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In this manuscript, we derive and examine the analytical solution for the solid
tumor invasion model of fractional order. The main aim of this work is to
formulate a solid tumor invasion model using the Caputo fractional operator.
Here, the model involves a system of four equations, which are solved using an
approximate analytical method. We used the fixed-point theorem to describe the
uniqueness and existence of the model’s system of solutions and graphs to
explain the results we achieved using this approach. The technique used in this
manuscript is more efficient for studying the behavior of this model, and
the results are accurate and converge swiftly. The current study reveals that
the investigated model is time-dependent, which can be explored using the
fractional-order calculus concept.
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1 Introduction

After the evolution of Homo sapiens (human beings), humans are still suffering from
many diseases. Among those, cancer affects the population most significantly, ranking as
the second most common cause of death after cardiovascular disease. Nearly 10 million
deaths have occurred, according to a 2020 survey [1]. The first cancer tumor was discovered
around 3000 BCE in Egyptian mummies. Malignant tumors and neoplasms are generally
called cancer [2]. The process of scattering and creating secondary tumors is known as
metastasis, and this behavior of cancer cells is the key reason for death in cancer patients.
However, the cause of cancer was discovered by a British surgeon Percivall Pott in 1775. The
estimation of the size, phase, and growth of a tumor is very critical for the treatment of
cancer, and mathematics plays an important role in helping us investigate the behavior of
the tumor. Many researchers have been studying the growth of solid tumors using
mathematical models [3, 4]. Discrete models that consider single cells have been
constructed on them. Jeon et al., invented the discrete-continuum model [5], which
gives the idea of transporting chemicals inside the tumor and the individual character
of cells. Solid tumors depend on diffusion because it is the only way to intake nutrients and
detach waste products. One single normal cell is converted into a main solid tumor (e.g.,
carcinoma [6]) due to mutations in key genes. A single tumor cell has the potential to form a
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group of tumor cells through successive divisions, and they develop
in two different stages: one is the vascular stage, and another is the
avascular stage. Then, it will cause the formation of an avascular
tumor with 106 cells. Once solid tumors develop, they find a way to
spread to other body parts through the circulatory system, leading to
the destruction of normal tissues, and once a tumor reaches its
maximum size, the absorption of nutrients is insufficient to provide

the tumor’s inner parts with oxygen, which causes cell death. There
are many experimental ways to model tumor cell migration, like
macro-scale models and micro-patterned models [7, 8]. These solid
tumors are formed due to the production of abnormal cells in the
body. Another reason for the formation of solid tumors is the non-
replication of DNA at the molecular level in the cell nucleus. As
much research has been done and developed, many anti-cancer

FIGURE 1
Nature of AAM solution for (A) Td (x, t) (B) Fc (x, t) (C) Mc (x, t) (D) Oc (x, t) (E) Combined surface plot.
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therapies, like radiation therapy, chemotherapy, and hormone
therapy and surgery, have been implemented to increase lifespan
and reduce tumors. These traditional cancer treatments do not cure
it completely but involve other side effects like fatigue, vomiting, hair
loss, and a reduction in blood count. However, there is a therapy
called virotherapy [9], where several viruses have been used as agents
to treat cancer cells, and clinical trials proved zero percent toxicity.
In recent years, many mathematical models of solid tumor growth
[10–13] have been established, and they have also concentrated on
the evolutionary dynamics of tumor growth. In this article, we will
examine the solid tumor invasionmodel [14] of fractional order, and

this model is expressed as a system of partial differential equations.
The interactions between the cancer cells are denoted by Td, matrix-
degrading enzymes (MDEs) are represented byMc, the extracellular
matrix is signified by Ec, and the rate of oxygen production is given
by Oc. Regarding the extracellular matrix, the majority of the
macromolecules are necessary for adhesion, spreading, and
motility of cells. Moreover, several macromolecules, including
collagen, laminin, and fibronectin, are linked to the extracellular
matrix. Matrix-degrading enzymes are essential for different phases
of invasion, metastasis, and turnover growth. Tumor cells produce
matrix-degrading enzymes that cause the extracellular matrix to

FIGURE 2
Aquered AAM solution for (A) Td (x, t) (B) Fc (x, t) (C) Mc (x, t) (D) Oc (x, t) (E) Combined surface plot at different alpha values.
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break down locally. Additionally, the way they interact with growth
factors, inhibitors, and tumor cells is very complex. Here, Td andMc

and Ec and Oc have a direct linear relationship.
Fractional calculus (FC) is a tool to study derivatives and

integrals of fractional order. As we know, classical calculus has
been developed as a vast subject, and many researchers have been
working on it until now. Due to the ideas of German
mathematician Leibniz and L’Hospital’s rule, the theory of
fractional calculus came into existence approximately 300 years
ago. Fractional calculus can be assumed to be a well-developed and
established subject. Both memory effects and hereditary properties
influence the problem under consideration. FC has attracted many
researchers to work on it. Compared to classical calculus, fractional
calculus has more applications in various fields and real-world
problems, as it gives solutions in between the intervals [15]. We all
know that classical differential equations have numerous
applications that model many natural and physical phenomena,
but fractional differential equations (FDEs) model natural and
physical phenomena more accurately, as the behaviors of FDEs
give an accurate and approximate solution to the problem, which
can be analyzed more understandably. Fractional-order derivatives
have a greater ability to model complicated non-linear processes
[16–19] and higher-order behaviors. The main reason to consider
fractional derivatives is that we can take any order of derivative
rather than restricting it to integer order. FC has a wide variety of
applications in the fields of science [20], biology [21, 22],
engineering [23], and others. It allows us to study many
physical phenomena, like earthquake vibrations, elasticity,

