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Introduction: Optical and SAR image matching is one of the fields within multi-
sensor imaging and fusion. It is crucial for various applications such as disaster
response, environmental monitoring, and urban planning, as it enables
comprehensive and accurate analysis by combining the visual information of
optical images with the penetrating capability of SAR images. However, the
differences in imaging mechanisms between optical and SAR images result in
significant nonlinear radiation distortion. Especially for SAR images, which are
affected by speckle noises, resulting in low resolution and blurry edge structures,
making optical and SAR image matching difficult and challenging. The key to
successful matching lies in reducing modal differences and extracting similarity
information from the images.

Method: In light of this, we propose a structure similarity virtual map generation
network (SVGNet) to address the task of optical and SAR image matching. The
core innovation of this paper is that we take inspiration from the concept of image
generation, to handle the predicament of image matching between different
modalities. Firstly, we introduce the Attention U-Net as a generator to decouple
and characterize optical images. And then, SAR images are consistently
converted into optical images with similar textures and structures. At the
same time, using the structural similarity (SSIM) to constrain structural spatial
information to improve the quality of generated images. Secondly, a conditional
generative adversarial network is employed to further guide the image generation
process. By combining synthesized SAR images and their corresponding optical
images in a dual channel, we can enhance prior information. This combined data
is then fed into the discriminator to determine whether the images are true or
false, guiding the generator to optimize feature learning. Finally, we employ least
squares loss (LSGAN) to stabilize the training of the generative
adversarial network.

Results and Discussion: Experiments have demonstrated that the SVGNet
proposed in this paper is capable of effectively reducing modal differences,
and it increases the matching success rate. Compared to direct image
matching, using image generation ideas results in a matching accuracy
improvement of more than twice.
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1 Introduction

With the advancement of satellite remote sensing technology
[1], the means of data acquisition are constantly being enriched.
How to effectively integrate multi-sensor, high-resolution, multi-
spectral, and multi-temporal remote sensing data for fusion
processing has become a hot and key research topic in the field
of remote sensing at present. Multi-source image matching [2, 3],
especially the matching between optical and SAR images [4, 5], is
one of the core problems that urgently needs to be solved. However,
due to the completely different imaging mechanisms, there are
radiation anomalies, geometric differences, and scale differences
between optical and SAR images. This increases the difficulty of
image matching and makes SAR and optical image matching an
international challenge.

Currently, multi-modal image matching can be categorized into
three main types: region-based matching, feature-based matching, as
well as deep learning-based matching. Region-based image matching
places emphasis on comparing local regions in the images by calculating
grayscale information and establishing correlation signals. Common
similarity measurement functions [6] include SSD, NCC, MI, and PC.
However, region-based matching methods are sensitive to nonlinear
grayscale distortions, making them less suitable for multi-modal image
matching. Feature-based matching methods [7] extract common
features from reference and target images and establish
correspondences to determine the transformation model parameters
for matching. These features include region features, line features
(extracted from edges and texture information) and point features.
Point features are the most extensively studied, involving the extraction
of key points with certain invariance properties and their description
using specific descriptors. Common methods for point feature
extraction include Harris corner detection, SIFT [8], and SURF [9].
Researchers have also proposed geometric structure-based feature [10]
descriptors like HOPC, CFOG and RIFT [11] to meet the requirements
of multi-modal images. Feature-based matching methods provide
higher-level information beyond grayscale and offer adaptability to
grayscale variations, image deformations, and occlusions, thereby
broadening the application scope of image matching techniques.

The popular deep learning methods in recent years are mainly
divided into single-loop deep neural network and end-to-end deep
networks. Single-loop deep neural networks include D2-Net, Superglue,
and so on. End-to-end deep networks include MUNIT-based multi-
modal image matching, Dual-Attention Networks for multi-modal
image matching, Cross-Modal Feature Fusion and generative
adversarial networks (GAN). Furthermore, the basic ideas of style
transfer methods [12] and end-to-end patterns are the same. By
utilizing deep learning networks [13] to obtain optical image
features, replicate attributes originating from SAR data onto optical
representations, and then match them using traditional methods, such
as SIFT, SURF, and RIFT. The goal of these approaches is to maintain
consistency [14] between the transformed SAR images and the original
images, followed by feature matching with traditional methods. These
methods require further research on the depth matching framework,
the loss function [15], and training strategies with the intention of
improving matching performance for heterogeneous remote sensing
image matching.

Consequently, the pursuit of efficacious strategies to mitigate
feature matching discrepancies bears substantial practical research

implications. This is done by enhancing consistency between
generated and original images, and achieving robust matching of
heterogeneous images. In light of this, we study style transfer
methods and perform feature transformation on SAR images.
This is to ensure that the traits of the generated SAR image align
with those of the corresponding optical image, thereby optimizing
the matching of heterogeneous images.

