
Data reduction and processing for
photon science detectors

David Pennicard1*, Vahid Rahmani1 and Heinz Graafsma1,2

1Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany, 2STC research centre, Mid Sweden
University, Sundsvall, Sweden

New detectors in photon science experiments produce rapidly-growing volumes
of data. For detector developers, this poses two challenges; firstly, raw data
streams from detectors must be converted to meaningful images at ever-higher
rates, and secondly, there is an increasing need for data reduction relatively early
in the data processing chain. An overview of data correction and reduction is
presented, with an emphasis on how different data reduction methods apply to
different experiments in photon science. These methods can be implemented in
different hardware (e.g., CPU, GPU or FPGA) and in different stages of a detector’s
data acquisition chain; the strengths and weaknesses of these different
approaches are discussed.

KEYWORDS

photon science, detectors, X-rays, data processing, data reduction, hardware
acceleration, DAQ

1 Introduction

Developments in photon science sources and detectors have led to rapidly-growing data
rates and volumes [1]. For example, experiments at the recently-upgraded ESRF EBS can
potentially produce a total of a petabyte of data per day, and future detectors targeting frame
rates over 100 kHz will have data rates (for raw data) exceeding 1 Tbit/s [2].

These improvements not only allow a much higher throughput of experiments, but also
make newmeasurements feasible. For example, by focusing the beam and raster-scanning it
across a sample at high speed, essentially any X-ray technique can be used as a form of
microscopy, obtaining atomic-scale structure and chemical information about large
samples. But naturally, these increasing data rates pose a variety of challenges for data
storage and analysis. In particular, there is increasing demand for data reduction, to ensure
that the volume of data that needs to transferred and stored is not unfeasibly large. From the
perspective of detector developers, there are two key issues that need to be addressed.

Firstly, the raw data stream from a detector needs to be converted into meaningful
images, and this becomes increasingly challenging at high data rates. This conversion
process is detector-specific, so implementing it requires detailed knowledge of the detector’s
characteristics. At the same time, since the correction process is relatively fixed, there’s a lot
of potential to optimize it for performance. In addition, the complexity of this conversion
process depends on the detector design, so this is something that should be considered
during detector development.

Secondly, it can be beneficial to perform data reduction on-detector, or as part of the
detector’s DAQ system. For a variety of reasons, the useful information in a dataset can be
captured with a smaller number of bits than the original raw data size; for example, by
taking advantage of patterns or redundancy in the raw data, or by rejecting non-useful
images in the dataset. In the DAQ system, the data will typically pass through a series of
stages, as illustrated in Figure 1; firstly, from the ASIC or monolithic sensor to a custom

OPEN ACCESS

EDITED BY

Piernicola Oliva,
University of Sassari, Italy

REVIEWED BY

Gabriel Blaj,
Stanford University, United States
Antonino Miceli,
Argonne National Laboratory (DOE),
United States

*CORRESPONDENCE

David Pennicard,
david.pennicard@desy.de

RECEIVED 30 August 2023
ACCEPTED 25 January 2024
PUBLISHED 05 February 2024

CITATION

Pennicard D, Rahmani V andGraafsmaH (2024),
Data reduction and processing for photon
science detectors.
Front. Phys. 12:1285854.
doi: 10.3389/fphy.2024.1285854

COPYRIGHT

© 2024 Pennicard, Rahmani and Graafsma. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Physics frontiersin.org01

TYPE Review
PUBLISHED 05 February 2024
DOI 10.3389/fphy.2024.1285854

https://www.frontiersin.org/articles/10.3389/fphy.2024.1285854/full
https://www.frontiersin.org/articles/10.3389/fphy.2024.1285854/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2024.1285854&domain=pdf&date_stamp=2024-02-05
mailto:david.pennicard@desy.de
mailto:david.pennicard@desy.de
https://doi.org/10.3389/fphy.2024.1285854
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2024.1285854

board in the detector, then to a specialized DAQ PC (or similar
hardware), and finally to a more conventional computing
environment. By performing data reduction early on in this
chain, it is possible to reduce the bandwidth required by later
stages. Not only can this reduce the cost and complexity of later
stages (especially the cost of data storage), it can also potentially
enable the development of faster detectors by overcoming data
bandwidth bottlenecks. Performing this early data reduction
often ties together with the process of converting the raw data
stream to real images, since real images can be easier to compress.
Conversely, though, performing data reduction early in the chain
can be more challenging, since the hardware in these early stages
tends to offer less flexibility, and there are constraints on space and
power consumption within the detector.

This paper presents an overview of image correction and data
reduction in photon science, with a particular focus on how the
characteristics of different detectors and experiments affect the
choice of data reduction methods. Section 2 discusses algorithms
for converting raw data into corrected images. Section 3 addresses
algorithms for data compression, followed by other methods of data
reduction (e.g., rejecting bad images) in Section 4. Section 5 provides
an overview of standard data-processing hardware such as CPUs,
GPUs and FPGAs that can be built into detectors and DAQ systems.
Finally, Section 6 brings these elements together, by discussing how
data correction and reduction can be implemented at different stages
of a detector’s readout and processing chain, and the pros and cons
of different approaches.

2 Detector data correction

The raw data stream produced by a detector generally requires
processing in order to produce a meaningful image. The steps will of
course depend on the design; here, two common cases of photon
counting and integrating pixel detectors are considered. Although it
can be possible to compress data before all the corrections are
applied, corrected data can be more compressible—for example,
correcting pixel-to-pixel variations can result in a more
uniform image.

Firstly, we want the pixels in an image to follow a
straightforward ordering; typically this is row-by-row or column-
by-column, though some image formats represent images as a series
of blocks for performance reasons. However, data streams from
detectors often have a more complex ordering. One reason for this is

that data is typically read out from an ASIC or monolithic detector
in parallel across multiple readout signal lines which can result in
interleaving of data. In addition, in detectors composed of multiple
chips or modules, there may be gaps in the image, or some parts of
the detector may be rotated—this is illustrated for the AGIPD 1M
detector [3] in Figure 2. So, data reordering is a common first step.

In the case of photon counting detectors, the value read out from
each pixel is an integer that corresponds relatively directly to the
number of photons hitting the pixel. Nevertheless, at higher count
rates losses occur due pulse pileup, when photons hit a pixel in quick
succession and only one pulse is counted. So, pileup correction is
needed, where the hit rate in each pixel is calculated and a rate-
dependent multiplicative factor applied. Although there are two
well-known models for pileup—paralyzable and non-paralyzable—in
practice the behaviour of pixel detectors can be somewhere in-between,
and the pulsed structure of synchrotron sources can also affect the
probability of pileup [4]. In addition to this somemodern detectors have
additional pileup compensation, for example, by detecting longer pulses
that would indicate pileup [5]. So, the pileup correction model can vary
between different detectors.

In integrating detectors, each pixel’s amplifier produces an
analog value, which is then digitized. This digitized value then
needs to be converted to the energy deposited in the pixel. In
many detectors, this is a linear relationship. In experiments with
monochromatic beam, each photon will deposit the same amount of
energy in the sensor, so it is possible to calculate the corresponding
number of photons. The correction process typically consists of the
following steps [6, 7]:

• Baseline correction/dark subtraction. As part of the calibration
process, dark images are taken with no X-ray beam present
and averaged. Then, during image taking, this is subtracted
from each new image. This corrects for both pixel-to-pixel
variations in the amplifiers’ zero level, and also for the effects
of leakage current integrated during image taking. Since this
integrated leakage current can vary with factors like
integration time, operating temperature and radiation
damage in the sensor, new dark images often need to be
taken frequently, e.g., at the start of each experiment.

• Common-mode correction. In some detectors, there may be
image-to-image variation that is correlated between pixels, for
example, due to supply voltage fluctuations. One method for
correcting this is to have a small number of pixels that are
either masked from X-rays or unbonded, use these to measure

FIGURE 1
Illustration of typical elements in a detector’s DAQ chain.

Frontiers in Physics frontiersin.org02

Pennicard et al. 10.3389/fphy.2024.1285854

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

this common-mode noise in each image, and then subtract
this from all the pixels. Another related effect is crosstalk,
where pixels are affected by their neighbours; see for example,
Ref. [8] for a discussion of this.

• Gain correction. While integrating detectors are typically
designed to have a linear relationship between deposited
energy and amplifier voltage, the gain will vary from pixel
to pixel, and thus must be measured and corrected for by
multiplication.

• “Photonization”. If the incoming X-ray beam is
monochromatic, then the measured energy may then be
converted to an equivalent number of photons. Up to this
point, the correction process is typically performed with
floating point numbers, but as discussed later it can be
advantageous for compression to round this to an integer
number of photons (or alternatively fixed point).

In some integrating detectors designed for large dynamic range,
the response may not be a simple linear one. For example, in
dynamic gain switching detectors [3, 9] each pixel can adjust its
gain in response to the magnitude of the incoming signal, and the
output of each pixel consists of a digitized value plus information on
which gain setting was used. This increases the number of
calibration parameters needing to be measured and corrected,
since for each gain setting there will be distinct baseline and gain
corrections.

Furthermore, there are a variety of ways in which detectors may
deviate from the ideal response, and additional corrections may be
required. For example, the response of a detector may not be fully
linear, and more complex functions may be need to describe their
response. It is also common to treat malfunctioning pixels, for
example, by setting them to some special value.

An additional aspect of detector data processing is combining
the image data with metadata, i.e., contextual information about
images such as their format, detector type, and the experimental
conditions under which they were acquired. Some metadata may be
directly incorporated into the detector’s data stream. For example, in
Free Electron Laser (FEL) experiments the detector needs to be
synchronised with the X-ray bunches, and bunches can vary in their
characteristics, so each image will be accompanied by a bunch ID,
fed to the detector from the facility’s control system. Other metadata
may be added later. For example, the NeXuS data format [10] has
been adopted by many labs; this is based on the HDF5 format [11],
and specifies how metadata should be structured in experiments in
photon science and other fields.

