessa [42], we can
apply Prim’s algorithm [43] to this complete graph with the metric
distances. Starting from the complete graph,

• we initialise the tree by choosing a vertex v from all the vertices
V. In this case, we select the vertex with the highest average
correlation.
• we find the minimum weight edge e by connecting v with

another node v′ not yet in the tree, and if it does not close a
cycle, we add it to the tree
• we repeat the previous steps until all v ∈ V are in the tree.

Figure 5 shows plot the MST for the log-return r correlation
between market caps of individual cryptoassets. Token symbols and
labels are reported as identification.

An insightful analysis that can be done on MSTs is detecting
basins of correlation, i.e., nodes that are at the root of a major
branch. This is done by traversing the graph from the leaf nodes,
following the methodology described in Mastrandrea et al. [44].
For market prices, we identify “Fireball” (FIRE) token as the
root of the MST, which claims to be “an autonomous staking
rewards and gaming platform […] an ERC20 deflationary token
is created to reward stakers on fireball staking platform” [37]. The
website pointing to the whitepaper is no longer reachable, and
the token appears to be discontinued. We take the same MST
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FIGURE 5
Minimum spanning tree of correlation of log returns on market caps transformed into metric distance with labels for each token.

approach applied to the correlations between new transactions t
in the daily token time series. In this study, the MST has two
basins. The first is Polytrade (TRADE), which is “a blockchain-
based decentralised protocol aiming to transform receivables financing.
Polytrade aims to bring insured and safe investment options to crypto
lenders while lowering interest rates, ticket sizes, and processing time
for borrowers” [40]. The second is the “Okay Duck Yacht Club”
(ODYC), which is an NFT project similar to the more famous Bored
Ape Yacht Club.

To present a more granular idea of the relationships between
the tokens, we adopt the classification of tokens from coingecko
[38]. This classification is sourced by the community, so it can be
error-prone and contains multiple labels for every token, but it is
an indicator of how the community perceives different projects and
assesses their similarity. Since nodes can have multiple labels, the
colouring of nodes on the MST shown in Figure 5 is given by the
label of that node that is most common among all tokens in the
sample.We obtain labels (7) for only 907 of the 2,530 tokens analysed
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FIGURE 6
Minimal spanning tree of correlation ρt of daily new transactions t between Ethereum-based tokens transformed into metric distance for 14,958 tokens.

for log returns (Figure 5) and 1,297 tokens out of 14,958 for daily
token transfer events (Figure 6). To keep the visualisation readable,
the less frequent labels have been grouped under “Others.”We notice
a certain grouping of similar labels. Figures 5, 6 show the MST
highlights regularities in token classifications: tokens with the same
labels or belonging to the same ecosystem appear to be near each
other, suggesting some degree of proximity, though not forming
strictly homogeneous clusters. A bar plot with the occurrences of
labels can be seen in Figure 7.

To understand possible similarities between the twoMSTbasins,
we compute for each node the Jaccard similarity index between node
neighbourhoods. Given the different sizes and nodes of MST, the
average Jaccard index is 0, so the two MSTs are rather different. We
run a multiple linear regression analysis to quantify the relations
between the number of new transactions, log-returns, and token
labels. However, we find no significant relation at the cross-sectional
level. This motivates us to extend the analysis to a time-series
framework, using autoregressive–moving-average (ARMA) models.
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FIGURE 7
Bar plot of the occurrences of label in addresses, each addresses can have multiple labels, but only the most frequent one per token is showed in the
previous MST. The most trivial labels which could make sense for generic cryptoassets but not specifically for our tokens (such as “the Ethereum
ecosystem”) have been removed.

3.4 ARMA methods for token transfer event
time series

The number of token transfer events appears to be a significant
indicator of token dynamics. We focus on their temporal evolution
to determine if past transactions are an efficient predictor for new
transactions. To do so, we consider only time series of daily token
transfer events, with a time period up to May 2024; we conducted
the augmented Dickey–Fuller test and rejected the null hypothesis
of non-stationarity of these time series.

The ARMA model expresses a time series as a linear function
of its past values and past white noise residuals. It combines the
AR(p) andMA(q)models, and it is denoted as ARMA (p, q), where p
and q are the orders of the autoregressive and moving average parts,
respectively. The autoregressive part (AR) accounts for how many
observations in the past influence the current value of the time series,
while the moving average (MA) component models the relationship
between an observation and a residual error term from a moving
averagemodel applied to lagged observations, i.e., it accounts for the
shock or noise in the series and represents how it impacts the current
and future values of the series.

Given a time series yt, the ARMA (p, q) model can be
expressed as

yt = c+
p

∑
i=1

ϕiyt−i +
q

∑
i=1

θiϵt−i + ϵt,

where

• yt is the value of the time series at time t;
• c is a constant;
• ϕi are the parameters of the AR part;
• θi are the parameters of the MA part;
• ϵt is the white noise error term at time t.