In this paper, we propose the SVGNet to seek effective methods
for reducing modal differences. This framework leverages
Conditional Generative Adversarial Network (CGAN), Attention
U-Net, SSIM, and LSGAN to generate virtual maps and optimize
multi-modal image matching. Specifically, for feature learning
without the need for additional supervision, we employ Attention
U-Net with attention gates that automatically focus on salient
feature regions during feature learning. Therefore, we utilize
Attention U-Net as the generator to extract image features.
Additionally, we transform the task of multi-modal image
matching into the task of reducing modality differences, for
which CGAN is employed to generate virtual maps and
minimize modality disparities. By incorporating conditional
constraints, CGAN controls the details of image generation to
achieve desired effects, making this model exceptionally effective.
Finally, to optimize the overall training performance of the
generative model and improve the realism of generated images,
we utilize SSIM to constrain spatial information and enhance image
quality. Simultaneously, LSGAN is employed to stabilize SVGNet
training. To validate the effectiveness of our proposed method, we
conduct extensive experiments to demonstrate SVGNet’s
superiority over other generative adversarial networks. We also
demonstrate the quality of our generated virtual maps. The
results indicate that SVGNet has advantages in the direction of
multi-modal image matching. The major contributions of this paper
can be summarized as follows:

1. We introduce SVGNet, an innovative approach to meet the
challenges of optical and SAR image matching.

2. We employ CGAN to reduce dissimilarities between matched
images and generate superior-quality images specifically
tailored for matching task.

3. We adopt an Attention U-Net in a decoder module, to extract
and learn features from optical images to better focus on
relevant regions of the images.

4. We utilize SSIM and LSGAN losses to amplify the model’s
optimization performance and foster training stability.

5. We conduct extensive experiments to study in detail the high-
quality impact of the generating virtual maps and the superior
performance of the network.

The results show that the SVGNet proposed in this paper shows
superiority in the quantitative analysis of optical and SAR
image matching.

2 Related work

In the most recent years, deep learning [16] has gained attention
and accomplished significant advancements in fields like visual
cognition and natural language understanding. Researchers have
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proposed deep learning-based methods [17] for multi-source image
matching. These methods can be categorized into two aspects:

2.1 Single-loop deep neural network

Single-loop deep neural network, which only replaces some
matching links, is often more flexible and can meet different
needs by combining other advantageous structures to build a
complete matching model. Numerous scholars harness the power
of deep learning to meticulously detect a significantly enhanced and
dependable set of salient critical points from images, adeptly
acquiring the principal orientation or predominant scale for each
individual feature point, along with refining more discriminative
and correspondingly matchable feature descriptors. At the
beginning, Dusmanu et al. [18] innovatively constructed the
network structure D2-Net, which integrates detection features
and feature description. The key points are extracted by slicing
the feature map, using convolutional neural networks (CNN) to
calculate the descriptors. By improving D2-net, MA et al. [19]
demonstrated CMM-Net and applied it to multi-modal image
matching. This method used dynamic adaptive Euclidian distance
threshold and RANSAC algorithm to eliminate the wrong matching
points and showed excellent matching effect in the image matching
of alien remote sensing images. Hao et al. [20] designed a multi-level
semantic extractor to extract rich and diverse semantic features from
real images to effectively guide sample generation. Ma et al. [21]
explored a matching method integrating deep learning with
conventional local features from rough to fine, extracted deep
features through CNN for rough matching, and then adjusted the
rough matching results by combining more accurate local features,
so as to produce more stable matching results. To learn descriptor
representations of multimodal image blocks, Zhang et al. [22] used
maximum positive sample and negative sample feature distances as
loss functions in their full-convolutional neural network (FCN) built
upon the Siamese network structure. Subsequently, Li et al. [10]
presented a rotation-invariant multi-modal image matching method
grounded in deep learning jointly with Gaussian features. A neural
architecture referred to as RotNET underwent training to forecast
the rotational interrelationship among images. Subsequently, the
alignment of two images was achieved through the establishment of
gradient-oriented Gaussian pyramid features (GPOG). Some
scholars also use deep learning to learn more reliable similarity
measurement criteria and gross error elimination among
descriptors. Sarlin et al. [23] designed a representative network
superglue for feature matching and gross error elimination. This
neural framework approaches the challenge of feature matching by
framing it as the task of addressing the differentiable optimal
transport quandary. Recurrent neural network (RNN) is
constructed to solve this problem. Ma et al. [24] employed deep
learning techniques to devise a gross error elimination network,
denoted as LMR, bearing resemblance to the RANSAC algorithm.
This approach translated the task of gross error elimination into a
binary classification paradigm. The deep learning network was
harnessed to assess the validity of each initial match pair,
culminating in the successful mitigation of gross errors. These
approaches leverage the robust deep feature extraction
proficiency and the adeptness in high-dimensional feature

representation offered by deep learning methodologies. By
training a single network to replace a certain link in multi-modal
image matching, these methods are combined with others to
construct a comprehensive multi-modal image matching model,
which has greater flexibility in use.