3 Data compression and photon
science datasets

In general, data compression algorithms reduce the number of
bits needed to represent data, by encoding it in a way that takes

FIGURE 2
Module layout of the AGIPD 1M detector, which has a central hole for the beam, gaps betweenmodules, and different module orientations (with the
first pixel of each module indicated by a cross).

Frontiers in Physics frontiersin.org03

Pennicard et al. 10.3389/fphy.2024.1285854

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

advantage of patterns or redundancy in the data. These algorithms
can be subdivided into lossless compression [12], where the original
data can be reconstructed with no error, and lossy compression [13],
where there is some difference between the original and
reconstructed data. Currently, lossless compression is often
applied to photon science data before storage, whereas lossy
compression is uncommon, due to concerns about degrading or
biasing the results of later analysis. However, lossy compression can
achieve higher compression ratios.

The compressibility of an image naturally depends on its
content, and in photon science this can vary depending on both
the type of experiment and the detector characteristics. In particular,
since random noise will not have any particular redundancy or
pattern, the presence of noise in an image will reduce the amount of
compression that can be achieved with lossless algorithms.

Compared to typical visible light images, X-ray images from
pixel detectors can have distinctive features that affect their
compressibilty, as discussed further below. Firstly, individual
X-ray photons have much greater energy and thus can more
easily be discriminated with a suitable detector. Also, X-ray
diffraction patterns have characteristics that can make lossless
compression relatively efficient. However, imaging experiments
using scintillators and visible light cameras produce images more
akin to conventional visible light imaging, which do not losslessly
compress well.

3.1 Noise in X-ray images, and its effects on
compression

Random noise in an image can potentially come from different
sources; firstly, electronic noise introduced by the detector, and
secondly, inherent statistical variation in the experiment itself.

Any readout electronics will inevitably have electronic noise.
However, the signal seen by a detector consists of discrete X-ray
photons, and the inherent discreteness of our signal makes it
possible to reject the electronic noise, provided that it is small
enough to ensure that noise fluctuations are rarely mistaken for a
photon. In a silicon sensor without gain, ionizing radiation will
generate on average one electron-hole pair per 3.6 eV of energy
deposited, e.g., a 12 keV photon will generate approximately
3,300 electrons. In turn, if, for example, we assume the noise is
Gaussian with a standard deviation corresponding to 0.1 times the
photon energy (330 electrons here) then the probability of a pixel
having a noise fluctuation corresponding to 0.5 photons or more
would be approximately 1 in 1.7 million [14]. (Common noise
sources such as thermal and shot noise discussed below are
Gaussian, or approximately so, though other noise sources such
as fluctuations in supply voltage may not be.)

When using an integrating detector to detect monochromatic
X-rays, then it is possible to convert the integrated signal to an
equivalent number of photons in postprocessing as described above.
Given sufficiently low noise, this value can be quantized to the
nearest whole number of photons to eliminate electronic noise. In
photon counting detectors, a hit will be recorded in a pixel if the
pulse produced by the photon exceeds a user-defined threshold;
once again, if noise fluctuations exceeding the threshold are rare, we
will have effectively noise-free counting.

In both cases, the electronic noise in a pixel will be dependent on
the integration time for an image, or the shaping time in the case of a
photon-counting detector. There are two main competing effects
here. On the one hand, for longer timescales, the shot noise due to
fluctuations in leakage current will be larger. Conversely, to achieve
shorter integration times or shaping times, a higher amplifier
bandwidth is required, and this will increase the amount of
thermal noise detected [15]. Thermal noise is the noise associated
with random thermal motion of electrons, which is effectively
white noise.

In addition to electronic noise, however, the physics of photon
emission and interaction are inherently probabilistic, and so even if
an experiment were repeated under identical conditions there would
be statistical fluctuations in the number of photons impinging on
each pixel. These fluctuations follow Poisson statistics, and if the
expected number of photons arriving in a pixel during a
measurement is N, then the standard deviation of the
corresponding Poisson distribution will be

��

N
√

. On the one
hand, this can make it easier to develop “low noise” detectors;
provided the detector noise for a given photon flux is significantly
smaller than

��

N
√

, then it will have little effect on the final result.
However, this makes the data less compressible with lossless
algorithms, since random noise introduces variation in the image
that is not patterned or redundant. (As discussed later, quantizing
pixel values with a variable step size, increasing with

��

N
√

, can be a
way of achieving lossy compression.)

3.2 Applying lossless compression to
diffraction data

As noted above, data compression relies on patterns or
redundancy in data, and this will vary depending on the
experiment. Diffraction patterns differ from conventional images
in a variety of respects, with the pattern beingmathematically related
to the Fourier transform of the object. An example of a diffraction
pattern from macromolecular crystallography is shown in Figure 3.

Diffraction patterns tend to have various features that are
advantageous for lossless compression:

• Hybrid pixel detectors with sensitivity to single photons are
the technology of choice for these experiments, making the
measurement effectively free from electronic noise as
described above. (Detectors for X-ray diffraction require
high sensitivity, but pixel sizes in the range of 50–200 μm
are generally acceptable.)

• The intensity values measured in the detector typically have a
nonuniform distribution, with most pixels measuring
relatively low or even zero photons, and a small proportion
of pixels having higher values. This is partly because the
diffracted intensity drops rapidly at higher scattering
angles, and partly because of interference phenomena that
tend to produce high intensity in certain places, e.g., Bragg
spots or speckles, and low intensity elsewhere.

• Depending on the experiment, nearby pixels will often have
similar intensities; for example, in single-crystal diffraction
experiments with widely-spaced Bragg spots, the background
signal between the spots tends to be smoothly varying.

Frontiers in Physics frontiersin.org04

Pennicard et al. 10.3389/fphy.2024.1285854

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

• Combining these points, in images with fewer photons, there
can be patches in the image with many neighbouring zero-
value pixels.

Empirically, a range of lossless compression algorithms can
achieve good results with diffraction data, especially in high-
frame-rate measurements where the number of photons per
image will tend to be lower. Experiments applying the DEFLATE
[17] algorithm used in GZIP to datasets acquired with photon
counting detectors running at high speed showed compression
ratios of 19 for high-energy X-ray diffraction, 70 for
ptychography and 350 for XPCS experiments with dilute samples
(where most pixel values are zero) [18]. Experiments with the
Jungfrau integrating detector, applying different compression
algorithms to the same data, found that multiple compression
methods such as GZIP, LZ4 with a bitshuffle filter and Zstd gave
similar compression ratios to one another, but varied greatly in
speed, with GZIP being a factor of 10 slower [19].

3.2.1 Example—lossless compression with
DEFLATE (GZIP) and Bitshuffle/LZ4

As illustrative examples, we consider the DEFLATE algorithm
used in GZIP [20], and the Bitshuffle/LZ4 algorithm [21], firstly to
discuss how they take advantage of redundancy to compress
diffraction data, and secondly how algorithms with different
computational cost can achieve similar performance.

DEFLATE [17] consists of two stages. Firstly, the
LZ77 algorithm [22] is applied to the data. This searches for
recurring sequences of characters in a file (such as repeated
words or phrases in text, or long runs of the same character) and
encodes them efficiently, as follows: in the output, the first instance
of a sequence of characters is written in full, but then later instances
are replaced with special codes referring back to the previous
instance. In diffraction datasets, long recurring sequences of
characters are generally rare, but there is one big exception; long
runs of zeroes. So, the pattern-matching in LZ77 will efficiently
compress long runs of zeroes, but the computational work the

algorithm does to find more complex recurring sequences is
largely wasted.

Secondly, DEFLATE takes the output of the LZ77 stage, and
applies Huffman coding [23] to it. Normally, different characters in
a dataset (e.g., integers in image data) are all represented with the
same number of bits. Huffman coding looks at the frequencies of
different characters in the dataset, and produces a new coding
scheme that represents common characters with shorter
sequences of bits and rare ones with longer sequences. This is
analogous to Morse code, where the most common letter in
English, “E”, is represented by a single dot, whereas rare letters
have longer sequences. For diffraction data, this stage will achieve
compression due to the nonuniform statistics of pixel values, where
low pixel values are much more common than high ones.

As a contrasting example, the Bitshuffle LZ4 algorithm [21]
implicitly takes advantage of the knowledge that the higher bits of
pixel values are mostly zero and strongly correlated between
neighbouring pixels. In the first step, Bitshuffle, the bits in the
data stream are rearranged so that the first bit from every pixel are all
grouped together, then the second bit, etc. After this regrouping, the
result will often contain long runs of bytes with value zero, as
illustrated in Figure 4. The LZ4 algorithm, which is similar to LZ77,
will then efficiently encode these long runs of 0 bytes. As mentioned
above, this algorithm gives similar performance to GZIP for X-ray
diffraction data while being less computationally expensive.

3.3 Applying lossy compression to
imaging data

While lossless compression can achieve good compression ratios
for diffraction data, there is increasing demand for lossy data
compression. Firstly, data from some experiments such as
imaging do not losslessly compress well, due to noise, and
secondly, the increasing data volumes produced by new detectors
and experiments mean that higher compression ratios are desirable.
The key challenge of lossy compression is ensuring that the

FIGURE 3
A diffraction pattern from a thaumatin crystal, recorded with a Pilatus 1M detector, showing (A) the full detector and (B) a zoom-in of Bragg spots.
Reproduced from [16] with permission of the International Union of Crystallography.

Frontiers in Physics frontiersin.org05

Pennicard et al. 10.3389/fphy.2024.1285854

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

compression does not significantly change the final result of analysis.
This requires evaluating the results of the compression with a variety
of datasets, either by directly comparing the compressed and
uncompressed images with a metric of similarity, or by
performing the data analysis and applying some appropriate
metric of quality to the final result.