The ϵt are assumed to be a white noise series, implying that they
are uncorrelated random variables with zero mean and constant

variance.TheARMAmodels offer a toolkit for capturing regularities
in time-series data, such as trends, seasonality, and autocorrelation.
We apply the ARMA models to each of the 14,958 ERC-20 tokens
in our sample and use the Akaike information criterion (AIC) for
model selection. For computational limitations, we compute theAIC
for models of order up to ARMA (5,5) and obtain 12,381 models
whose optimal order is greater than 0. For 2,577 tokens, our analysis
could not provide any meaningful result. The Shapiro–Wilk test
on model residuals rejects the null hypothesis of normality on all
of our models, while Ljung–Box tests reject the no autocorrelation
hypothesis for 7,728 tokens. The remaining 5,603 models appear to
fully capture the autocorrelation structure.

To assess the goodness of fit, we use the computed R2 of
the models we obtained and the difference in the Ljung–Box test
statistics between the data and the model residuals, Δ(Ljr−Ljt). Having
a value as close to 1 as possible is desirable for this delta: our original
data should not be white noise, our residuals should. Tokens 3,228
have a Δ > 0.5, which is almost a quarter of our sample. As shown
in the bottom panels of Figure 8, a significant portion of our models
have a high order on the AR part, while the moving average part
most frequently is limited to a 1 day lag.

As we see from R2, there are tokens (3,414) where the models
seem to fit well with our data and R2 is >0.5, and others where this
is not the case (9,417). The R2 has known limitations in evaluating
ARMA models, but in our scenario, it was a good starting point for
a horizontal overview. The “sweet spot” of our model is shown in the
upper right corner of Figure 8, where we have Δ(Ljr−Ljt) and R2 both
greater than 0.5. As we notice from the density plot, it is not themost
populated part of our diagram, with only 928 tokens. These tokens
show a good variety of purposes and design: they tend to be relatively
newer, mostly created after 2019, with 200 of them having a market
capitalisation as in 3.

Overall, a strong and persistent autocorrelation seems to emerge
in the number of transactions that are added to the blockchain every
day, which is only partly captured by the linear ARMA models. This
leads to one last question: what drives this persistence?
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FIGURE 8
Upper left: the scatter plot R2 against Δ(Ljr−Ljt) for the 12,831 tokens out of 14,958, where we could obtain meaningful results. Upper right: the same data
visualised through the KDE density plot. Bottom left: bar plot with the results of the Akaike best-order selection for the autoregression (AR) part, i.e., the
number of lagged values of the dependent variable that are included in the model. Bottom right: bar plot with the results of the Akaike best-order
selection for the moving average (MA) part, i.e., the number of lagged forecast errors included.

3.5 “Rich” tokens get richer

The distribution of the number of transactions across tokens
is very heavy-tailed, with the vast majority having very few
transactions and relatively very few tokens having millions of them.
We fit the parameters of the distribution with the method shown
by Alstott et al. [45]. Using a power law means that the probability
P(x) of an event of size x, i.e., the number of transactions, is given
by P(x) ∝ x−α. In our case, the power-law fit returned a value for α
of 1.367, which is valid for a xmin of 1. This low α value indicates
an extremely heavy-tailed distribution. Such a distribution implies
that while most tokens have a low number of transactions, a few
tokens exhibit a significantly high transaction volume, potentially
dominating the overall activity. The α-value being less than 2

suggests that both the mean and variance of the transaction counts
are theoretically infinite.This highlights the disproportionate impact
of highly active tokens, which can skew aggregate statistics.

Despite the insights provided by the power law model, the
lognormal distribution fits our data more accurately (as in 9), with μ
(mean of log data) of −3.038 and σ (standard deviation of log data)
of 4.54. In a lognormal distribution, the logarithms of the data values
are normally distributed. This results in a distribution where the
majority of tokens have relatively low transaction counts, but there
is still a significant tail of tokens with very high counts. The shape
of the tail seems to drive the better fit of lognormal. It is to be
noted that the same calculations up to May 2021 provided a better
fit for power law with the exponent α of 1.43, so these results can
change in time.
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We propose that this phenomenon results from a dynamical
process. Assuming a flat structurewhere all tokens are initially equal,
we consider the likelihood that a new token transfer transaction
occurs within a specific token network. This dynamic process
unfolds as follows: when a new token transfer event happens on the
Ethereum network, we postulate that the selected token network T
for a specific transaction at time t is chosen based on a probability
dependent on its previous number of transactions txi.

This is analogous to the Yule–Simon process, where the
likelihood of an entity (e.g., a token) accumulating a particular
attribute (e.g., transactions) is proportional to its current count. In
other words, entities that already have a high count of attributes
are more likely to gain even more, leading to a “rich get richer”
scenario. We define Pi(txi, t) as the likelihood that a new transaction
is initiated inside a token network with the number of transactions
txi at the block t.