2.2 End-to-end deep neural network

Devise an end-to-end matching network directly predicated
upon the principles of deep learning. The framework consists of
three neural network structures for feature extraction, feature
matching, and outlier removal, which provide excellent matching
results pertaining to images obtained by optical and SAR techniques.
In Hughes et al. [25], a neural network based algorithm for
automatically matching multi-scale and multi-modal images has
been developed, consisting of three neural network structures,
corresponding to feature space extraction, matching based on
feature space correlation functions, and outlier elimination,
respectively. The matching effect for optical and SAR images is
excellent. The KCG-GAN algorithm, as outlined in [26],
incorporates K-means segmentation as an input modality for the
image synthesis process. Through the imposition of spatial
information synthesis constraints, it enhances the fidelity of
synthesized imagery, and its application encompasses the realm
of SAR and optical image alignment. Nevertheless, owing to the
higher requirements of multi-modal image training data sets, and
the complexity of imaging differences, mixed noise, and regional
gray level differences between images. Sun et al. [27] described the
LoFTRmatchingmethod of Canonical, which detects, describes, and
matches image features on a coarse-grained basis, before refinement
of the intensive subpixel matching on a fine-grained basis.
Moreover, the Transformer model employs self-attention and
cross-attention mechanisms as foundational components for
generating feature descriptors from a pair of images. End-to-end
networks can also be used to preprocess images, using techniques
such as image synthesis and style transfer. Based on the imaging
characteristics of different modal images, transform the style of
images in different modalities, and used to expand the multi-modal
image dataset or directly convert it into the same modal image form
for matching.

3 Methods

3.1 Network architecture

Our objective is to achieve a better matching effect between SAR
images and optical images, and the key lies in reducingmodal differences
between them. As shown in Figure 1, the red box represents our
proposed SVGNet based on GAN. By introducing the concept of
style transfer, the network generates novel images that bridge the gap
between single-mode and multi-modal datasets, showcasing the process
of image-to-image conversion. The fundamental idea of SVGNet is to
train the generative model through adversarial training. In other words,
throughmutual competition and learning, the generationmodel and the
discrimination model are constantly improved to achieve the
optimal state.
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However, the unrestricted nature of GANs, lacking prior
modeling, poses challenges in controlling them effectively for
large-scale images with numerous pixels. To tackle this challenge,
our proposition involves the incorporation of CGAN into the
framework. According to Figure 1, the condition variable we use
in this paper is the original optical image. By connecting the real
optical image and its label, we can determine whether an image is a
“real” image or a “fake” image. A fake label is generated as a
condition for generating the optical image using the true
optical image.

The proposed SVGNet has the following four improvements: (1)
To enhance the network’s training capability and achieve desired data
generation, we introduce CGAN and modify the unsupervised GAN
[28] to a supervised GAN. This modification involves incorporating
conditional information and adjusting the generator and discriminator.
(2) This network uses Attention U-Net [29], which provides a more
flexible structure, higher-quality image generation, and better
preservation of semantic information than KCG-GAN. Optical
images serve as conditional information, while the original SAR
image labels serve as random noise. These two factors are fed into
the generator in order to generate initial coarse maps, which then guide
the optimization of feature learning. (3) On the other hand, the
discriminator utilizes a fully convolutional neural network to ensure
training stability and evaluate the authenticity of generated images.
Optical images serve as conditional information, and the coarse map
labels generated by the discriminator are used to evaluate authenticity.
The discriminator plays a crucial role in determining the authenticity of
refined maps. (4) Additionally, the losses of the generator and

discriminator are computed. The SSIM is applied throughout the
training process to enhance spatial constraints and improve image
quality. Moreover, the training utilizes LSGAN to stabilize SVGNet.
Once the losses reach saturation and a certain number of iterations are
reached, a virtual map is generated.

With the generated virtual maps, we can perform better image
matching. Below, we will discuss in more detail the specific modules
and loss functions used in SVGNet.