shallow water waves, and quantum mechanics [24–27]. Many
researchers have defined fractional derivatives like
Riemann–Liouville, Caputo derivative, Grünwald–Letnikov, and
Atangana–Baleanu, but each operator has its own limitations. The
linear and non-linear FDEs can be solved using the variational
iteration method [28, 29], differential transform method [30, 31],
q-homotopy analysis transformmethod [32], residual power series
method [33], homotopy perturbation method [34, 35], and many
analytical, numerical, and other techniques [36–41, 57] which give
analytical, numerical, and exact solutions. Recently, [42]
investigated giving up smoking models with non-singular
derivatives. [43] proposed the cancer-immune system model of
fractional order using Caputo and Caputo–Fabrizio derivatives.
[44] demonstrated the behavior of the cancer cells after injecting a
dose of medicine by developing a new cancer model. [45]
developed a new cancer mathematical model of fractional order
using IL-10 cytokine and anti-PD-L1 inhibitors. [46–48]
implemented the similarity method to study multi-term time-
fractional diffusion equations, Riesz fractional partial
differential equations, and fractional heat equations and also
deduced two variable fractional partial differential equations
from ordinary differential equations. Many biological,
epidemical, and other mathematical models have been studied
[49–56]. Here, we will apply an efficient technique called the
approximate analytical method (AAM) to study the considered
model. AAM is a semi-analytical method that can be used to solve
highly non-linear problems, as it gives a series solution, allowing us
to analyze the solution more effectively. The significance of this

FIGURE 3
Nature of the solution with respect to time for (A) Td (x, t) (B) Fc (x, t) (C) Mc (x, t) (D) Oc (x, t).
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method is that it discretizes the non-linear terms in the equations.
AAM can be applied to solve complex non-linear and linear
fractional differential equations and requires less computational
work. AAM has been applied to solve solute problems, fluid flow
models, and KDV equations [57, 58].

2 Preliminaries

The following definitions and properties, which are utilized in
this article, are cited in [17, 18, 50].

Definition 2.1: The fractional integral of a function
f(t) ∈ Cμ(μ≥ − 1) of non-zero positive order α is defined by
Riemann–Liouville (RL) and represented by

0J
α
t f t( ) � 1

Γ α( )∫
t

0
t − ϑ( )α−1f ϑ( )dϑ,

J0f t( ) � f t( ).

Theorem 2.2: Let b> − 1 and α1, α2 ∈ R, α1, α2 ≥ 0. Then, the
RL fractional partial integral operator 0J

α
t satisfies the following

properties for the function u(x, t) ∈ Cμ,μ> − 1:

0J
α1
t 0J

α2
t u x, y, t( ) � 0J

α1+α2
t u x, y, t( ),

0J
α1
t 0J

α2
t u x, y, t( ) � 0J

α2
t 0J

α1
t u x, y, t( ),

0J
α
t t

b � Γ b + 1( )
Γ b + α + 1( )t

α+b.

Definition 2.3. The fractional derivative of f ∈ Cn−1 in the
Caputo sense is defined as

Dα
t f t( ) �

dnf t( )
dtn

, α � n ∈ N,

1
Γ n − α( )∫

t

0
t − ϑ( )n−α−1f n( ) ϑ( )dϑ, α ∈ n − 1, n( ), n ∈ N.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Definition 2.4. The Laplace transform (LT) of a Caputo

fractional derivative Dα
t f(t) is denoted as

L Dα
t f t( )[ ] � sαF s( ) −∑n−1

r�0s
α−r−1f r( ) 0+( ), n − 1< α≤ n( ),

where F(s) denotes the LT of the function f(t).
Theorem 2.5: Let α, t ∈ R, t≥ 0, n − 1< α< n ∈ N. Then,

we have

Dα
t 0J

α
t u x, y, t( ) � u x, y, t( ),

0J
α
t 0D

α
t u x, y, t( ) � u x, y, t( ) −∑m−1

k�0
tk

k!

∂ku x, y, 0+( )
∂tk

.

3 Mathematical model of solid
tumor invasion

3.1 Classical model

Let us consider the classical model of solid tumor invasion,
which involves a system of partial differential equations: Mc

indicates the matrix-degrading enzyme (MDE) concentration, Td

indicates the tumor cell density, Oc indicates the oxygen

concentration, Ec indicates the concentration of macromolecules
(MMs) in the extracellular matrix (EC). The values of all four
variables depend on both x and time ζ. The motion of the tumor
cells is determined by [14]

∂Td

∂ζ
� dn∇

2Td − ρ∇ Td∇Ec( ).

The value of the arbitrary motility coefficient that remains
constant is denoted by dn, while the haptotatic coefficient is
represented by ρ > 0. The breakdown of the ECM occurs due to
MDEs). This leads to a process of deterioration, which is given by

∂Ec

∂ζ � −δMcEc,

where δ is a positive constant. It is believed that active MDEs are
generated by tumor cells, dispersed throughout the tissue, and
undergo a certain level of decomposition. The definition for the
concentration of MDE is as follows:

∂Mc

∂ζ
� dm∇

2Mc + μTd − λMc,

where the positive constants are represented as λ, dm , and μ. The
diffusion coefficient of MDEs is denoted by dm .

Solid tumor needs oxygen for growth and invasion. Oxygen gets
distributed among the macromolecules, undergoes decay, and is
eventually absorbed by the tumor. The density of MM is directly
related to the manufacture of oxygen. It is specified by

∂Oc

∂ζ
� dc∇

2Oc + βEc − γMc − αOc,

where the rate of production is given by β, the diffusion coefficient of
oxygen is denoted by d

c
, the rate of decay is given by α, the rate of

uptake is given by γ, and all other variables remain constant.
The system of equations is given by

∂Td

∂ζ
� dn∇

2Td − ρ∇ Td∇Ec( ),
∂Ec

∂ζ � −δMcEc,

∂Mc

∂ζ
� dm∇

2Mc + μTd − λMc,

∂Oc

∂ζ
� dc∇

2Oc + βEc − γMc − αOc.