Π (tx∗, t) = π (tx∗) ×
N(t)

∑
j=1

δ(tx∗, txin,j (t)) = π (tx∗) × nin (tx∗, t) , (1)

where δ(⋅, ⋅) is the Kronecker delta, and nin(tx∗,t) represents the
complete count of tokens T with the number of transactions tx at a
given time t. Given thatΠ(tx∗,t) evolves over time, we adopt the rank
function between tokens R(α;tx∗,t), which is calculated for each new
transaction inside a token having count tx∗at time t. Specifically,

R (α; tx∗, t) =

N(t)

∑
j=1

Θ(tx∗ − txj + 1) × (txj)
α

∑N(t)
j=1
(txj)

α
, (2)

=

tx∗−1

∑
tx=0

n (tx, t) × txα

∑
tx
n (tx, t) × txα

. (3)

In this context, the function Θ(⋅) is the Heaviside function, yielding
1 when positive and 0 otherwise. The denominator’s sum accounts
for all nodes having a number of transactions less than tx∗, while
the numerator’s sum encompasses all number of transactions where
n(tx, t) > 0.

When creating a new transaction, if the probability of choosing a
given token is based on Equation 2 for a specific αo, then substituting
Equation 1 into Equation 3 results in

R(αo; tx∗, t) =
tx∗−1

∑
tx=0

Π (tx∗, t) .

Therefore, if αo represents the exponent of the accumulation
process, the addition of new transactions mirrors an inverse
transform sampling process on R(αo;tx∗,t).

To determine αo, we use the K–S (Kolmogorov–Smirnov)
distance. This measures the maximum difference in the density
between the empirical cumulative distribution function (ECDF)
using varied exponents α and the assumed uniform CDF
distribution. After repeating the computations multiple times,
the αo that consistently narrows the gap to the uniform
distribution providing the best fit for the exponent as in
10 is 1.02, as can be seen in Figure 9. In addition we find
that new transactions seem to fit slightly hyper-linearly
inside the probability of already happened transactions. This

explains the accumulating process we see regarding the token
transfer events.

This process could originate dynamically the distribution with
a very fat tail shown in Figure 10. These are the consequences of
Matthew’s effect, which states that the rich get richer and could
explain the observed distribution. The selection of the token where
the transfer event will take place is not random, but based on the
past number of transactions, so new transactions seem to take place
most likely on already ”popular” tokens, by considering the sheer
number of transactions. This is consistent with our findings about
the autoregressions shown in Section 3.4.

4 Conclusions and next steps

The open nature of the Ethereum token ecosystem provides an
opportunity to examine the dynamics of its adoption. The ERC-20
and ERC-721 token standards, which share a technical foundation,
make them easily comparable with each other in terms of their
on-chain and off-chain metrics. Our results suggest an increasing
concentration, which contradicts the core tenet of decentralisation
and has been previously reported in the literature [12]. The rich
do get richer, even in Ethereum-based tokens; very few projects
are successful, while the majority of them quickly disappear. Past
token transfer events, or transactions, still appear as the most
reliable predictor of new events. Although fascinating, this result
is comparable to a tautology because we do not know the initial
and real reasons for the first occurrences of such events: we are
successful because we were successful. We face certain limitations
while considering all the tokens together. Our analysis of correlation
patterns could not point to a single explaining factor, maybe
because of the long time period or the large number of tokens
analysed. By analysing tokens at scale, wemight havemissed relevant
information about their context and timing that is crucial to their
success (see Section 4).

Given how much ERC-20 tokens can differ besides the basic
specification (in design, business goal, and technical foundation),
our problem could be compared to a research about the inhabitants
of a city. We might know how many of them reside in a specific
place, their age, or gender, but this would not explain why the city is
economically prosperous or not. In the end, we need perhaps a better
cryptodemography to properly group and explore these tokens that
now share a technical foundation, but might not share their design,
purpose, and small but relevant properties.

Extracting the user-defined labels is merely the first step.
We need a better classification of tokens; many of them are
still virtually unknown, with very scarce public information
available. In future research, the approach of this study should
be complemented by a more effective information extraction
initiative. With the assistance of a machine learning model and/or
a large language model, we could analyse white papers and
specific social networks at scale and extract relevant keywords for
a proper categorisation. Distinguishing the composition of their
initial investment pool could prove crucial as well, determining
if the investors have had relationships with the existing projects,
track records of the key stakeholders, and the identities of the
investors and backers, an approach that has already been tried
in the literature [19, 25], but could be further extended and
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FIGURE 9
Concentration process of new token transfer events. We show different α values minimising errors.