In X-ray imaging and tomography experiments, the detector
measures X-ray transmission through the sample, and perhaps also
additional effects such as enhancement of edges through phase
contrast. This means that most pixels will receive a reasonably
high X-ray flux, in contrast to X-ray diffraction where most
pixels see few or even zero photons. So, noise due to Poisson
statistics will be relatively high in most pixels. Likewise, a key
requirement for detectors in these experiments is a small effective
pixel size (particularly for micro- and nano-tomography), whereas
single photon sensitivity is less critical. To achieve this, a common
approach is to couple a thin or structured scintillator to a visible light
camera with small pixels such as a CMOS sensor or CCD [24].
Magnifying optics may be used to achieve a smaller effective pixel
size [25]. This means that the detector noise is also non-negligible.

Since an X-ray transmission image is a real-space image of an
object, and broadly resembles a conventional photograph (unlike a
diffraction pattern), widely-used lossy compression algorithms for
images can potentially be used for compression. In particular,
JPEG2000 [26] is already well-established in medical imaging, and
in tomography at synchrotrons it has been demonstrated to achieve a
factor of three to four compression without significantly affecting the
results of the reconstruction [27]. To test this, the reconstruction of the
object was performed both before and after compression, and the two
results compared using the Mean Structural Similarity Index Measure
(MSSIM) metric. A compression factor of six to eight was possible in
data with a high signal-to-noise ratio.

3.3.1 Example—lossy compression with JPEG2000
One common approach to both lossy and lossless compression is

apply a transform to the data that results in a sparse representation,
i.e., most of the resulting values are low or zero. (The choice of
transform naturally depends on the characteristics of the data.) The
sparse representation can then be compressed efficiently.

In the case of JPEG2000 [26], the Discrete Wavelet Transform [28]
is used; in effect, this transformation represents the image of a sum of
wave packets with different positions and spatial frequencies. This tends
to work well for real space images, which tend to consist of a

combination of localized objects and smooth gradients, which can
be found on different length scales. After applying the transform, the
resulting values are typically rounded off to some level of accuracy,
allowing for varying degrees of lossy compression. (By not applying this
rounding, lossless compression is also possible.) Then, these values are
encoded by a method called arithmetic coding, which is comparable to
Huffman coding; it achieves compression by taking advantage of the
nonuniform statistics of the transformed values, which in this case are
mostly small or zero.

JPEG2000 can be compared with the older JPEG standard,
where the transformation consists of splitting the image into 8 ×
8 blocks, and applying the Discrete Cosine Transform to each block,
thus taking advantage of the fact that images tend to be locally
smooth. This is computationally cheaper than most
JPEG2000 implementations, but one key drawback is that this
can lead to discontinuities between these 8 × 8 blocks after
compression. Additionally, JPEG is limited to 8-bit depth (per
colour channel) which is unsuitable for many applications,
whereas JPEG2000 allows different bit depths. Recently, a high-
throughput implementation of JPEG2000 has been developed,
HTJ2K [29], with similar speed performance to JPEG. (This is
compatible with the JPEG2000 standard but lacks certain features
that are not important to scientific applications.)

3.4 Novel methods for lossy compression

As mentioned previously, increasing data volumes mean there is
demand for achieving increasing compression, even for experiments
such as X-ray diffraction where lossless compression works
reasonably well. Naturally, this can be approached by testing a
variety of well-established lossy compression algorithms on data,
and experimenting with methods such as rounding the data to some
level of accuracy. However, there are also new lossy compression
methods being developed specifically for scientific data. One
particular point of contrast is that most image compression
algorithms focus on minimizing the perceptible difference to a
human viewer, whereas for scientific data other criteria can be
more important, such as imposing limits on the maximum error
allowed between original values and compressed values.

One simple example is quantizing X-ray data with a step size
smaller than the Poisson noise, which is proportional to

��

N
√

. For
ptychography, for example, it has been demonstrated that

FIGURE 4
Illustration of the Bitshuffle process, used in Bitshuffle/LZ4. This reorders the bits in the data stream so that the LZ4 compression stage can take
advantage of the fact that the upper bits in diffraction data are mostly zero, and strongly correlated between neighbouring pixels.. (Eight pixels with 8-bit
depth are shown here, but the procedure may be applied to different numberes of pixels and bits.)

Frontiers in Physics frontiersin.org06

Pennicard et al. 10.3389/fphy.2024.1285854

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

quantizing pixel values with a step size of 0.5 ×
��

N
√

[30] does not
degrade the quality of the reconstruction.

A more sophisticated example of error-bounded lossy
compression is the SZ algorithm [31], which is a method for
compressing a series of floating-point values. For each new
element in the series, the algorithm checks if its value can be
successfully “predicted” (within a specified margin of error) using
any one of three methods: directly taking the previous value; linear
extrapolation from the previous two values; or quadratically
extrapolating from the previous three values. If so, then the pixel
value is represented by a 2-bit code indicating the appropriate
prediction method. If not, then this “unpredictable” value needs
to be stored explicitly. This is illustrated in Figure 5. After the
algorithm runs, further compression is applied to the list of
unpredictable values.

Reference [32] reports on applying SZ to serial crystallography
data from LCLS, where the images consist of floating point values
obtained from an integrating detector. In this method, lossless
compression is applied to regions of interest consisting of Bragg
peaks detected in the image, while binning followed by lossy
compression is applied to the rest of the image, with the goal of
ensuring that any weak peaks that went undetected will still have
their intensities preserved sufficiently well. It is reported that when
using this strategy, using SZ for the lossy compression can achieve a
compression ratio of 190 while still achieving acceptable data
quality, whereas other lossy compression methods tested gave a
compression ratio of 35 at best.

4 Other forms of data reduction

The data compression methods discussed thus far work by
representing a given file using fewer bits; the original file can be
reconstructed from the compressed file, albeit with some inaccuracy
in the case of lossy compression. More broadly, though, there are
other methods of data reduction which rely on eliminating non-
useful data entirely, or which transform or process the data in a non-
recoverable way. These methods have the potential to greatly reduce

the amount of data needing to be stored, though of course it is crucial
to establish that these methods are reliable before putting them into
practice. In recent years, there has been increasing research into
using machine learning for both rejecting non-useful data and for
data processing. This includes supervised learning methods, where
an algorithm learns to perform a task using training data consisting
of inputs and the corresponding correct output, and unsupervised
learning methods, which can discover underlying patterns in data.

4.1 Data rejection/vetoing

In some experiments, a large fraction of the data collected does
not contain useful information. For example, in experiments at FELs
such as serial crystallography and single particle imaging, the sample
can consist of a liquid jet containing protein nanocrystals or objects
such as viruses passing through the path of the beam. However, only
a small fraction of X-ray pulses (in some cases, of order 1%) actually
hit a sample to produce an image containing a useful diffraction
pattern. So, in these kind of experiments, data volumes can be greatly
reduced by rejecting images where the beam did not hit the target.

A variety of methods have been developed for doing this. In
serial crystallography, images where the beam hit a crystal will
contain Bragg peaks, whereas miss images will only have scattering
from the liquid jet. So, a common approach is to search for Bragg
peaks in each image, and only accept images where the total number
of peaks exceeds some threshold value; this approach is used in
software such as Cheetah [33] and DIALS [34]. Since X-ray
diffraction intensity varies with scattering angle, these methods
often rely on estimating the background signal in the
surrounding area of the image when judging whether a peak is
present or not.

Machine learning techniques have also been applied to this task,
where supervised learning is used to distinguish between good and
bad images [35–38]. Supervised learning relies on having training
data consisting of input images and the corresponding correct
output. This data is used to train a model, such as a neural
network; after this, the model can be used to classify new images.
In some cases, the training data may consist of simulated data, or
images from experiments that have been classified as good or bad by
an expert. In this case, the appeal of machine learning is that it makes
it possible to distinguish between good and bad images in cases
where there is no known algorithm for doing so. Alternatively, the
training data may consist of known good and bad images from
previous experiments that have been classified by a pre-existing
algorithm. In this case, machine learning can potentially improve on
the algorithm by being less computationally intensive or by
requiring less fine-tuning of algorithm parameters.

As an example, one common approach to image classification is
deep learning using convolutional neural networks (CNNs) [39]. For
neural networks, the training process consists of feeding input
examples into the network, comparing the resulting outputs to
the expected correct outputs, and adjusting the network’s
parameters through a process called backpropagation in order to
improve the network’s performance. CNNs are a special type of
network suitable for large, structured inputs like images. As shown
in Figure 6, they have a series of convolutional layers; each layer
consists of an array of identical neurons, each looking at small patch

FIGURE 5
Illustration of the “predictive” approach used in SZ compression
of floating-point data. If the value of the next data point can be
extrapolated (within a user-defined margin of error) from previous
data points using one of 3 methods, the point is represented by a
2-bit code indicating the method, e.g., quadratic in this case.

Frontiers in Physics frontiersin.org07

Pennicard et al. 10.3389/fphy.2024.1285854

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

of the image. These layers learn to recognise progressively higher-
level features in the image. Finally, fully-connected layers of neurons
use these high-level features to classify the image. An example of
using CNNs to categorize images in serial crystallography found
in Ref. [36].

While machine learning is a rapidly-growing field with great
potential, these techniques also have limitations. Firstly, substantial
amounts of labelled training data are needed. Secondly, systematic
differences between training data and new data may result in a
failure to generalise to the new data; as a result, it is often necessary
to test and retrain models. Furthermore, even if a machine learning
algorithm works successfully, it is often not transparent how it
works, making it difficult to understand and trust.

The strategy of vetoing uninteresting data is already well-
established in particle physics collider experiments, where only a
tiny fraction of collisions will produce particles that are interesting to
the experimenter. The data from each collision is temporarily
buffered, a subset of this data is read out, and this is used to
make a decision on whether to read out the full event [40]. The
need for triggering has driven the development of real-time data
processing with short latencies [41] and the development of machine
learning methods [42]; photon science can potentially benefit from
this. However, compared to particle physics, vetoing in photon
science faces the challenge that there can be a lot of variation
between different beamlines and user experiments, and there is
generally less a priori knowledge or simulation of what interesting or
uninteresting data will look like.