The adhesion between cells and the extracellular matrix is
framed by the outgrowth of cells in the cell equation, represented
by χ. The system is designed to operate within a square spatial
domain Ω, which represents tissue. It includes specific initial
conditions for every variable. It is believed that the variables stay
within the tissue area under consideration. As a result, boundary ∂Ω
is subjected to no-flux boundary conditions.

We can achieve dimensionless equations by implementing non-
dimensionalization through appropriate parameters such as length
scale L and time τ. This approach helps simplify the equations and
makes them easier to analyze; we scale the parameters as follows: the
density of the tumor cell as Td0 , the density of the ECM as Ec0, the
concentration of the MDE asMc0, and the concentration of oxygen
as Oc0.
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T̃d � Td

Td0
, Ẽc � Ec

Ec0
, M̃c � Mc

Mc0
, Õc � Oc

Oc0
, ~x � x

L
,~ζ � ζ

L
.

Now, the equations are given by

∂Td

∂ζ
� Dn∇

2Td − χ∇ Td∇Ec( ),
∂Ec

∂ζ � − ηMcEc,
∂Mc

∂ζ
� Dm∇

2Mc + kTd − σMc,

∂Oc

∂ζ
� Dc∇

2Oc + γEc − ωMc − ϕOc.

(1)

where Dm = τdn
L2 , Dn =

dm τ
L2 , D c

� τdc
L2 , χ =

τEc0
L2 , η � τMc0 δ, k = τμTd0

Mc0
,

σ � τλ, γ � τβEc0

Oc0
, ω � τγTd0

Oc0
, and ɸ � τα.

3.2 Fractional model

By using the Caputo fractional derivative, the system of
equations (Eq. 1) has been converted into fractional
differential equations.

c
t0
Dα

ζTd � Dn∇
2Td − χ∇ Td∇Ec( ),

c
t0
Dα

ζEc � − ηMcEc,
c
t0
Dα

ζMc � Dm∇
2Mc + kTd − σMc,

c
t0
Dα

ζOc � Dc∇
2Oc + γEc − ωMc − ϕOc,

(2)

with the initial conditions

Td0 � Td x, 0( ) � e
−x2
ε ,

Ec0 � Ec x, 0( ) � 1 − 0.5e
−x2
ε ,

Mc0 � Mc x, 0( ) � 0.5e
−x2
ε ,

Oc0 � Oc x, 0( ) � 0.5e
−x2
ε .

4 Methodology of the
approximate analytical method

In order to determine the validity of this approach, we will
examine the non-linear fractional partial differential equation
(NFPDE) with the following initial conditions:

Dα
t u �x, �y, t( ) � f �x, �y, t( ) + L�u +N�u,m − 1< α<m ∈ N,

∂iu �x, �y, t( )
∂ti

� fi �x, �y( ), i � 0, 1, 2, 3, . . . .m − 1,
(3)

where Dα
t is the Caputo fractional partial derivative of order

α, f(�x, �y, t) is the source term, which is an analytical function,
L and N represent linear and non-linear operators, and �x �
(x1, x2, . . . , xn) �y � (y1, y2, . . . , yn) ∈ Rn. To attain the
analytical solution of the considered model, we implemented a
technique called the approximate analytical method.
Computational accuracy is necessary to provide appropriate
piecewise analytical solutions, making it a useful tool for
solving non-linear fractional differential equations. To illustrate
AAM, it is essential to analyze the subsequent outcomes. The
outcomes are cited in [48, 50].

Lemma 4.1: For v(�x, �y, t) � ∑∞
k�0rkv(�x, �y, t), the linear operator

L(u) satisfies the following property:

L v �x, �y, t( )( ) � L ∑∞
k�0

rkv �x, �y, t( )⎛⎝ ⎞⎠ �∑∞
k�0

rkLvk �x, �y, t( ).
Theorem 4.2. Let v(�x, �y, t) � ∑∞

k�0vk(�x, �y, t) and
vλ(�x, �y, t) � ∑∞

k�0λ
kvk(�x, �y, t), where λ is the non-zero parameter

such that 0≤ λ≤ 1, and subsequently, the non-linear operator
N (vλ ) satisfies the following conditions:

N vλ( ) � N∑∞
k�0 λkvk( ) �∑∞

n�0
1
n!

δ

δλn
N ∑∞

k�0λ
kvk( )( )

λ�0( )λn.
Proof: Consider the Maclaurin expansion concerning λ,

which gives

N vλ( ) � N ∑∞
k�0λ

kvk( )
� N∑∞

k�0 λkvk( )[ ]
λ�0 +

δ

δλ
N∑∞

k�0 λkvk( )[ ]
λ�0[ ][ ]λ

+ 1
2!

δ2

δλ2
N∑∞

k�0 λkvk( )[ ]
λ�0[ ][ ]λ2 + . . .

�∑∞
k�0

1
n!

δn

δλn
N ∑∞

k�0λ
kvk( )( )

λ�0( )λn
�∑∞

k�0
1
n!

δn

δλn
N ∑∞

k�0λ
kvk +∑∞

k�n+1λ
kvk( )( )

λ�0( )λn
�∑∞

k�0
1
n!

δn

δλn
N ∑n

k�0λ
kvk( )( )

λ�0( )λn.
Definition 4.3: The polynomials Pn(v0, v1, v2, . . . vn) are defined

as follows:

Pn v0, v1, v2, . . . vn( ) � 1
n!

δn

δλn
N ∑n

k�0λ
kvk( )( )

λ�0.

Remark 4.4. Let Pn � Pn(v0, v1, v2, . . . vn), as shown in
Definition 4.3. The non-linear term N(vλ ) can be defined in
terms of Pn using Theorem 4.2 as follows:

N vλ( ) �∑∞
n�0λ

nPn.

4.1 Existence theorem

The following theorem presents an approximate analytical
solution for a non-linear fractional partial differential equation,
with its initial solution given in Eq. 3 and obtained
through the AAM.