3.1.1 Generative network
We propose to generate virtual maps to promote more efficient

matching of optical and SAR images. Thus, in the generation
network, it is essential for the generator to accurately and
effectively extract the features of optical images. Furthermore,
high-resolution input grids to high-resolution output grids are
the hallmark of image-to-image transformation challenges.
Additionally, the input and output appear differently on the
surface, but they are both rendered with the same underlying
structure. Consequently, the input and output structures are
roughly aligned. We formulate the generator architecture with
these considerations at its core. Therefore, we use Attention
U-Net as a generator, as shown in the Generator module in
Figure 1, which has image reconstruction capability and an
attention mechanism. First, the proposed network consists of an
encoder and a decoder. Specifically, the encoder learns the potential
features of the original optical images, while the decoder is
responsible for reconstructing from the low-level feature to the
high-level feature to obtain the generated optical images.

FIGURE 1
The architecture of optical and SAR image matching method based on SVGNet.
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To simplify the description of the network, we refer the convolution
layer [30], Batch Norm layer [31], and Rectified Linear Unit [32] as
Conv, BN, and ReLu respectively. The structure of Attention U-Net can
be seen in the generatormodule in Figure 1. The output of the nodeXi,j,
which is denoted as xi,j, is defined as Eq. 1:

xi,j � C D xi−1,j( )( ), j � 0
C A xi,j−1, U xi+1,j−1( ), U xi+1,j−1( )( )[ ]( ), j> 0

{ (1)

In the equation, the functions C(·),D(·),U(·), A(·) and [·] denote
the convolution, down sampling, up sampling, AG, and concatenation
operations, respectively. The convolutional block consists of two Conv-
BN-ReLU layers, each employing a filter size of 3 × 3, a padding of 1,
and a stride of 1. This configuration is strategically designed to ensure the
output feature map preserves the identical dimensions as the input. The
downward arrows indicate a 2 × 2 max-pooling layer, and the upward
arrows indicate 2 × 2 up-sampling, aiming at decoding low level feature
map to acquire a high-resolution feature map. Second, to address the
challenge of image consistency, an attention module (Attention Gate,
AG) is introduced to the U-Net architecture as depicted in Figure 2. It is
aimed at highlighting significant features by skipping connections,
extracting information from rough scale to distinguish irrelevant
features from noise, and letting the value of irrelevant regions be
suppressed and the value of target regions become larger. By
generating a gated signal, AG effectively modulates the significance of
features across diverse spatial locales. This signal serves to prioritize
attention on salient features deemed valuable for tasks related to phase
recovery, while concurrently dampening the influence of extraneous
regions within the input image. Intuitively, it inserts an AG in each skip
connection, which concatenates the same-level xi,j−1 feature map with
the up-sampled feature map U(xi+1,j−1) as input. Then, through
ReLU and Sigmoid operations, the attention coefficient map is
obtained. Finally, the inner product of the attention coefficient map
and the up-sampled feature map is used to obtain the attention
map. Consequently, the network will allocate heightened focus
toward the attributes inherent in the optical image.

In general, the Attention U-Net network is used in this paper
because it is capable of extracting image details well and retaining

image information on different scales. The AG of Attention U-net
improves the discernment and precision of the dense feature
prediction model and improves the prediction accuracy. CGAN
can effectively transform both deep feature information in the image
and deep feature information that cannot be transformed. Attention
U-Net encodes 256 × 256 input SAR images in the coded down-
sampling and then decodes and up-sampling after the down-
sampling is completed. The output image is still 256 × 256 in size.

3.1.2 Discriminant network
Compared to the original GAN discriminator, the Markov

discriminator (Markovan Discriminator) is one of the
discriminators in CycleGAN. As shown in Figure 1, the
discriminant network is not implemented by utilizing various
convolution layers that are then input into the connection layer
or activation function, but by using a sliding window approach to
determine whether individual patches are genuine and authentic. By
upholding local coherence, this approach enables the generative
network to discern finer-grained information from its contextual
surroundings.

This paper divides the discriminant images into N × N patches
as input to the discriminant network. Every element in the output
matrix indicates the likelihood of the corresponding image patch
being authentic or synthetically generated. By analyzing the
structural features of each patch in the image, the network can
better process the high-frequency information part of the image.

3.2 Loss function

The loss functions used in this paper include the SSIM and
LAGAN loss functions, which will be introduced in detail below.

(1) SSIM

Based on the network framework of CGAN, the algorithm replaces
random noise as input. For supervised segmentation, we adopt SSIM

FIGURE 2
The structure of the Attention Gate (AG).

Frontiers in Physics frontiersin.org05

Chen and Mei 10.3389/fphy.2024.1287050

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1287050


loss [33] with the objective of making the segmentation map as close to
the ground truth as possible. SSIM can be defined by Eq. 2:

LSSIM x, y( ) � 2μxμy + C1( ) 2σxy + C2( )
μ2x + μ2y + C1( ) σ2x + σ2y + C2( ) (2)

Where x, y denote the phase images restoration results and the
ground truth, μx, μy and σ2x + σ2y are the mean and the deviations of
the image respectively, σxy is the covariance for the x, y and C1, C2

are small constants.