4.2 Data reduction by processing

Often, the final result of data analysis is much more compact
than the original dataset; in determining a protein structure, for
example, the data may consist of tens of thousands of diffraction
images, while the resulting structure can be described as a list of
atomic positions in the molecule.

In some cases the full analysis of a dataset by the user may take
months or years, and a lot of this analysis is very experiment-
specific, so this is not suitable for achieving fast data reduction close
to the detector. Nevertheless, there can be initial processing steps
that are common to multiple experiments and which could be
applied quickly as part of the DAQ system.

One example of this is azimuthal integration. In some X-ray
diffraction experiments, such as powder diffraction, the signal on the

detector has rotational symmetry, and so the data can be reduced to
a 1-D profile of X-ray intensity as a function of diffraction angle. For
a multi-megapixel-sized detector, this corresponds to a factor of
1,000 reduction in data size. Hardware-accelerated implementations
of azimuthal integration have been developed for GPUs [43], and
more recently for FPGAs [44]. Another example is the calculation of
autocorrelation functions in XPCS. In this technique, the dynamics
of fluids can be studied from the fluctuations in speckle patterns
produced by a coherent X-ray beam. Data processing consists first of
calculating a per-pixel-correlation function from a large stack of
images over time, and then averaging as a function of scattering
angle. FPGA implementations are discussed in Ref. [45].

This is also an area where there is the potential to use machine
learning. Firstly, data processing algorithms can be computationally
expensive and time-consuming, especially if they involve an iterative
reconstruction process. Supervised machine learning can potentially
find a computationally-cheaper way of doing this, using
experimental data and the results of the existing reconstruction
method as the training data. For example, a neural network has been
developed for extracting the structure of FEL pulses from gas-based
streaking detectors, which would normally require iteratively solving
a complex system of equations [46]. In this particular case, the
neural network was implemented in an FPGA, in order to achieve
low latency.

Additionally, unsupervised machine learning could potentially
be used to extract information from X-ray data. These methods
require training data, but unlike supervised learning only input data
is needed, not information on the “correct” output. For example,
variational autoencoders [47] learn to reduce complex data such as
images to a vector representing their key features. This approach has
been applied to X-ray diffraction patterns obtained from doped
crystals, and it was found that the features extracted by the
autoencoder could be used to determine the doping
concentration [48].

4.3 Connections between data reduction
and on-the-fly analysis

At light sources, there is a move towards performing on-the-fly
data analysis, where data from the experiment is streamed to a
computing cluster and analysed immediately [49]. This can provide
immediate feedback to the user to guide the experiment and make
data taking more efficient; for example, by allowing users to quickly

FIGURE 6
The structure of a Convolutional Neural Network (CNN) for image classification.

Frontiers in Physics frontiersin.org08

Pennicard et al. 10.3389/fphy.2024.1285854

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

identify the most useful samples to study, or regions of interest
within a sample that can be investigated in more detail [50].

If data reduction close to the detector involves performing
analysis steps on data (e.g., azimuthal integration) or makes the
data easier to process (e.g., making the dataset smaller by rejecting
bad data) then this synergises with on-the-fly data processing, by
reducing the workload on the computing cluster.

Typically, these sort of data reduction methods have the
drawback that if some or all of the original data is discarded,
then any errors in the processing cannot be corrected. For
example, performing azimuthal integration correctly requires
accurate calibration of the centre of the diffraction pattern and
any tilt of the detector relative to the beam.

However, since on-the-fly data analysis is useful to users, the
trustworthiness of these methods can be established in stages. For
example, as a first stage all the raw data may be saved to disk for
later analysis, with on-the-fly processing providing quick
feedback during the experiment. Once the reliability of the
automatic processing is better-established, raw data might
only be stored for a shorter time before deletion (or transfer
to cheaper storage such as tape) to give the opportunity for the
user to cross-check for correctness. Finally, once the on-the-fly
data processing is fully trusted, it may be possible to only save a
small fraction of the raw data for validation purposes.

5 Overview of data
processing hardware

“Off the shelf” data processing hardware such as CPUs, GPUs
and FPGAs play a key role in building data acquisition systems
for detectors. These components can be used in various places in
the detector and DAQ system, and in some cases a combination
of these can be used. For example, even custom hardware such as
a circuit board for detector control will likely incorporate a
microcontroller with a CPU, an FPGA, or a System-On-Chip
containing both of these.

Here, we give an overview of the distinctive features of CPUs,
GPUs and FPGAs for data processing. In particular, a major
aspect of high-performance computing is parallelization of work,
where a data processing task is divided between many processing
units, but how this is achieved varies between devices, which can
affect the best choice of hardware for the task. (How these
different types of hardware can be incorporated into a
detector system is discussed later, in Section 6.) As an
illustrative example [51], compares CPUs, GPUs and FPGAs
for image processing tasks. For all the tasks studied, either the
GPU, the FPGA or both offered around an order of magnitude
higher speed than CPU, but which one was better depended on
the task; for example, GPUs performed much better than FPGAs
for image filtering with small filter size, whereas FPGAs were
better for stereo vision.

In addition to these, a variety of new hardware accelerators
aimed at machine learning have been developed. These vary in
architecture, but some examples of these are discussed in Subsection
5.4. Lastly, in recent years there have also been efforts to incorporate
data processing directly into detector ASICs. This is discussed later
on, in 6.1, since this is detector-specific processing.

5.1 CPUs—central processing units

The architecture of a typical CPU [52] is shown in Figure 7. A
key feature of modern CPUs is that they’re designed to be able to run
many different programs in a way that appears simultaneous to the
user. Most modern CPUs are composed of a number of cores; for
example, CPUs in the high-end AMD EPYC series have from 32 to
128, though desktop PCs typically have 2–6. Each core has a control
unit, which is able to independently interpret a series of instructions
in software and execute them, along with an arithmetic unit for
performing operations on data, and cache memory for temporarily
storing data. Furthermore, CPUs cores can very rapidly switch
between executing different tasks, so even a single CPU core can
perform many tasks in a way that seems parallel to the user. In most
cases, the CPU will be running an operating system, which handles
the sharing of resources such as memory and peripherals between
the tasks in a convenient way for programmers. High performance
computing with CPUs generally involves parallelization of work
across multiple cores; in doing this, the different cores can operate
relatively independently. For illustration, a detailed example of
optimizing CPU code for the widely-used Fast Fourier Transform
algorithm can be found in Ref. [53], which compares three different
multithreaded packages for this.

Compared to GPUs and FPGAs, CPUs are generally the easiest
to use and program. Indeed, GPUs are virtually always used as
accelerator cards as part of a system with a CPU, and it is common
for systems based on FPGAs to make use of a CPU (e.g., as part of a
System On Chip). In addition, if a task is inherently sequential and
cannot be parallelized, then a CPU core may give better performance
than a GPU or FPGA. However, CPUs generally have much less
parallel processing power than GPUs or FPGAs.

5.2 GPUs—graphics processing units

GPUs are designed to allow massively parallel processing for
tasks such as graphics processing or general-purpose computing.
The basic units of GPUs are called CUDA cores (in NVIDIA GPUs)
or stream processors (in AMD GPUs). These are much more
numerous than CPU cores, numbering in the thousands,
allowing much greater parallelism and processing power.
However, rather than each core being able to independently
interpret a stream of instructions, these cores are organised into
blocks, with all the cores in a block simultaneously executing the
same instruction on different data elements - for example, applying
the same mathematical operation to different elements in an array
[54]. The structure of a typical GPU is shown in Figure 8.

GPU programming relies on specialized frameworks such as
CUDA [55], which was specifically developed for NVIDIA GPUs, or
OpenCL [56], an open framework supporting a range of devices that
also includes CPUs and FPGAs. GPUs are generally used as
accelerator cards in a system with a CPU, and these frameworks
firstly allow the CPU to control the GPU’s operation (by passing
data to and from it, and starting tasks) and secondly to program
functions that will run on the GPU. Typically, GPU code contains
additional instructions controlling how different GPU cores in a
block access data; e.g., when performing an operation on an array,
the first core in a block might perform operations on the first

Frontiers in Physics frontiersin.org09

Pennicard et al. 10.3389/fphy.2024.1285854

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

element, and so forth. This can be relatively easy to apply to a lot of
image processing tasks, where each processing step can be applied to
pixels relatively independently, but GPU implementation can be
more challenging for some compression algorithms that act
sequentially on data.

GPUs have been shown to perform well for many commonly-
used algorithms such as matrix multiplication and Fourier
transforms—for example, achieving an order of magnitude speed
improvement in performing a Fast Fourier Transform [57]. In
particular, GPUs are widely used for training and inference in
machine learning in photon science [58–60]. Some newer models

of GPU are specially optimized for machine learning applications
[61]. For example, neural network calculations typically consist of
multiplying and adding matrices, and new GPUs can have
specialised cores for this.

5.3 FPGAs—field programmable gate arrays

FPGAs are a type of highly configurable hardware. As shown in
Figure 9, within an FPGA there are many blocks providing
functionality such as combinatorial logic, digital signal processing

FIGURE 7
Example of a typical CPU’s architecture, showing a device with four cores and hyperthreading capability. Connections to other devices such asmain
memory (DDR4) and a GPU are also shown [52].

FIGURE 8
Architecture of an NVIDIA GPU (labelled “device”) connected to a PC (“host”). The basic processing units on the GPU are called threads, which are
organised into blocks; all the threads in a block will perform the same operation on different data in lockstep. In turn, a given task (kernel) will be
performed on a grid consisting of multiple blocks [54].

Frontiers in Physics frontiersin.org10

Pennicard et al. 10.3389/fphy.2024.1285854

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

and memory, with programmable interconnects between them [62].
While software for a GPU or CPU consists of a series of instructions
for the processor to follow, an FPGA’s firmware configures the
programmable interconnects to produce a circuit providing the
required functionality. The large number of blocks in an FPGA
can then provide highly parallel processing and high
throughput of data.