Theorem 4.6: The functions f(�x, t) andfi(�x) are defined as
shown in Eq. 3 and m − 1< α<m ∈ N.

Equation 3 gives at least one solution, which is provided by

v �x, �y, t( ) � f −α( )
t �x, �y, t( ) +∑m−1

i�0
ti

i!
fi �x, �y( )

+∑m−1
i�0 L−α

t v k−1( ) + p −α( )
k−1( )t[ ],
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where p(−α)
(k−1)t and L−αt v(k−1) are the Riemann–Liouville partial

fractional integral of order α for Pk−1 and L(vk−1) with regard to
t, respectively.

Proof: Consider the solution v(�x, �y, t) of Eq. 3 in the
analytical form:

v �x, �y, t( ) �∑∞
k�0vk �x, �y, t( ). (4)

Let us consider the below expression to solve the given initial
value problem shown in Eq. 3:

Dα
t vλ �x, �y, t( ) � λ f �x, �y, t( ) + L vλ( ) +N vλ( )[ ], 0≤ λ≤ 1, (5)

with initial conditions

∂iu �x, �y, t( )
∂ti

� fi �x, �y( ), i � 0, 1, 2, 3, . . . .m − 1. (6)

Let us suppose that Eq. 5 has the solution in the form:

vλ �x, �y, t( ) �∑∞
k�0λ

kvk �x, �y, t( ). (7)

Now, let us consider Eq. 3 with the Riemann–Liouville partial
integral, and using Theorem 4.2, we have

vλ �x, �y, t( ) �∑m−1
i�0

ti

i!

∂ivλ �x, �y, 0( )
∂ti

+ λ0J
α
t f( �x, �y, t( ) + L vλ( ) +N vλ( )[ ]. (8)

Equation 8 can be written as below using Eq. 6:

vλ �x,�y,t( ) �∑m−1
i�0

ti

i!
gi �x, �y( )

+ λ f −α( )
t �x, �y, t( ) + Jαt L vλ( )[ ] + Jαt N vλ( )[ ][ ]. (9)

By substituting Eq. 7 into Eq. 9, we obtain

∑∞
k�0λ

kvk �x, �y, t( ) �∑m−1
i�0

ti

i!
gi �x, �y( ) + λf −α( )

t �x, �y, t( )
+ Jαt λ∑∞

k�0 L λkvk( )[ ]
+ Jαt λ∑∞

n�0
1
n!

∂n

∂λn
N ∑∞

k�0λ
kvk( )( )

λ�0[ ]λn.
(10)

With the help of definition 4.3 and Eq. 10, we obtain

∑∞
k�0λ

kvk �x, �y, t( ) �∑m−1
i�0

ti

i!
gi �x, �y( ) + λf −α( )

t �x, �y, t( )
+ Jαt λ∑∞

k�0 L λkvk( )[ ] + Jαt λ∑∞
n�0pnλ

n. (11)

Equating the coefficients of like powers of λ in Eq. 11, we get the
below terms

vo∑m−1
i�0

ti

i!
gi �x, �y( ), v1 �x, �y, t( ) � f −α( )

t �x, �y, t( ) + L −α( )
t v0

+ P −α( )
ot , v1 �x, �y, t( )

� L −α( )
t vk−1 + P −α( )

k−1( )t, k � 2, 3, (12)

Substituting Eq. 12 into Eq. 7 gives the solution of Eq. 3. Using
Eq. 4 and 7, we obtain

v �x, �y, t( ) � limλ→1 vλ �x, �y, t( )
� v0 �x, �y, t( ) + v1 �x, �y, t( ) +∑∞

k�2vk �x, �y, t( ). (13)

We can see that ∂iv(�x,�y,0)
∂ti � limλ→1

∂ivλ(�x,�y,t)
∂ti 0gi(�x, �y) � fi(�x, �y).

Replacing Eq. 12 in Eq. 13 ends the proof.

5 Existence of the solution

We will explain the solution’s existence using the concepts
provided below.

Definition 5.1: Let us consider a Cauchy space (X, d), which is
non-empty and 0≤ λ< 1. If the mapping S: X → X for every
(x, �x) ∈ X, then it satisfies

d Sx, S�x( )≤ λd x, �x( ).
Then, S has a unique fixed point x* ∈ X. If Sk(k ∈ N), the sequence
is given by

Sk � SSk−1, k ∈ N/ 1{ }
S1 � S

{ .

Thus, for any x0 ∈ X, Skx0{ }k�∞
k�1 reaches the fixed point x*.

Definition 5.2: Let m ∈ N, H ∈ Rm, [p, q] ⊂ R, and
h: [p, q] × H → R be the function of s, t for (x1,x2, . . . , xm)
(x1*, x2*, . . . , x*

m) ∈ H. Here, h satisfies the generalized Lipschitz
condition: |h(ζ , x1,x2, . . . , xm) − h(ζ , x1*, x2*, . . . , x*

m)|≤ A1|x1 −
x1*|+ A2|x2. − x2*| + . . . + Am|xm − xm*|, Aj ≥ 0, j � 1, 2, 3 . . . ,m.

Specifically, h satisfies the Lipschitz condition. If ∀, ζ ∈(p, q] and
for any x, x* ∈ G, one has

h ζ , x[ ] − h ζ , x*[ ]| |≤A x − x*| |, A> 0.

Let us examine the following set of equations:

Dα
ζ Td x, ζ( )[ ] � ψ1 x, ζ , Td( ),

Dα
ζ Ec x, ζ( )[ ] � ψ2 x, ζ , Ec( ),

Dα
ζ Mc x, ζ( )[ ] � ψ3 x, ζ ,Mc( ),
Dα

ζ Oc x, ζ( )[ ] � ψ4 x, ζ , Oc( ).