(2) LSGAN

Regular GAN loss can suffer from model collapse and is
notoriously difficult to converge.

Due to the fact that LSGANs are more stable and have been
shown in previous experiments to be capable of achieving better
segmentation results, we adopt them as the loss function in our work
[34], since they are more stable and have been shown to achieve
better segmentation results. It is defined by Eq. 3:

LLSGAN D( ) � Ei,y ~Pdata i,y( ) D i, y( ) − 1( )2[ ]
+ Ei ~Pdata i( ) D i, G i( )( )( )2[ ] (3)

Furthermore, the adversarial learning process can be notably
enhanced by employing LSGAN, as expounded in Eq. 4 below:

LLSGAN G( ) � Ei ~Pdata i( ) D i, G i( )( ) − 1( )2[ ] (4)

In the Eqs 3, 4, i is the input and y is the ground truth.

(3) Final loss function

The objective function for SVGNet is defined by Eq. 5:

min
D

L G( ) � LLSGAN D( )
min

G
L G( ) � LLSGAN G( ) + λLSSIM

(5)

where λ governs the relative importance of the two objective
functions. As a matter of experience, we set λ to 10 in our work.

4 Experiment and analysis

4.1 Datasets

This paper utilizes the widely-used SEN1-2 dataset [35], which
provides a comprehensive collection of aligned Sentinel 1 SAR and
Sentinel 2 optical images. In this context, the dataset consists of
282,384 image pairs with a resolution of 256 pixels and an 8-bit
depth. It encompasses diverse geographical regions and countries,
capturing various features such as cities, agricultural land, forests,
mountains, and water bodies. The following three scenarios were
selected for a comprehensive evaluation: rural (300 image pairs),
semi-urban (300 image pairs), and urban (300 image pairs). The
trained model then applies style transfer to the test set, generating
images depicting cities, towns, and countryside landscapes. The
dataset allows for a clear separation between training and testing
data, enabling an unbiased performance evaluation. Notably, this
dataset has been extensively used in deep learning-based alignment
studies for SAR and optical images. Figure 3 provides representative
samples from the dataset. There are three different scenarios: Rural,
Semi-urban and Urban. Each group has optical images on the left
and SAR images on the right.

FIGURE 3
SEN1-2 data set. Three different scenarios: Rural, Semi-urban and Urban; Each group has optical images on the left and SAR images on the right.
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4.2 Experimental details

4.2.1 Evaluation metrics
In this paper, we will analyze the quality of virtual maps and the

effectiveness of image matching. Therefore, three metrics are
selected for evaluating the effectiveness of image matching: NCM
(Number of Correct Matching points), Matching success rate and
RMSE (Root Mean Square Error) [16]. Evaluation Metrics for
effectiveness of image matching are defined as follows:

(1) Number of Correct Matching points (NCM) indicates the
number of feature points correctly matched between two images.
Consequently, the higher the NCM value, the more accurate the
matching results are.

(2) Matching Success Rate (MSR) is known as matching
accuracy. It is a performance metric used to evaluate the
accuracy of image matching algorithms. A higher matching
correctness rate indicates a more reliable and accurate matching
result, which is due to the algorithm’s ability to correctly identify and
match corresponding points across the images. It is computed
through the division of NCM by the total number of matched
points. The formula can be defined as follows in Eq. 6:

MSR � NCM

Total number of matching points
*100% (6)

(3) Root Mean Square Error (RMSE) means that the point
coordinates of the same label in the benchmark image and the
prepared matching image are labelled as (xi, yi) and (x′

i , y
′
i)

respectively. S represents the number of the points with the
same label selected; (x′

i , y
′
i) is the coordinate of the i th

prepared matching image pair of the same label (xi, yi) after
the matching correspondence conversion. RMSE is defined as
follows in Eq. 7:

RMSE �

���������������������
1
S
∑S
i�1

xi − x′
i( )2 + yi − y′

i( )2√√
(7)

4.2.2 Parameter settings
All experimental endeavors are executed within the PyTorch

framework, renowned for its adeptness in high-performance
computation. For computation, a sole NVIDIA Tesla A100 GPU
is deployed, replete with a GPU memory capacity of 80 GB. For the
duration of the model’s training period, a batch size of 8 is employed,
with each model undergoing a maximum of 1000 training epochs.
The optimization process is facilitated by Adam, chosen for its
efficacy, and initialized with a learning rate of 0.002 to circumvent
issues tied to insufficient learning weight. To preclude overfitting
during the training process, the early stopping technique is
judiciously incorporated.