Traditionally, firmware is developed by using a hardware
description language to describe the required functionality; a
compiler then finds a suitable configuration of blocks and
interconnects to achieve this. While hardware description
languages differ substantially from conventional programming
languages, high-level-synthesis tools for FPGAs have been more
recently developed to make it possible to describe an algorithm with
a more conventional programming language such as C++, with
special directives in the code being used to indicate how parallelism
can be achieved with the FPGA.

A distinctive form of parallelism in FPGAs is pipelining. A series
of processing steps will often be implemented as a series of blocks
forming a pipeline, with data being passed along from one block to
another. This is analogous to a production line in a factory, where
each station carries out a particular fabrication step, and goods pass
from one station to another. As with the production line, at any
givenmoment there will be multiple data elements in different stages
of processing being worked on simultaneously. In turn, to make
algorithms run efficiently in an FPGA, they need to be designed to
make effective use of this pipeline parallelism. This means that
FPGAs tend to be better-suited to algorithms that operate on
relatively continuous streams of data, rather than algorithms that
rely on holding large amounts of data in memory and accessing
them in an arbitrary way. As well as achieving a high throughput,
algorithms on FPGA can give a reliably low latency, which can be
important in cases where fast feedback is required. However, it is
generally more challenging to program FPGAs than CPUs or GPUs.

In photon science, FPGAs have been used, for example, for
performing autocorrelation in XPCS experiments [45] and
azimuthal integration [44]. For machine learning, libraries are
becoming available to make it easier to perform inference with
neural networks on FPGAs [63]. Additionally, FPGA vendors have
developed devices aimed at machine learning [64]; provides an
evaluation of Xilinx’s Versal platform, which, for example,
includes “AI engines” for running neural networks.

5.4 AI accelerators

In recent years, a range of accelerators have been developed for
machine learning. Examples of these include Intelligence Processing
Units fromGraphcore, and the GroqChip fromGroq; an overview of
some of these can be found in Ref. [65].

While these have varied architectures, they typically have
certain features aimed at implementing neural networks
efficiently. A neuron’s output is a function of the weighted
sum of its inputs, so AI accelerators are designed to perform
many multiply-and-accumulate operations efficiently. They
typically have large amounts of on-chip memory, in order to
accommodate the high number of weights in a big neural
network. Additionally, these accelerators can use numerical
formats that are optimised for machine learning. For example,
BFLOAT16 [66] is a 16-bit floating point format which covers the
same range as standard IEEE 32-bit floating point but with lower
precision; this is still sufficient for many neural networks, but
makes calculations computationally cheaper.

These kinds of accelerator have recently been investigated for
photon science applications. For example, in Ref. [67] a neural
network for processing FEL pulse structure information from a
streaking detector was implemented both for NVidia A100 GPUs
and Graphcore IPUs. This was a convolutional network with
encoder and decoder stages that could be used both to denoise
the data and to extract latent features. Inference on the IPUs was
roughly an order of magnitude faster than on GPUs, and training
time was also significantly improved.

6 Data transfer and processing chains
in detectors

A typical detector and DAQ system consist of series of stages, as
illustrated previously in Figure 1. At each stage, data transfer is
needed, and we face a series of bottlenecks which can limit the
possible data rate. By doing data reduction earlier on in this chain,
the data transfer demands on later stages are reduced, and we can
take advantage of this to achieve higher detector speeds. Conversely,
the hardware used in earlier stages of this chain is typically more
“custom” or specialized, making the implementation of data
reduction more challenging, and typically there is also less
flexibility in these stages.

The stages in the readout and processing chain are as follows,
and the potential for data reduction at each stage will be discussed in
more detail in the following section.

• The readout chip (hybrid pixel) or monolithic sensor.

FIGURE 9
Illustration of the internal architecture of a Xilinx UltraScale FPGA.
The FPGA consists of an array of blocks such as I/O (input and output),
Combinatorial Logic Blocks, Digital Signal Processing and memory in
the form of SRAM, which can be flexibly configured [62].

Frontiers in Physics frontiersin.org11

Pennicard et al. 10.3389/fphy.2024.1285854

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

• Readout electronics within the detector itself, which typically
incorporate an FPGA, microcontroller or similar.

• Detector-specific data processing hardware. Typically, this
consists of one or more PCs, which can include peripherals
such as FPGAs or GPUs, but it is also possible to build more
specialized systems, such as crates of FPGA boards.

• Generic high-performance-computing hardware, typically in
the facility’s computing cluster.

Please note that this discussion focuses on data processing and
reduction “close to the detector”, rather than a facility’s full data
analysis and storage system. Further information on this broader
topic is available, for example, in publications on the newly-built
LCLS-II data system [68] and an overview of big data at
synchrotrons [69]. Furthermore, the level of data reduction
required depends strongly on the costs of data processing and
storage downstream. For example, for LCLS-II the goal is to
reduce the data volume by at least a factor of 10 for each experiment.

6.1 On-chip data reduction

The first data bottleneck encountered in the detector is
transferring data out of the hybrid pixel readout chip or
monolithic sensor. In a pixel detector, we have a 2D array of
pixels generating data, and within the chip it is possible to have
a high density of signal routing; it is common to have a data bus for
each pixel column. However, data output takes place across a limited
number of transceivers (for example, 16 for the recent
Timepix4 chip [70]), which are typically located at the periphery
of the chip. These transceivers usually connect to a circuit board via
wire bonds, though there is increasing effort in using Through
Silicon Vias—TSVs—for interconnect [71]. In turn, further
bottlenecks are faced in connecting these to the rest of the
readout system. Many X-ray experiments require large
continuous detector areas. Typically, these large detectors have a
modular design, with each module’s electronics placed behind it. In
this situation, achieving high detector frame rates requires building
readout electronics with high bandwidth per unit area; the
achievable bandwith per unit area then depends both on the
performance and physical size of PCB traces and other
components [72, 73]. So, performing on-chip data reduction can
make it possible to build faster detectors without being limited by
these bottlenecks.

Naturally, any circuitry for on-chip compression must be
designed to not occupy excessive amounts of space in the pixels
or periphery. Additionally, readout chips are developed in
technology scales that are relatively large compared to
commercial data processing hardware like GPUs and FPGAs, due
to the high cost of smaller nodes. Typically, rather than
implementing general-purpose processing logic into detector
chips, specific algorithms are implemented.

Reference [18] presents a design for on-chip data compression
for photon counting detectors, using techniques similar to those
discussed previously in Section 3. Firstly, within the pixels, count
values are encoded with a varying step size, with the step size getting
larger for larger pixel values such that the step does not exceed the
��

N
√

Poisson noise. This is lossy compression, but the additional

noise introduced by this encoding should be less than the Poisson
noise. Then, in the chip’s periphery during readout, a lossless
compression scheme is applied that bit shuffles the data (much
as described for bitshuffle LZ4) then encodes runs of zeroes
efficiently. Applied to example datasets, this computationally-
cheap approach achieved a compression ratio of around 6 for
XRD data, compared to 19 obtained with GZIP.

More recently, lossy on-chip compression methods have been
developed using two different algorithms - principal components
analysis and an autoencoder [74]. The logic for doing this was
distributed throughout the chip, with the analog pixel circuitry
consisting of “islands” of 2 × 2 pixels. Applying these algorithms
to an image requires prior knowledge about the content of a typical
image; in the case of an autoencoder, which is a type of neural
network, the neural weights are learned from training data. In this
implementation, training was done using ptychography data, and
the resulting weights were hard-coded in the chip.

One important limitation of on-chip data compression is that in
a large tiled detector composed of multiple chips, the compressibility
of the data can vary a great deal between different chips. In X-ray
diffraction experiments in particular, the X-ray intensity close to the
beam is much higher than at large scattering angles, leading to less
compression. So, chips close to the beam may encounter data
bottlenecks even if a high overall level of compression is achieved
for the detector as a whole.

Another example of on-chip reduction is data vetoing by
rejecting bad images, as discussed previously. The Sparkpix-ED
chip is one of a family of chips with built-in data reduction
being developed by SLAC [75]. It is an integrating pixel detector
with two key features. Firstly, each pixel has built-in memory which
is used to store recent images. Secondly, there is summing circuitry
that can add together the signals in groups of 3 × 3 pixels, to produce
a low-resolution image with 1/9 of the size. During operation, each
time a new image is acquired the detector will store the full-
resolution image in memory and send out the low-resolution
image to the readout system. The readout system will then
analyse the low-resolution images to see if an interesting event
occurred (e.g., diffraction from a protein crystal in a serial
crystallography experiment). If so, the detector can be triggered
to read out the corresponding full-resolution image frommemory; if
not, the image will be discarded. A small prototype has
demonstrated reading out low-resolution images at 1 MHz frame
rate, and full-resolution images at 100 kHz.

6.2 On-detector processing and
compression

Data processing and compression can potentially be done within
the detector, before data is transferred to the control system
(typically over optical links). Once again, this can reduce the
bandwidth required for this data transfer.

Typically, on-detector electronics are needed both to control the
detector’s operation, and to perform serialization and encoding of
data into some standard format so that it can be sent efficiently back
to the control system and received using off-the-shelf hardware. (In
some cases, it is also necessary to interface to additional components
such as on-board ADCs.) One particular benefit of serialization is

Frontiers in Physics frontiersin.org12

Pennicard et al. 10.3389/fphy.2024.1285854

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

that individual transceivers on a readout chip typically run at a lower
data rate than can be achieved by modern optical links, so
serialization can allow these links to be used more efficiently; for
example, even the fastest on-chip transceivers typically do not have
data rates above 5 Gbit/s, whereas data sent using 100 Gigabit
Ethernet with QSFP28 transceivers consists of 4 channels with a data
rate of 25 Gbit/s each. These tasks of control and serialization are
typically implemented in an FPGA, or a System-On-Chip (SoC)
with an FPGA fabric. So, the most common approach to on-detector
data processing is to use the FPGA’s processing resources.

As discussed in more detail earlier, FPGAs can provide highly-
parallelized data processing, but firmware development can be
challenging and time consuming. So, detector-specific processing
routines that will always need to be performed on the data are better-
suited to FPGA implementation than ones that vary a lot between
experiments.