(14)

Now using the above Eq. 14, we obtain

Td x, ζ( ) − Td x, 0( ) � Iαζ Dn
∂2

∂x2
Td − χ

∂Td

∂x
∂Ec

∂x
+ Td

∂2Ec

∂x2
( ){ },

Ec x, ζ( ) − Ec x, 0( ) � Iαζ −ηMcEc{ },
Mc x, ζ( ) −Mc x, 0( ) � Iαζ Dp

∂2Mc

∂x2
+ kTd − σMc{ },

Oc x, ζ( ) − Oc x, 0( ) � Iαζ Dc
∂2Oc

∂x2
+ γEc − ωMc − ϕOc{ }.

Then, by defining the fractional integral, we obtain
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Td x, ζ( ) − Td x, 0( ) � 1
Γ α( )∫

ζ

0
ζ − v( )α−1ψ1 x, v, Td( )dv,

Ec x, ζ( ) − Ec x, 0( ) � 1
Γ α( )∫

ζ

0
ζ − v( )α−1ψ2 x, v, Ec( )dv,

Mc x, ζ( ) −Mc x, 0( ) � 1
Γ α( )∫

ζ

0
ζ − v( )α−1ψ3 x, v,Mc( )dv,

Oc x, ζ( ) − Oc x, 0( ) � 1
Γ α( )∫

ζ

0
ζ − v( )α−1ψ4 x, v, Oc( )dv.

5.1 Convergence theorem

Let us consider a mappingH: G → G, which is non-linear, with
Banach space G. Let us suppose that

H u( ) −H v( )‖ ‖≤ μi u − v‖ ‖,∀u, v ∈ G.

Thus, it has a fixed point convergence to a singular point within
H and

vm − vp
#### ####≤ μpi

1 − μi
v1 − v0‖ ‖, i � 1, 2, 3, 4.

Proof: Consider the Banach space (C[J], ‖.‖) with the norm
demarcated as

g t( )#### #### � maxt∈J g t( )∣∣∣∣ ∣∣∣∣ function on J.
We need to confirm whether the sequences Tdp{ }, Ecp{ }, and

Ocp{ } are Cauchy sequences in (C [ J ], ‖.‖).
For Tdp, consider

Tdm − Tdp

#### #### � maxt∈J Tdm − Tdp

∣∣∣∣ ∣∣∣∣,� maxt∈J Tdm−1 − Tdp−1( )∣∣∣∣∣
−0J

α
t Dn

∂2Tdm−1
∂x2 − ∂2Tdp−1

∂x2( )(
−x ∂ςdm−1

∂x
∂Ecm−1
∂x

+ Tdm−1
∂2Ecm−1
∂x2 − ∂ςdp−1

∂x
∂Ecp−1

∂x
(

−Tdp−1
∂2Ecp−1

∂x2 ))∣∣∣∣∣∣∣∣≤maxt∈J Tdm−1 − Tdp−1( )∣∣∣∣∣
−0J

α
t Dn

∂2Tdm−1
∂x2 − ∂2Tdp−1

∂x2( )(
−x ∂ςdm−1

∂x
∂Ecm−1
∂x

+ Tdm−1
∂2Ecm−1
∂x2 − ∂ςdp−1

∂x
∂Ecp−1

∂x
(

−Tdp−1
∂2Ecp−1

∂x2 )) ς − v( )α
Γ 1 + α( ) dv

∣∣∣∣∣∣∣∣
(by convolution theorem)

≤ Tdm−1 − Tdp−1( )∣∣∣∣∣ ∣∣∣∣∣ − ∫ς

0
Dnδ

2
1 + χ δ1λ1 + λ2( ) ς − v( )α

Γ 1 + α( ) Tdm−1−
∣∣∣∣ ∣∣∣∣dv,

and the above inequality reduced to

Tdm − Tdp

#### ####≤ μ1 Tdm−1 − Tdp−1
#### ####,

where

μ1 � ∫ς

0
Dnδ

2
1 + χ δ1λ1 + λ2( ) ς − v( )α

Γ 1 + α( ) dv,

δ1 � ∂ςdm−1
∂x

− ∂ςdp−1
∂x

, δ2 � ∂2Tdm−1
∂x2

− ∂2Tdp−1

∂x2
,

λ1 � ∂Ecm−1
∂x

− ∂Ecp−1

∂x
, λ2 � ∂2Ecm−1

∂x2
− ∂2Ecp−1

∂x2
.

Taking m � p + 1, we obtain

Tdp+1 − Tdp

#### ####≤ μ1 Tdp − Tdp−1
#### ####≤ μ21 Tdp−1 − Tdp−2

#### #### . . . .. μp1 Td1 − Td0

#### ####.
Using triangle inequality, we have

Tdp − Tdp

#### ####≤ Tdp+1 − Tdp

#### #### + Tdp+2 − Tdp+1
#### #### + · · · + Tdp − Tdm−1

#### ####
≤ μp1 + μp−11 + μp−21 . . . + μm−1

1[ ] Td1 − Td0

#### ####
≤ μp1

1 − μm−p−1
1

1 − μ1
[ ] Td1 − Td0

#### ####,
as 0 < μ1 < 1, so 1 − μm−p−1

1 < 1, and then we have

Tdp − Tdp

#### ####≤ μp1
1 − μ1
[ ] Td1 − Td0

#### ####.
However, ‖Td1 − Td0‖<∞ . Consequently, asm → ∞, ‖Tdp −

Tdp‖ → 0 proves that Tdp{ } is a Cauchy sequence.
Similarly, we can prove that

Ecm − Ecp

#### ####≤ μp2
1 − μ2
[ ] Ec1 − Ec0

#### ####,
Mcm −Mcp

#### ####≤ μp3
1 − μ3
[ ] Mc1 − Mc0

#### ####,
Ocm − Ocp

#### ####≤ μp4
1 − μ4
[ ] Oc1 − Oc0

#### ####,
where

μ2 � ∫ζ

0
δm

ζ − v( )α
Γ 1 + α( ) dv,

μ3 � ∫ζ

0
dpδ

2
2 +

kn
Mcm−1 −Mcp−1

− σ( ) ζ − v( )α
Γ 1 + α( )dv,

μ4 � ∫ζ

0
dcδ

2
3 + γEc − ωMc − θδ3( ) ζ − v( )α

Γ 1 + α( )dv,

δ2 � ∂Ecm−1
∂x

− ∂Ecp−1

∂x
, δ22 �

∂2Mcm−1
∂x2

− ∂2Mcp−1

∂x2
,

δ23 �
∂2Ocm−1
∂x2

− ∂2Ocp−1

∂x2
, δ3 � ∂Ocm−1

∂x
− ∂Ocp−1

∂x
.