4.3 Image generation results and analysis

Visually, it is observable that the radiation difference
between the SAR generated image and the original optical
image is reduced. For certain images, such as the bottom row
image in the Semi-urban group of Figure 4, the virtual maps
generated by our SVGNet are almost identical to the optical

FIGURE 4
The performance of the virtual maps. There are three types of scenes: rural, semi-urban and urban, each of which shows 3 groups of images. In each
group, the left column features the generated virtual maps, while the right column displays the corresponding original optical images.
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images, with clear edge textures and nearly identical shapes. The
grayscale is similar, the size, shape and relative position of the
objects are almost the same. In virtual maps, the texture and fine
features of the original optical image can be preserved. Several
areas have been cut for enlargement display and quantitative
analysis has been performed in order to better display the
generation effect.

For the purpose of quantitative analysis, we randomly selected
4 groups of data separately from the semi-urban and urban

scenarios for testing. After that, random pixel values are
extracted from rows and columns and drawn into one
dimension for each group of graphs. To compare the pixel
values of corresponding positions, the curve of pixel values of
the two graphs is drawn on a graph, as shown in Figures 5, 6. In the
result graph, it can be seen that the curve fitting degree of the pixel
values is extremely high, which indicates that the virtual maps
generated by SVGNet method are very similar to the optical
original image, and the effect is truly remarkable.

FIGURE 5
Comparison of virtual maps and optical images in the semi-urban group. From left to right are the corresponding SAR image, optical image,
generated virtual maps and pixel contrast curve of the virtual maps; Mark the randomly selected test area with a pixel size of 30 × 30with a yellow box and
place it at the image’s upper right corner; Contrast curve of pixel values (red: the virtual maps generated by us; blue: corresponding optical image;
horizontal axis: pixel position; vertical axis: corresponding pixel value).
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4.4 Matching effect comparison and analysis

We compare SVGNet for image matching from two perspectives in
this paper in order to evaluate its effectiveness: (1) Comparing the
generated adversarial network between KCG-GAN and SVGNet in this
paper, the matching method adopts the traditional RIFT algorithm; (2)
Comparison of matching methods. This paper compares the proposed
method to three baseline methods, including LoFTR, D2-Net, and
Superglue. LoFTR is an end-to-end deep network, while D2-Net and
Superglue are single-loop networks. Initially, LoFTR establishes coarse-

grained image feature detection and matching, and then refines
subpixel-level intensive matching to refine the results. Furthermore,
Transformer uses both self-attention layers in order to obtain feature
descriptors for two images, and it also utilizes mutual attention layers in
order to do so. D2-Net innovatively constructs a network structure
integrating detection features and feature descriptions. Descriptors were
calculated by slicing CNN feature maps, and then key points are
extracted by calculating descriptors. Superglue solves this problem by
treating the feature matching problem as solving the differentiable
optimal transport problem, and then constructing the RNN.

FIGURE 6
Comparison of virtual maps and optical images in the Urban group. From left to right are the corresponding SAR image, optical image, generated
virtual maps and pixel contrast curve of the virtual maps; Mark the randomly selected test area with a pixel size of 30 × 30with a yellow box and place it at
the image’s upper right corner; Contrast curve of pixel values (red: the virtual maps generated by us; blue: corresponding optical image; horizontal axis:
pixel position; vertical axis: corresponding pixel value).
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4.4.1 Visual performance
The traditional feature matching method, RIFT, is selected for

feature extraction. We compare the generated networks between
KCG-GAN and SVGNet in this paper. Compared with KCG-GAN,
our SVGNet virtual maps are more realistic and have high optical
consistency. In the texture of KCG-GAN maps, details and
surrounding areas are more discordant, and the edges and
textures are not as clear as our virtual maps.

From Figure 7, it can be observed that thematching performance of
the generated images by KCG-GAN is inferior, with fewer matching
points. This can be attributed to the fact that KCG-GAN may not fully
preserve the semantic information of the original SAR images during
the transformation process to optical images. A comparison between
the virtual maps and true optical imagesmay reveal differences in terms
of object shape, structure, and other aspects, leading to less accurate
matching. Moreover, KCG-GAN’s training process may be unstable,
such as difficulties in achieving a proper balance between the generator
and discriminator or issues such as gradient vanishing or exploding.
These factors can hinder network convergence, thereby impacting the
quality of generated images and the matching effectiveness. By contrast,
our approach demonstrates better matching performance with a higher
number of matching points and a higher proportion of correct matches

between virtual and optical images. To conclude, our SVGNet generated
is superior to the KCG-GAN.