For example, FPGAs in the EIGER photon counting detector
perform count-rate correction and image summing [76]. Since the
counters in the pixel have a depth of 12 bits, this makes it possible for
the detector to acquire images with a depth of up to 32 bits by
acquiring a series of images and internally summing them, rather
than needing to transfer many 12-bit images to the DAQ system.

One drawback of on-detector processing is that if the FPGA is
used for control, serialization and data processing, then it can
become more difficult to change the data processing routines.
When FPGA firmware is compiled, the compiler will route
together blocks in the FPGA to produced the desired
functionality. So, changing the data processing routines can
change the routing of other functionality in the FPGA,
potentially affecting reliability. So, careful re-testing is required
after changing the data processing. This is another reason why
on-detector processing with FPGAs is mostly used for fixed,
detector-specific routines.

6.3 Data acquisition hardware such as PCs
with accelerator cards

Data sent out from a detector module will normally be received
by either one or more DAQ PCs, or more specialized hardware,
located either at the beamline or in the facility’s computing centre.
These parts of the DAQ system typically have a range of functions:

• Detector configuration and acquisition control, which requires
both monitoring the detector’s state and data output, and
receiving commands from the control system.

• Ensuring reliable data reception. It is common for a detector’s
output to be a continuous flow of data, transferred by a simple
protocol like UDP without the capability to re-send lost
packets [77], So the DAQ system is required to reliably
receive and buffer this data; this typically requires, for
example, having dedicated, high performance network or
receiver cards.

• Data correction and reduction.
• Transferring data to where it is needed, for example, the
facility’s storage system, online processing and/or a user
interface for feedback. This can include tasks like adding
metadata and file formatting.

Compared to detectors themselves, these systems tend to be built
with relatively off-the-shelf hardware components - for example,
standard network cards or accelerator cards. This use of off-the-shelf
hardware can reduce the costs of implementing data correction and
reduction. In addition, it can be easier to upgrade this hardware over
time to take advantage of improvements in technology. These DAQ
systems may do processing with conventional CPUs, hardware
accelerators such as GPUs and FPGAs, or a mixture of these.

One recent example of this approach is the Jungfraujoch
processing system, developed by PSI for the Jungfrau 4-
megapixel detector [78]. (A similar approach is taken by the
CITIUS detector [79].) The Jungfraujoch system is based on an
IBM IC922 server PC, equipped with accelerator cards, and can
handle 17 GB/s data when the detector is running at
2 kHz frame rate.

The Jungfraujoch server is shown in Figure 10 (reproduced from
[78] with permission of the International Union of Crystallography).
Firstly, it is equipped with two “smart network cards” from Alpha
Data, each with a Xilinx Virtex Ultrascale + FPGA and a 100 Gigabit
Ethernet network link. These receive data directly from the detector
over UDP. The FPGA then converts the raw data into images, as
described in Ref. [9]. Jungfrau is an integrating detector with gain
switching, so the raw data consists of ADC values, and the process of
converting this to either photons or energy values includes
subtracting the dark current and scaling by an appropriate gain
factor. The FPGA also performs the Bitshuffle algorithm, which is
the first step in Bitshuffle LZ4 compression described previously;
since this algorithm involves reordering bits in a data stream, this is
well-suited to implementation on FPGA. The FPGA is primarily
programmed by using High Level Synthesis (HLS) based on C++.

The data from each FPGA is transferred to the host server PC
using OpenCAPI interconnects, which both allows high speed data
transfer at 25 GB/s, and makes it simpler for the FPGA to access

FIGURE 10
A photograph of the IC922 server (IBM) used in Jungfraujoch,
showing the FPGA board used for data reception and processing, and
the OpenCAPI link allowing coherent access to the CPU’s memory.
Reproduced from [78] with permission of the International Union
of Crystallography.

Frontiers in Physics frontiersin.org13

Pennicard et al. 10.3389/fphy.2024.1285854

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

memory on the server. The CPU in the server performs the LZ4 part
of the Bitshuffle LZ4 lossless compression algorithm, then forwards
this data to the file system using ZeroMQ so it can be written to the
file system as an HDF5 file. There is also a GPU in the system that
can perform tasks such as spot finding in macromolecular
crystallography, and monitoring aspects of the detector’s
behaviour such as the dark current. (These tasks are well suited
to GPUs, since they involve performing operations on full images
in parallel.)

One promising technological development in this field is that
FPGA and GPU vendors are increasingly developing accelerator
cards with built-in network links for the datacenter market. For
example, Xilinx have the Alveo line of FPGA cards with two
100 Gigabit Ethernet links and optional high-bandwidth memory,
and likewise NVIDIA is currently developing GPU cards with
network links. So, this will increase the availability of powerful,
standardized hardware for building DAQ systems.

6.4 Computing clusters

Modern light sources are generally supported by large computer
clusters for data processing and large storage systems [68]. Data
from DAQ PCs or similar hardware at the beamlines can be
transferred to them over the facility’s network. Data processing
in computing clusters can be divided into online analysis, where the
data is transferred directly to the cluster to provide fast results to the
experiment, and offine analysis where data is read back from storage
for processing at a later point. (Naturally, there may not be a sharp
dividing line between these two approaches.) In addition to server
PCs with CPUs, computing clusters can also incorporate GPUs or
less commonly FPGAs.

In a computing cluster, there is generally a scheduling system
that controls how tasks are assigned to the computers. This has the
advantage of allowing sharing of resources between different
experiments and users according to needs, whereas dedicated
hardware installed at a beamline may be idle much of the time.
Computing clusters are also much better-suited to allowing users to
remotely access to their data and providing the software tools
required to analyse it. However, this flexibility in task scheduling
and usage can make it more difficult to ensure that we can reliably
receive and process images from the detector at the required rate;
this is one reason for having dedicated DAQ computers at the
beamline for receiving detector data.

7 Conclusion

The increasing data rates of detectors for photon science mean
there is a need for high-speed detector data correction, and
data reduction.

There are strong ties between these tasks. On the one hand, data
reduction can often yield better results on properly-corrected data, since
the correction process can reduce spurious variation in images (e.g.,
pixel-to-pixel variation in response) and make it easier to exploit
redundancy in the data. Conversely, after lossy data reduction it is
impossible to perfectly recover the original data, so it is crucial to ensure
that the quality of the data correction is as good as possible.

Both of these tasks can benefit from making better use of
hardware accelerators such as GPUs and FPGAs for highly
parallel processing. The increasing use of accelerators in other
areas, such as datacenters, means that we can take advantage of
improvements in both their hardware and in tools for programming
them. In particular, as FPGAs and GPUs with built-in network links
become available “off the shelf”, this increases the potential for
different labs to build their DAQ systems with compatible hardware,
and share the algorithms they develop. Although this paper
emphasizes data processing hardware, it is also important to note
that well-designed and coded algorithms can deliver much better
performance.

Data reduction is a growing field in photon science. To date, lossless
compression has mainly been used, since this ensures that there is no
loss in data quality, and in some experiments lossless methods can
achieve impressive compression ratios. However, lossless compression
is relatively ineffective for methods such as imaging, and as data
volumes increase there is demand for even greater data reduction in
diffraction experiments. So, there will be an increasing need for lossy
compression and othermethods of reduction. In doing so, it is crucial to
use appropriate metrics to test that the data reduction does not
significantly reduce the quality of the final analysis. By using well-
established methods of lossy compression, for example, image
compression with JPEG2000, it is easier to incorporate data
reduction into existing data analysis pipelines. However, novel
methods of data reduction tailored to photon science experiments
have the potential for better performance.

Data reduction can be incorporated into different stages of a
detector’s DAQ chain; generally, performing data reduction earlier
in the chain is more challenging and less flexible, but has the
advantage of reducing the bandwidth requirements of later
stages, and can enable greater detector performance by
overcoming bottlenecks in bandwidth. The development of on-
chip data reduction is a particularly exciting development for
enabling higher-speed detectors, though this would typically
require the development of different chips for different classes of
experiment. As the demand for data reduction increases, we can
expect detectors and experiments to incorporate a series of data
reduction steps, beginning with simpler or more generic reduction
early in the processing chain, and then more experiment-specific
data reduction taking place in computer clusters.

Author contributions

DP: Conceptualization, Investigation, Writing–original draft,
Writing–review and editing. VR: Visualization, Writing–review
and editing. HG: Funding acquisition, Supervision,
Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. Additional
funding for work on data reduction has been provided by multiple
sources: LEAPS-INNOV, which has received funding from the
European Union’s Horizon 2020 research and innovation

Frontiers in Physics frontiersin.org14

Pennicard et al. 10.3389/fphy.2024.1285854

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

programme under grant agreement no. 101004728; Helmholtz
Innovation Pool project Data-X; and HIR3X—Helmholtz
International Laboratory on Reliability, Repetition, Results at the
most Advanced X-Ray Sources.