This proves the theorem.

5.2 Uniqueness theorem

The solutions obtained through AAM for Eqs 1, 2 are always
unique under

0 < µi < 1, i � 1, 2, 3, 4.

Proof: The solution for fractional partial equations is
demonstrated as follows:

v x, ζ( ) �∑∞
p�0vp x, ζ( ).

For i � 1, assume that Td and T*
d are two distinct values such that
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Td − T*
d

∣∣∣∣ ∣∣∣∣≤ maxt∈J Td − T*
d

∣∣∣∣ ∣∣∣∣,
≤ Td − T*

d( ) − 0J
α
t Dn

∂2Td

∂x2
− ∂2T*

d

∂x2
( ) − X ∂Td

∂x
∂Ec

∂x
+ ∂2Ec

∂x2
(∣∣∣∣∣∣∣∣

−∂T
*
d

∂x
∂E*

c

∂x
− T*

d

∂2E*
c

∂x2
))∣∣∣∣∣∣∣∣,

≤ Td − T*
d( )∣∣∣∣ ∣∣∣∣ − ∫ζ

0
Dn

∂2Td

∂x2
− ∂2T*

d

∂x2
⎞⎠ − X( ∂Td

∂x
∂Ec

∂x
+ ∂2Ec

∂x2
⎛⎝∣∣∣∣∣∣∣∣∣∣

− ∂T*
d

∂x
∂E*

c

∂x
− T*

d

∂2E*
c

∂x2
⎞⎠ ζ − v( )α
Γ 1 + α( ) dv

∣∣∣∣∣∣∣∣∣∣
(by convolution theorem),

≤ Td − T*
d( )∣∣∣∣ ∣∣∣∣ − ∫ζ

0
Dnδ

2
1 + X δ1λ1 + λ2( ) ζ − v( )α

Γ 1 + α( ) Td − T*
d

∣∣∣∣ ∣∣∣∣dv,
and the above inequality is reduced to

Tdp − Tdp
*

∣∣∣∣ ∣∣∣∣≤ μ5 Td − T*
d

∣∣∣∣ ∣∣∣∣,
where

μ5 � ∫ζ

0
Dnδ

2
1 + X δ1λ1 + λ2( ) ζ − v( )α

Γ 1 + α( ) dv, δ1 �
∂Td

∂x
− ∂T*

d

∂x
,

δ21 �
∂2Td

∂x2
− ∂2T*

d

∂x2
, λ1 � ∂Ec

∂x
− ∂E*

c

∂x
, λ2 � ∂2Ec

∂x2
− ∂2E*

c

∂x2
.

We obtain

1 − μ( ) Td − T*
d

∣∣∣∣ ∣∣∣∣≤ 0,
Td − T*

d

∣∣∣∣ ∣∣∣∣ � 0, 0< μ< 1,

Td � T*
d.

Similarly, we can prove that Ec � E*
c, Mc � M*

c, and Oc � O*
c.

6 Solution of a system of equations
using the AAM

Considering Eq. 2, we obtain

c
t0
Dα

ζ −Dn
∂2Td

∂x2
+ χ ∂Td

∂x
∂Ec

∂x
+ Td

∂2 Ec

∂x2
( ) � 0,

c
t0
Dα

ζ + ηMcEc � 0,

c
t0
Dα

ζ −Dm
∂2Mc

∂x2
− kTd + σMc � 0,

c
t0
Dα

ζ −D
c

∂2Oc

∂x2
− Ecγ + ωMc + ɸOc � 0.

With the initial conditions shown in Eq. 2, we obtain

Td0 � Td x, 0( ) � e
−x2
ε ,

Ec0 � Ec x, 0( ) � 1 − 0.5e
−x2
ε ,

Mc0 � Mc x, 0( ) � 0.5e
−x2
ε ,

Oc0 � Oc x, 0( ) � 0.5e
−x2
ε .

The above system of equations can be re-written as
given below:

c
t0
Dα

ζTd x, ζ( ) � Dn
∂2Td

∂x2

∂Td

∂x
∂Ec

∂x
+ Td

∂2Ec

∂x2( ),
c
tn
Dα

ζEc x, ζ( ) � −ηMcEc,

c
t0
Dα

ζMc x, ζ( ) � Dm
∂2Mc

∂x2 − kTd + σMc,

c
t0
Dα

ζOc x, ζ( ) � Dc
∂2oc
∂x2 + Ecγ − ωMc −ΦOc.

Using the AAM procedure, let us assume the solution of the
above system of equations in the following manner:

v x, ζ( ) �∑∞
k�0vk x, ζ( ). (15)

Consider the above system of equations to get an
approximate solution:

c
t0
Dα

ζTdλ x, ζ( ) � λ Dn
∂2Td

∂x2 − ∂Td

∂x
∂Ec

∂x
+ Td

∂2 Ec

∂x2( )[ ],
c
t0
Dα

ζEcλ x, ζ( ) � λ −ηMcEc[ ],
c
t0
Dα

ζMcλ x, ζ( ) � λ Dm
∂2Mc

∂x2 + kTd − σMc[ ],
c
t0
Dα

ζOcλ x, ζ( ) � λ D
c

∂2Oc

∂x2 + Ecγ − ωMc − ɸOc[ ],
with the assumed initial solutions

Tdλ x, ζ , 0( ) � g1 x, ζ( ),
Ecλ x, ζ , 0( ) � g2 x, ζ( ),
Mcλ x, ζ , 0( ) � g3 x, ζ( ),
Ocλ x, ζ , 0( ) � g4 x, ζ( ).