FIGURE 10
To the left, histograms of the overall number of transactions in tokens are given, while on the right, the probability density function with power law and
lognormal fit is given.

complemented. The field of network science keeps evolving, and
new methodologies, such as in Li et al. [46], could be, for
instance, applied to better investigate clustering in token networks.
In conclusion, for the continuation of this study, we return to
our first step, the first paper we cited, Tasca and Tessone [1],
which discusses the taxonomy of the blockchain. A conclusive
taxonomy about tokens, as well as better comparative tokenomics,
could be the key for further research in horizontal studies across
multiple tokens.

5 Limitations

This study is subject to several limitations that could potentially
limit the validity of our findings.

5.1 Internal validity

5.1.1 Data selection bias
One of the core limitations is the decision to focus on

tokens with more than 10,000 transactions. We have a very
skewed distribution, so the 25, 50, 75, 90, and 95 percentiles,
respectively, correspond to 4, 7, 50, 424, and 1,480 transactions,
as illustrated in Figure 11. So 10,000 transactions correspond
to the 98.73 percentile. This relatively high threshold was
chosen to ensure a significant activity level for each token,
but it might have excluded tokens that are relevant in other
ways, for example, emerging tokens, or tokens with lower
activity but high market capitalisation or long-term relevance.
Additionally, scam or fake tokens with high activity levels might
have skewed the overall results. The user-generated content
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FIGURE 11
Histogram of log-transformed overall number of transactions Log10(tx). Percentiles are displayed, and the values greater than 10,000 considered in our
study are highlighted to show their frequency.

data we used in our analysis is limited by the amount and
quality of data we could gather about individual tokens. A
more granular categorisation could have improved the efficacy
of our research.

5.1.2 Time-period sensitivity
The time period analysed spans from Ethereum’s inception in

July 2015 to May 2024. This would already be a long timeframe for
traditional markets, but for crypto markets, it is an exceptional time
length, which captures almost the whole life span of the Ethereum
ecosystem. We encounter significant market volatility: our findings,
especially those related to token centralisation and the market cap
correlation, may be sensitive to the chosen timeframe. For example,
certain trends we identified may have emerged due to market cycles,
technological developments, regulatory and or/political changes
within specific windows, and might not generalise well.

5.2 External validity

5.2.1 Generalisability to other blockchain
ecosystems

Our study focusses exclusively on the Ethereum blockchain,
particularly on ERC-20 and ERC-721 tokens. Although
Ethereum represents the largest platform for tokenised assets,
other blockchain ecosystems, such as Binance Smart Chain,
Solana, or Avalanche, have different architectures, governance
models, user bases, and liquidity markets. The trends and
network structures observed here may not necessarily apply
to those ecosystems, even when they are compatible with
Ethereum, or directly a fork of it (such as Binance Smart
Chain or Avalanche). The validity of the findings for UTXO
based blockchain like Bitcoin, which allows a certain degree
of colored coins, is as well a research question we do not
examine in the present study.

5.3 Construct validity

5.3.1 Methodological limitations: ARMA model
assumptions

The use of ARMA models for analysing transaction time series
introduces strong assumptions such as stationarity and linearity,
meaning they may not adequately account for sudden market
shocks, nonlinear relationships, or long-term dependencies in the
data. The ARMA models were applied to the most active tokens,
excluding lower-volume or newly minted tokens.

5.3.2 Missing contextual information
Although our study focusses on transactional data and network

structure, we acknowledge that on-chain data alonemay not capture
the full context of token success or failure. For example, external
factors such as team reputation, investor backing, marketing
strategies, and off-chain activities (e.g., partnerships and trading)
also play crucial roles in token dynamics, which are not captured
in our analysis, which is limited to the user-generated token labels
we could collect. A more contextual analysis with machine learning
and natural language processing tools could have helped better
contextualise every token.

Data availability statement

The source code for running the experiments has been
published under https://github.com/fdecollibus/patterns_in_
ethereum_tokens, where part of the data to reproduce the
experiment is also made available. For integral reproducibility
of our results, missing datasets can be provided by the authors
upon request. Ethereum Blockchain data are inherently public:
the token transfer data used is available on the Ethereum
blockchain. Ethereum client and ethereum-etl tool were
used for collecting data. This data set is publicly available

Frontiers in Physics 13 frontiersin.org

https://doi.org/10.3389/fphy.2024.1305167
https://github.com/fdecollibus/patterns_in_ethereum_tokens
https://github.com/fdecollibus/patterns_in_ethereum_tokens
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org


De Collibus et al. 10.3389/fphy.2024.1305167

on Google Cloud BigQuery https : //c loud.google .com/blog/
produc t s /da t a -ana ly t i c s / e the reum-b igquery -pub l i c -
dataset-smart-contract-analytics, see the table token_transfers.
Additional data are extracted from the public APIs of Coingecko,
Coinmarketcaps and Etherscan.
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