Acknowledgments

Thanks to members of the LEAPS consortium and LEAPS-
INNOV project, particularly those who have presented and
discussed their work on data reduction at events; this has been a
valuable source of information in putting together this review.
Thanks also to Thorsten Kracht (DESY) for providing feedback
on the paper. The authors acknowledge support from DESY, a
member of the Helmholtz Association HGF.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Rao R. Synchrotrons face a data deluge. Phys Today (2020). doi:10.1063/PT.6.2.
20200925a

2. Marras A, Klujev A, Lange S, Laurus T, Pennicard D, Trunk U, et al. Development
of CoRDIA: an imaging detector for next-generation photon science X-ray sources.Nucl
Instr Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment
(2023) 1047:167814. doi:10.1016/j.nima.2022.167814

3. Allahgholi A, Becker J, Bianco L, Delfs A, Dinapoli R, Goettlicher P, et al. AGIPD, a
high dynamic range fast detector for the European XFEL. J Instrumentation (2015) 10:
C01023. doi:10.1088/1748-0221/10/01/C01023

4. Trueb P, Sobott BA, Schnyder R, Loeliger T, Schneebeli M, Kobas M, et al.
Improved count rate corrections for highest data quality with PILATUS detectors.
J Synchrotron Radiat (2012) 19:347–51. doi:10.1107/S0909049512003950

5. Hsieh SS, Iniewski K. Improving paralysis compensation in photon counting
detectors. IEEE Trans Med Imaging (2021) 40:3–11. doi:10.1109/TMI.2020.3019461

6. Mezza D, Becker J, Carraresi L, Castoldi A, Dinapoli R, Goettlicher P, et al.
Calibration methods for charge integrating detectors. Nucl Instr Methods Phys Res
Section A: Acc Spectrometers, Detectors Associated Equipment (2022) 1024:166078.
doi:10.1016/j.nima.2021.166078

7. Blaj G, Caragiulo P, Carini G, Carron S, Dragone A, Freytag D, et al. X-Ray
detectors at the linac coherent light source. J Synchrotron Radiat (2015) 22:577–83.
doi:10.1107/S1600577515005317

8. van Driel TB, Herrmann S, Carini G, Nielsen MM, Lemke HT. Correction of
complex nonlinear signal response from a pixel array detector. J Synchrotron Radiat
(2015) 22:584–91. doi:10.1107/S1600577515005536

9. Redford S, Andrä M, Barten R, Bergamaschi A, Brückner M, Dinapoli R, et al. First
full dynamic range calibration of the JUNGFRAU photon detector. J Instrumentation
(2018) 13:C01027. doi:10.1088/1748-0221/13/01/C01027

10. Könnecke M, Akeroyd FA, Bernstein HJ, Brewster AS, Campbell SI, Clausen B,
et al. The NeXus data format. J Appl Crystallogr (2015) 48:301–5. doi:10.1107/
S1600576714027575

11. The HDF Group. Hierarchical data format version 5 (2000-2010).

12. Sayood K. Lossless compression handbook. Elsevier (2002).

13. Al-Shaykh OK, Mersereau RM. Lossy compression of noisy images. IEEE Trans
Image Process (1998) 7:1641–52. doi:10.1109/83.730376

14. Becker J, Greiffenberg D, Trunk U, Shi X, Dinapoli R, Mozzanica A, et al. The
single photon sensitivity of the adaptive gain integrating pixel detector. Nucl Instr
Methods Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment (2012)
694:82–90. doi:10.1016/j.nima.2012.08.008

15. Ballabriga R, Alozy J, Campbell M, Frojdh E, Heijne E, Koenig T, et al. Review of
hybrid pixel detector readout ASICs for spectroscopic X-ray imaging. J Instrumentation
(2016) 11:P01007. doi:10.1088/1748-0221/11/01/P01007

16. Broennimann C, Eikenberry EF, Henrich B, Horisberger R, Huelsen G, Pohl E,
et al. The PILATUS 1M detector. J Synchrotron Radiat (2006) 13:120–30. doi:10.1107/
S0909049505038665

17. Deutsch LP. DEFLATE compressed data format specification version 1.3. No.
1951 in request for comments (RFC editor) (1996). doi:10.17487/RFC1951

18. HammerM, Yoshii K, Miceli A. Strategies for on-chip digital data compression for
X-ray pixel detectors. J Instrumentation (2021) 16:P01025. doi:10.1088/1748-0221/16/
01/P01025

19. Leonarski F, Mozzanica A, Brückner M, Lopez-Cuenca C, Redford S, Sala L, et al.
JUNGFRAU detector for brighter x-ray sources: solutions for IT and data science
challenges inmacromolecular crystallography. Struct Dyn (2020) 7:014305. doi:10.1063/
1.5143480

20. Gailly J, Adler M. GZIP documentation and sources (1993). available as gzip-*. tar
in ftp://prep. ai. mit. edu/pub/gnu.

21. Masui K, Amiri M, Connor L, Deng M, Fandino M, Höfer C, et al. A compression
scheme for radio data in high performance computing. Astron Comput (2015) 12:
181–90. doi:10.1016/j.ascom.2015.07.002

22. Ziv J, Lempel A. A universal algorithm for sequential data compression. IEEE
Trans Inf Theor (1977) 23:337–43. doi:10.1109/tit.1977.1055714

23. Huffman DA. A method for the construction of minimum-redundancy codes.
Proc IRE (1952) 40:1098–101. doi:10.1109/jrproc.1952.273898

24. Olsen U, Schmidt S, Poulsen H, Linnros J, Yun S, Di Michiel M, et al. Structured
scintillators for x-ray imaging with micrometre resolution. Nucl Instr Methods Phys Res
Section A: Acc Spectrometers, Detectors Associated Equipment (2009) 607:141–4. doi:10.
1016/j.nima.2009.03.139

25. Mittone A, Manakov I, Broche L, Jarnias C, Coan P, Bravin A. Characterization of
a sCMOS-based high-resolution imaging system. J Synchrotron Radiat (2017) 24:
1226–36. doi:10.1107/S160057751701222X

26. Skodras A, Christopoulos C, Ebrahimi T. The JPEG 2000 still image compression
standard. IEEE Signal Process. Mag (2001) 18:36–58. doi:10.1109/79.952804

27. Marone F, Vogel J, Stampanoni M. Impact of lossy compression of X-ray
projections onto reconstructed tomographic slices. J Synchrotron Radiat (2020) 27:
1326–38. doi:10.1107/S1600577520007353

28. Shensa MJ, et al. The discrete wavelet transform: wedding the a trous and Mallat
algorithms. IEEE Trans signal Process (1992) 40:2464–82. doi:10.1109/78.157290

29. Taubman D, Naman A, Smith M, Lemieux PA, Saadat H, Watanabe O, et al. High
throughput JPEG 2000 for video content production and delivery over IP networks.
Front Signal Process (2022) 2. doi:10.3389/frsip.2022.885644

30. Huang P, Du M, Hammer M, Miceli A, Jacobsen C. Fast digital lossy compression
for X-ray ptychographic data. J Synchrotron Radiat (2021) 28:292–300. doi:10.1107/
S1600577520013326

31. Di S, Cappello F. Fast error-bounded lossy HPC data compression with SZ. In:
2016 IEEE international parallel and distributed processing symposium. IPDPS (2016).
p. 730–9. doi:10.1109/IPDPS.2016.11

32. Underwood R, Yoon C, Gok A, Di S, Cappello Froibin- SZ. ROIBIN-SZ: fast and
science-preserving compression for serial crystallography. Synchrotron Radiat News
(2023) 36:17–22. doi:10.1080/08940886.2023.2245722

33. Barty A, Kirian RA, Maia FR, Hantke M, Yoon CH, White TA, et al. Cheetah:
software for high-throughput reduction and analysis of serial femtosecond x-ray
diffraction data. J Appl Crystallogr (2014) 47:1118–31. doi:10.1107/
s1600576714007626

34. Winter G, Waterman DG, Parkhurst JM, Brewster AS, Gildea RJ, Gerstel M, et al.
DIALS: implementation and evaluation of a new integration package. Acta Crystallogr
Section D (2018) 74:85–97. doi:10.1107/S2059798317017235

35. Rahmani V, Nawaz S, Pennicard D, Setty SPR, Graafsma H. Data reduction for
X-ray serial crystallography using machine learning. J Appl Crystallogr (2023) 56:
200–13. doi:10.1107/S1600576722011748

Frontiers in Physics frontiersin.org15

Pennicard et al. 10.3389/fphy.2024.1285854

https://doi.org/10.1063/PT.6.2.20200925a
https://doi.org/10.1063/PT.6.2.20200925a
https://doi.org/10.1016/j.nima.2022.167814
https://doi.org/10.1088/1748-0221/10/01/C01023
https://doi.org/10.1107/S0909049512003950
https://doi.org/10.1109/TMI.2020.3019461
https://doi.org/10.1016/j.nima.2021.166078
https://doi.org/10.1107/S1600577515005317
https://doi.org/10.1107/S1600577515005536
https://doi.org/10.1088/1748-0221/13/01/C01027
https://doi.org/10.1107/S1600576714027575
https://doi.org/10.1107/S1600576714027575
https://doi.org/10.1109/83.730376
https://doi.org/10.1016/j.nima.2012.08.008
https://doi.org/10.1088/1748-0221/11/01/P01007
https://doi.org/10.1107/S0909049505038665
https://doi.org/10.1107/S0909049505038665
https://doi.org/10.17487/RFC1951
https://doi.org/10.1088/1748-0221/16/01/P01025
https://doi.org/10.1088/1748-0221/16/01/P01025
https://doi.org/10.1063/1.5143480
https://doi.org/10.1063/1.5143480
https://doi.org/10.1016/j.ascom.2015.07.002
https://doi.org/10.1109/tit.1977.1055714
https://doi.org/10.1109/jrproc.1952.273898
https://doi.org/10.1016/j.nima.2009.03.139
https://doi.org/10.1016/j.nima.2009.03.139
https://doi.org/10.1107/S160057751701222X
https://doi.org/10.1109/79.952804
https://doi.org/10.1107/S1600577520007353
https://doi.org/10.1109/78.157290
https://doi.org/10.3389/frsip.2022.885644
https://doi.org/10.1107/S1600577520013326
https://doi.org/10.1107/S1600577520013326
https://doi.org/10.1109/IPDPS.2016.11
https://doi.org/10.1080/08940886.2023.2245722
https://doi.org/10.1107/s1600576714007626
https://doi.org/10.1107/s1600576714007626
https://doi.org/10.1107/S2059798317017235
https://doi.org/10.1107/S1600576722011748
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

36. Ke TW, Brewster AS, Yu SX, Ushizima D, Yang C, Sauter NK. A convolutional
neural network-based screening tool for X-ray serial crystallography. J synchrotron
Radiat (2018) 25:655–70. doi:10.1107/s1600577518004873

37. Blaj G, Chang CE, Kenney CJ. Ultrafast processing of pixel detector data with
machine learning frameworks. In: AIP conference proceedings, 2054. AIP Publishing
(2019).