Let us assume that above system of equations has the solution in
the series form:

Tdλ x, ζ( ) �∑∞
k�0λ

kTdλ x, ζ( ),
Ecλ x, ζ( ) �∑∞

k�0λ
kEcλ x, ζ( ),

Mcλ x, ζ( ) �∑∞
k�0λ

kMcλ x, ζ( ),
Ocλ x, ζ( ) �∑∞

k�0λ
kOcλ x, ζ( ).

(16)

Operating the RL fractional integral to both sides of the system
of equations and using the above assumed initial solutions and
Theorem 2.5, we obtain

Tdλ x, ζ( ) � g1 x( ) + λ0J
α
t Dn

∂2Td

∂x2 − χ ∂Td

∂x
∂Ec

∂x
+ Td

∂2 Ec

∂x2( )[ ],
Ecλ x, ζ( ) � g2 x( ) + λ0J

α
t −ηMcEc[ ],

Mcλ x, ζ( ) � g3 x( ) + λ0J
α
t Dm

∂2Mc

∂x2 + kTd − σMc[ ],
Ocλ x, ζ( ) � g4 x( ) + λ0J

α
t D

c

∂2Oc

∂x2 + Ecγ − ωMc − ɸOc[ ].
(17)

Substituting the solution in the series from the above system of
equations, we obtain
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∑∞
k�0λ

kTdλ x, ζ( ) � g1 x( ) + λ0J
α
t ∑∞

k�0λ
kDn

∂2Tdk

∂x2[
− χ ∑∞

k�0λ
k∂Tdk

∂x
∂Eck

∂x
+∑∞

k�0λ
kTd

∂2 Eck

∂x2( )],
∑∞

k�0λ
kEcλ x, ζ( ) � g2 x( ) + λ0J

α
t ∑∞

k�0λ
k −ηMck Eck( )[ ],

∑∞
k�0λ

kMcλ x, ζ( ) � g3 x( ) + λ0J
α
t ∑∞

k�0λ
kDm

∂2Mck

∂x2[
+∑∞

k�0λ
kkTdk −∑∞

k�0λ
kσMck],

∑∞
k�0λ

kOcλ x, ζ( ) � g4 x( ) + λ0J
α
t ∑∞

k�0λ
kD

c

∂2Ock

∂x2[
+∑∞

k�0λ
k Eckγ −∑∞

k�0λ
kωMck − ∑∞

k�0λ
kɸOck]. (18)

Equating the same powers of λ in Eq. 17, we obtain the
following terms:

Td0 x, ζ( ), � g1 x, ζ( ), Ec0 x, ζ( ) � g2 x, ζ( ),
Mc0 x, ζ( ) � g3 x, ζ( ), Oc0 x, ζ( ) � g4 x, ζ( ),

Td1 x, ζ( ) � 0J
α
t Dn

∂2Td0

∂x2
− χ ∂Td0

∂x
∂Ec0

∂x
+ Td0

∂2 Ec0

∂x2
( )[ ],

Ec1 x, ζ( ) � 0J
α
t −ηMc0Ec0( )[ ],

Mc1 x,ζ( ) � 0J
α
t Dm

∂2Mc0

∂x2 +kTd0 −σMc0[ ],
Oc1 x,ζ( ) � 0J

α
t D

c

∂2Oc0

∂x2 + E0γ−ωMc0− ɸOc0[ ].
Tdk x,ζ( ) � 0J

α
t Dn

∂2Tdk

∂x2 −χ ∂Tdk

∂x
∂Eck

∂x
+Tdk

∂2Eck

∂x2( )[ ],
Eck x,ζ( ) � 0J

α
t −ηMckEck( )[ ],

Mck x, ζ( ) � 0J
α
t Dm

∂2Mck

∂x2
+ kTdk − σMck[ ],

Ock x, ζ( ) � 0J
α
t D

c

∂2Ock

∂x2
+ Ekγ − ωMck − ɸOck[ ].

Using Eqs 15, 16, we can obtain the solution as

v x, y, t( ) � limλ→1 vλ x, y, t( ) �∑∞
k�0vk x, y, t( ). (19)

In Eq. 19, we observe that v(x, y, 0) � limλ→1 vλ(x, y, 0), which
gives g(x) � v(x, y, 0).

Considering the terms obtained by solving Eq. 18 and using Eq.
19 and definition 4.3, we have obtained some terms.

By using Mathematica software, the solution was computed, and
the 3D and 2D curves were plotted.

Let us considering non-dimensional parameters as γ � 0.5; ϵ �
0.01; k � 1; σ � 0; t � 0.01; χ � 0.01; ω � 0.57; ϕ � 0.025; η � 50;
Bc � 0.5; Bp � 0.0005; and Bn � 0.0005.