Demonstrated by Figure 8, we compare the matching methods,
including LoFTR [27], D2-Net and Superglue [23]. The matching
results of our virtual maps and optical images are better than those of
the original SAR images and optical images. Considering the fact
that the virtual maps generated by our SVGNet can compensate for
the loss of information that may occur when the optical and SAR
images are considered separately, we can provide a better level of
visual information, and we can integrate the visual information and
feature representation capabilities of the optical and SAR images.
The virtual maps we created retain not only the shape and structure
information obtained from SAR on the target, but they also retain
the advantages of optical maps in terms of color and detail. These
images contained many incorrect matching points, and the number
of matching points is relatively small between the original SAR
images and the optical images. In contrast, the virtual maps we
generated match the optical images better, with more matching
points, almost 10 times more than the non-generated matching
results, which is a huge improvement, and the results are exciting. It
shows that the virtual map generated by our generation
network works well.

FIGURE 7
Comparison between KCG-GAN and SVMNet with RIFT matching method. The left column of each figure uses KCG-GAN, and the right side is our
SVGNet in this paper. On the left side of each set of images are the generated images and on the right side are the optical images.
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Overall, SVGNet reduces modal differences and achieves the
desired effect. A quantitative analysis of matching methods
comparison is presented in the following subsection.

4.4.2 Quantitative analysis
To conduct a quantitative comparison of the effectiveness of our

SVGNet, the results are presented in Table 1, which includes a
comparison between KCG-GAN and SVGNet, along with a
comparison of the generated images before and after applying
the three deep learning methods.

The upper part of Table 1 presents comparison of KCG-GAN
and SVGNet, showing NCM results and the matching success rate.
In three different scenarios, our generative network outperforms
KCG-GAN in both NCM and matching success rate. The number
of correct matching points is nearly 1.3 times higher than that of
KCG-GAN, and our matching success rate (59.78%) is higher than
that of KCG-GAN. SVGNet image generation ideas result in a
more than double improvement in matching accuracy over
direct image matching. Furthermore, our SVGNet improves the
RIFT feature matching, indicating the efficiency of the
proposed method.

Meanwhile, the bottom half of Table 1 showcases the
comprehensive evaluation of three deep learning-based

matching methods: LoFTR, D2-Net and Superglue. We use
virtual maps generated by the SVGNet to calculate the NCM of
matched images and the matching success rate. Prior to the
generation of virtual maps, the NCM and matching success
rates of the three matching methodologies in the three
scenarios were significantly lower. The NCM of LoFTR with the
greatest matching effect is almost 85.76 times that of SAR in virtual
maps in rural scenes, and 686.05 in urban scenes. In addition, the
overall matching success rate of virtual maps using LoFTR
matching method reached 95.72%, which was about 4.75 times
before the generation. The NCM of D2-Net matching method is
about 3.72 times higher after generation, and the matching success
rate is also higher than before generation. The NCM of the
Superglue matching method in the semi-urban scenario is
27.44 times higher than before, and the matching success rate is
also increased by 20.67%. In general, the matching effect after
generation has been improved to different degrees under different
matching methods. The virtual maps generated by our SVGNet
have obtained inspiring results.

Our further evaluation of the accuracy and consistency of image
matching consisted of the selection of 20 random images and the
manual selection of 10 corresponding checkpoints distributed
evenly on the graph after image correction. We use this method

FIGURE 8
Comparison and display of image matching effect before and after generation. (A–C) represent three deep learning-based matching methods: (A)
LoFTR; (B) D2-Net; (C) Superglue. In each method, the top row showcases the results of image matching after generation, while the bottom row shows
the results of image matching before generation.
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to determine the degree of difference between the predicted value
and the true value, and a smaller RMSE indicates a more reliable
prediction. In Figure 9, the virtual map generated by our SVGNet is
shown to have lower RMSE than the original SAR image, achieving
the lowest RMSE of 0.460 and the highest RMSE of 0.678. Each of
the calculated images has a lower RMSE than the original SAR
image. Raw SAR images and optical images have a RMSE of 0.564 in
the lowest case and 1.502 in the highest case. Consequently, this
result indicates that the proposed methodology can enhance
matching effectiveness and effectively reduce the noise in the
SAR images.

The analysis presented above illustrates the efficacy of the
SVGNet for matching images. The evaluation of image matching
algorithms using NCM, matching success rate, and RMSE metrics
provides comprehensive insights into their performance. As a result
of our study, our proposed SVGNet-based method provides superior

performance in the generation of virtual maps and in the
improvement of image matching accuracy.