After applying the parameters mentioned above, we get
the solutions:

Td0 x, ζ( ) � e
−x2
ϵ( ),

Ec0 x, ζ( ) � 1 − 0.5e
−x2
ϵ( ),

Mc0 x, ζ( ) � 0.5e
−x2
ϵ( ),

Oc0 x, ζ( ) � 0.5e
−x2
ϵ( ),

Td1 x, ζ( ) �
e −2x2

ϵ( ) Bn e
x2
ϵ( ) 4x2 − 2ϵ( ) + 4x2χ − 1ϵχ( )tα

ϵ2Γ 1 + α[ ] ,

Ec1 x, ζ( ) � −
0.5e −2x2

ϵ( ) −0.5 + e
x2
ϵ( )( )ηtα

Γ 1 + α[ ] ,

Mc1 x, ζ( ) � e −x2
ϵ( ) Bp 2.x2 − 1.ϵ( ) + ϵ2 k − 0.5σ( )( )tα

ϵ2Γ 1 + α[ ] ,

Oc1 x, ζ( ) � 1
ϵ2Γ 1 + α[ ] γϵ2 + e −x2

ϵ( ) Bc 2.x2 − 1.ϵ( )((
+ ϵ2 −0.5γ − 0.5ϕ − 0.5ω( )))tα,

Td2 x, ζ( ) �
e −2x2

ϵ( ) Bne
x2
ϵ( ) 4x2 − 2ϵ( ) + 4x2 χ − 1( )ϵχ( )tα

ϵ2Γ 1 + α[ ]

+ e−
3x2
ϵ( )t2α

ϵ4Γ 1 + 2α[ ] Bn
2e

2x2
ϵ( ) 16x4 − 48x2ϵ + 12ϵ2( )(

+e x2
ϵ( ) Bn 80x4 − 116x2ϵ + 14ϵ2( )(

+ 4 x2 − 1( )ϵ( )ϵ2η)χ + χ x2ϵ −6ϵη − 18χ( )(
+24x4χ + ϵ2 1 ϵη + 1( )χ( ))),

Ec2 x, ζ( ) � −
0.5e −2x2

ϵ( ) −0.5 + e
x2
ϵ( )( )ηtα

Γ 1 + α[ ]
− 1
Γ 1 + 2α[ ]e

−3x2
ϵ( ) −0.5 + e

x2
ϵ( )( )t2αη −0.25η(

+ e
x2
ϵ( ) k + Bp 2x2 − 1ϵ( )

ϵ2 − 0.5σ( )),
Mc2 x, ζ( ) � e −x2

ϵ( )( Bp 2 x2 − 1( )ϵ( ) + ϵ2 k − 0.5σ( )( )tα
ϵ2Γ 1 + α[ ]

+ e −2x2
ϵ( )t2α

ϵ4Γ 1 + 2α[ ](e
x2
ϵ( ) Bnk 4 x2 − 2( )ϵ)ϵ2((

+ hkhjBp
2 8 x4−24) x( 2ϵ + 6)ϵ2( )(

+ ϵ4 −1 k + 0.5( )σ( )σ

+Bpϵ2(4 kx2 − 2( ) kϵ − 4( ) x2σ + 2( )ϵσ))
+ k 4 x2 − 1( )ϵ)x2 − 1( )ϵ)4ϵ2χ),

Oc2 x, ζ( ) �
tα e −x2

ϵ( ) Bc 2 x2 − 1( )ϵ( ) + ϵ2 −0.5γ − 0.5ω − 0.5ϕ( )( ) + γϵ2( )
ϵ2Γ 1 + α[ ]

− 1

ϵ4Γ 1 + 2α[ ](0.5t2αe −x2
ϵ( )) ϵ2(ϵ(ϵ γη( (1. − 0.5e −x2

ϵ( )( )
+ 2 kω − 1( )σω + γϕ 2 e

x2
ϵ( ) − 1( )( )

+ϕ −1 ω − 1( )ϕ( )) − 2.Bpω)

+ 4.Bpx
2ω) + Bc

2(−16 x4 + 48( ) x2ϵ − 12)ϵ2( )
+Bcϵ2 ϵ −2 γ − 2( ) ω − 4( )ϕ( ) + x2 4 γ + 4( ) ω + 8( )ϕ( )( )).
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7 Numerical results and discussion

In this work, an approximate analytical method that is efficient
and reliable has been employed. For the analysis of the model under
consideration, we utilized the series of the AAM solution. The
solutions are shown via graphs to determine the nature of the
considered fractional order model. Figure 1 shows the solution
for the system of equations in 3D plots at α � 1, and it also
represents the surface accumulation of the system with respect to
x and t. The 3D plot of tumor cell density represents an increase in
the number of tumor cells, which results in the breakdown of the
extracellular matrix, which is shown in the Fc plot. The matrix-
degrading enzymes, which are formed by tumor cells, increase with
the increase in tumor cells, as shown in the Mc and Oc plots; this
signifies the rate of production of oxygen and its absorption rate by
macromolecules. In Figure 2, the behavior and characteristics of the
solutions are illustrated for varying x values. From the plots, we can
observe that the tumor cells and matrix-degrading enzymes increase
with the increase in time, but the extracellular matrix and the rate
of production of oxygen decrease. Particularly, enzymes that
degrade matrix and extracellular matrix exhibit stimulating
behavior for the change α. Additionally, these kinds of research
may clear the way for analysis that includes diffusion coefficients
into interesting models that illustrate fatal diseases. Figure 3
represents the α curves based on different alpha values. In the
present work, we investigated the fractional behavior of the
considered model under the influence of the system parameters.
Another important observation we made from the plots is that the
parameters influence the model’s results in the system and its
history. By analyzing the obtained results, we can conclude that
the considered method is an efficient tool to analyze the behavior of
the model using fractional operators.

8 Conclusion

The expected analytical solutions for the fractional solid
tumor invasion model are studied using an approximate
analytical method in the current work. Here, we considered
the fractional Caputo derivative to study the considered
problem. This method has the potential to be applied to
various biological and epidemiological models. The following
conclusions can be drawn:

• The uniqueness and existence of the model’s system of
solutions with fixed-point theorems are explained.

• The solutions we got using the AAM are in the form of series
and converge rapidly.

• The plots indicate a clear influence of both the arbitrary order
and the applied parameters on the model.

• The behavior of the model is also dependent on both time
instant and time history, which can be easily analyzed by the
fractional calculus concept.

• Our analysis confirms that the proposed method is
exceptionally efficient and successfully resolves a wide
range of non-linear fractional mathematical, biological, and
other models.

• The field of mathematical modeling is experiencing a new era
with the emergence of fractional calculus.
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