4.5 Ablation experiment

In order to evaluate the effectiveness of AG (Attention Gate),
SSIM (Structural Similarity), and the kw (sliding window), we
conduct a large number of ablation experiments. The following
table shows the results of the experiment. Specific experiments are as
follows: (a) We remove the AG module from the generator; (b)
Instead of using SSIM loss function, L1 is used instead; (c) We
modify the size of the sliding window in the discriminator and
replace the original 4 with 3, 5 and 7 respectively for the experiment.

The quantitative indicators are summarized in Table 2 below.
We select a deep learning matching method LoFTR to evaluate the
matching effect of the generated network. From the two indicators
shown, removal of AG module, replacement of SSIM and different
sliding window sizes will reduce the matching effect. In general,
whether it is removing the AG module or replacing the SSIM used,
or modifying the size of the sliding window, the matching effect will
be reduced. Among them, in the network with AGmodule removed,
although NCM is slightly higher than other methods, it has a certain
advantage in matching points. However, to accurately compare the
matching accuracy, it is necessary to calculate the MSR (Matching
Success Rate). From the results, our results show that it is better than
the network without AG module and other networks.

The visual performance of the ablation experiment is as follows.
As shown in the Figure 10, in the process of matching images
generated by various network modules (image A-E), there is a
significant augmentation in the number of visual matching
points. Notably, our SVGNet (image F) produces virtual graphs
that exhibit superior matching results, characterized by the highest
density of corresponding points. This underscores the effectiveness
of SVGNet in enhancing the quality and richness of image matching
outcomes compared to other modules. In general, the image
generated by our SVGNet is better for matching, and the effect is
good for different scenes.

TABLE 1 Quantitative comparison.

Method NCM Matching success rate (%)

Rural Semi -urban Urban

RIFT KCG-GAN 76.50 79.58 87.77 28.00

Ours 123.27 132.32 143.99 59.78

LoFTR Optical_SAR 6.40 16.85 16.10 20.15

Optical_Virtual 548.90 530.10 686.05 95.72

D2-Net Optical_SAR 6.53 5.20 5.90 34.10

Optical_Virtual 24.30 22.40 19.50 35.33

Superglue Optical_SAR 3.80 3.33 7.58 32.27

Optical_Virtual 65.75 91.40 117.90 52.94

Note that the values in bold are the highest.

FIGURE 9
Plot of the calculation results for the 20 images used to
calculate RMSE.
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TABLE 2 Results of ablation experiments. (Red and blue bold letters represent the optimal and sub-optimal values, respectively. 7means not used, ✓means
used and numbers or specific content means alternative content.)

Matching method Image data Generative adversarial network Metrics

LoFTR Optical_Virtual Generator Discriminator NCM MSR

AG Loss (SSIM) kw (4) Rural Semi-Urban Urban

7 ✓ ✓ 160.99 190.30 156.97 57.16%

✓ L1 ✓ 148.98 156.06 214.10 56.36%

✓ ✓ 3 158.43 176.97 248.99 59.16%

✓ ✓ 5 150.71 169.24 244.39 57.69%

✓ ✓ 7 152.16 166.44 249.49 57.95%

✓ ✓ ✓ 160.83 185.74 252.57 59.75%

FIGURE 10
Visual performance of the ablation experiment. Use LoFTR for matching. A to H respectively represent: (A) no AGmodule; (B) The loss function uses
L1 instead of SSIM; (C) kw = 3; (D) kw = 5; (E) kw = 7; (F) SVGNet; (G) not generated before the match.
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5 Conclusion

The paper proposes the Structure Similarity Virtual Map
Generation Network as a new generative adversarial network for
matching optical and SAR images. The consistency transformation
network constructs the U-Net network into a generating network to
learn image textures and discover correlations between images. In
order to deal with high frequency components effectively and reduce
computation, the SSIM is used to reconstruct spatial information to
improve image quality. In addition, LSGAN stabilizes GAN training.
It has been shown by numerous experiments that NCM andmatching
success rates are higher for both the comparison network and the
comparison before and after the generation, particularly in the more
advanced matching method LoFTR, which has an overall matching
success rate of 95.72% and a lower RMSE than the non-generated
matching method. By using SVGNet in this paper, the virtual maps
generated are more realistic. This diminishes the modal difference
between SAR and optical images, mitigates the challenge of matching
heterosource images and enhances the robustness of the model.

In the future, geometric feature-based approaches can be used to
reduce modality differences and improve image alignment in SAR and
optical imagematching. By incorporating geometric cues and constraints,
we aim to achievemore accurate and robust imagematching results. This
novel perspective will complement existing style transfer-based methods
and pave the way for a comprehensive and effective framework formulti-
modal image registration and analysis in diverse real-world applications.
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