38. Chen L, Xu K, Zheng X, Zhu Y, Jing Y. Image distillation based screening for x-ray
crystallography diffraction images. In: 2021 IEEE intl conf on parallel & distributed
processing with applications, big data & cloud computing, sustainable computing &
communications, social computing & networking (ISPA/BDCloud/SocialCom/
SustainCom). IEEE (2021). p. 517–21.

39. Brehar R, Mitrea DA, Vancea F, Marita T, Nedevschi S, Lupsor-Platon M, et al.
Comparison of deep-learning and conventional machine-learning methods for the
automatic recognition of the hepatocellular carcinoma areas from ultrasound images.
Sensors (2020) 20:3085. doi:10.3390/s20113085

40. Baehr S, Kempf F, Becker J. Data reduction and readout triggering in particle
physics experiments using neural networks on FPGAs. In: 2018 IEEE 18th international
conference on nanotechnology (IEEE-NANO). IEEE (2018). p. 1–4.

41. Ryd A, Skinnari L. Tracking triggers for the HL-LHC. Annu Rev Nucl Part Sci
(2020) 70:171–95. doi:10.1146/annurev-nucl-020420-093547

42. Skambraks S, Abudinén F, Chen Y, Feindt M, Frühwirth R, Heck M, et al. A
z-vertex trigger for Belle II. IEEE Trans Nucl Sci (2015) 62:1732–40.

43. Kieffer J, Wright J. PyFAI: a python library for high performance azimuthal
integration on GPU. Powder Diffraction (2013) 28:S339–50. doi:10.1017/
S0885715613000924

44. Matěj Z, Skovhede K, Johnsen C, Barczyk A, Weninger C, Salnikov A, et al.
Azimuthal integration and crystallographic algorithms on field-programmable
gate arrays. Acta Crystallogr Section A (2021) 77:C1185. doi:10.1107/
S0108767321085263

45. Madden T, Niu S, Narayanan S, Sandy A, Weizeorick J, Denes P, et al. Real-time
MPI-based software for processing of XPCS data. In: 2014 IEEE nuclear science
symposium and medical imaging conference (NSS/MIC) (2014). p. 1–5. doi:10.1109/
NSSMIC.2014.7431129

46. Therrien AC, Herbst R, Quijano O, Gatton A, Coffee R. Machine learning at the
edge for ultra high rate detectors. In: 2019 IEEE nuclear science symposium and medical
imaging conference (NSS/MIC) (2019). p. 1–4. doi:10.1109/NSS/MIC42101.2019.
9059671

47. Kingma DP, Welling M. An introduction to variational autoencoders.
Foundations Trends Machine Learn (2019) 12:307–92. doi:10.1561/2200000056

48. Utimula K, YanoM, Kimoto H, Hongo K, Nakano K, Maezono R. Feature space of
XRD patterns constructed by an autoencoder. Adv Theor Simulations (2023) 6:2200613.
doi:10.1002/adts.202200613

49. Blaschke JP, Wittwer F, Enders B, Bard D. How a lightsource uses a
supercomputer for live interactive analysis of large data sets. Synchrotron Radiat
News (2023) 36:10–6. doi:10.1080/08940886.2023.2245700

50. Nikitin V, Shevchenko P, Deriy A, Kastengren A, Carlo FD. Streaming collection
and real-time analysis of tomographic data at the APS. Synchrotron Radiat News (2023)
36:3–9. doi:10.1080/08940886.2023.2245693

51. Asano S, Maruyama T, Yamaguchi Y. Performance comparison of FPGA, GPU
and CPU in image processing. In: 2009 international conference on field programmable
logic and applications (IEEE) (2009). p. 126–31.

52. Vajda A. Multi-core and many-core processor architectures. Programming
Many-Core Chips (2011). p. 9–43.

53. Khokhriakov S, Manumachu RR, Lastovetsky A. Performance optimization of
multithreaded 2d fast fourier transform onmulticore processors using load imbalancing
parallel computing method. IEEE Access (2018) 6:64202–24. doi:10.1109/access.2018.
2878271

54. Kirk D NVIDIA CUDA software and GPU parallel computing architecture.
ISMM (2007) 7:103–4.

55. Nvidia Vingelmann P, Fitzek FH. CUDA, release: 10.2.89 (2020).

56. Stone JE, Gohara D, OpenCL SG. OpenCL: a parallel programming standard for
heterogeneous computing systems. Comput Sci Eng (2010) 12:66–73. doi:10.1109/mcse.
2010.69

57. Lin JM. Python non-uniform fast fourier transform (PyNUFFT): an accelerated
non-Cartesian MRI package on a heterogeneous platform (CPU/GPU). J Imaging
(2018) 4:51. doi:10.3390/jimaging4030051

58. Becker D, Streit A. A neural network based pre-selection of big data in photon
science. In: 2014 IEEE fourth international conference on big data and cloud computing.
IEEE (2014). p. 71–6.

59. Souza A, Oliveira LB, Hollatz S, Feldman M, Olukotun K, Holton JM, et al.
Deepfreak: learning crystallography diffraction patterns with automated machine
learning (2019). arXiv preprint arXiv:1904.11834.

60. Branco S, Ferreira AG, Cabral J. Machine learning in resource-scarce embedded
systems, fpgas, and end-devices: a survey. Electronics (2019) 8:1289. doi:10.3390/
electronics8111289

61. Choquette J, Gandhi W, Giroux O, Stam N, Krashinsky R. NVIDIA A100 tensor
core GPU: performance and innovation. IEEEMicro (2021) 41:29–35. doi:10.1109/MM.
2021.3061394

62. Abuowaimer Z, Maarouf D, Martin T, Foxcroft J, Gréwal G, Areibi S, et al.
GPlace3.0: routability-driven analytic placer for Ultrascale FPGA architectures. ACM
Trans Des Automation Electron Syst (Todaes) (2018) 23:1–33. doi:10.1145/3233244

63. Kathail V. Xilinx Vitis unified software platform. In: Proceedings of the 2020 ACM/
SIGDA international symposium on field-programmable gate arrays (New York, NY,
USA: association for computing machinery). FPGA ’20 (2020). p. 173–4. doi:10.1145/
3373087.3375887

64. Perryman N, Wilson C, George A. Evaluation of Xilinx Versal architecture for
next-gen edge computing in space. In: 2023 IEEE aerospace conference (2023). p. 1–11.
doi:10.1109/AERO55745.2023.10115906

65. Emani M, Xie Z, Raskar S, Sastry V, Arnold W, Wilson B, et al. A comprehensive
evaluation of novel AI accelerators for deep learning workloads. In: 2022 IEEE/ACM
international workshop on performance modeling, benchmarking and simulation of high
performance computer systems (PMBS) (2022). p. 13–25. doi:10.1109/PMBS56514.2022.
00007

66. [Dataset] Kalamkar D, Mudigere D, Mellempudi N, Das D, Banerjee K, Avancha
S, et al. A study of BFLOAT16 for deep learning training (2019).

67. Kraus M, Layad N, Liu Z, Coffee R. EdgeAI: machine learning via direct attached
accelerator for streaming data processing at high shot rate x-ray free-electron lasers.
Front Phys (2022) 10. doi:10.3389/fphy.2022.957509

68. Thayer J, Damiani D, Ford C, Dubrovin M, Gaponenko I, O’Grady CP, et al. Data
systems for the linac coherent light source. Adv Struct Chem Imaging (2017) 3:3. doi:10.
1186/s40679-016-0037-7

69. Wang C, Steiner U, Sepe A. Synchrotron big data science. Small (2018) 14:
1802291. doi:10.1002/smll.201802291

70. Llopart X, Alozy J, Ballabriga R, Campbell M, Casanova R, Gromov V, et al.
Timepix4, a large area pixel detector readout chip which can be tiled on 4 sides
providing sub-200 ps timestamp binning. J Instrumentation (2022) 17:C01044. doi:10.
1088/1748-0221/17/01/C01044

71. Hügging F, Owtscharenko N, Pohl DL, Wermes N, Ehrmann O, Fritzsch T, et al.
Advanced through silicon vias for hybrid pixel detector modules. Nucl Instr Methods
Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment (2019) 936:
642–3. doi:10.1016/j.nima.2018.08.067

72. Doering D, Kwiatkowski M, Kamath UR, Tamma C, Rota L, Ruckman L, et al.
Readout system for ePixHR x-ray detectors: a framework and case study. In: 2020 IEEE
nuclear science symposium and medical imaging conference (NSS/MIC) (2020). p. 1–4.
doi:10.1109/NSS/MIC42677.2020.9507754

73. Pennicard D, Smoljanin S, Pithan F, Sarajlic M, Rothkirch A, Yu Y, et al.
LAMBDA 2M GaAs—a multi-megapixel hard x-ray detector for synchrotrons.
J Instrumentation (2018) 13:C01026. doi:10.1088/1748-0221/13/01/C01026

74. B Valentin M, Di Guglielmo G, Noonan D, Dilip P, Huang P, Quinn A, et al. In-
pixel AI for lossy data compression at source for X-ray detectors. Nucl Instr Methods
Phys Res Section A: Acc Spectrometers, Detectors Associated Equipment (2023) 1057:
168665. doi:10.1016/j.nima.2023.168665

75. Rota L, Perez AP, Habib A, Dragone A, Miceli A, Markovic B, et al. X-ray detectors
for LCLS-II with real-time information extraction: the SparkPix family. In: 24th
international workshop on radiation imaging detectors (IWORID 2023). Oslo,
Norway (2023).

76. Bruckner M, Bergamaschi A, Cartier S, Dinapoli R, Frojdh E, Greiffenberg D, et al.
A multiple 10 Gbit Ethernet data transfer system for EIGER. Padova, Italy: 20th IEEE
Real Time Conference (2016).

77. Gottlicher P, Sheviakov I, Zimmer M. 10G-Ethernet prototyping for 2-D X-Ray
detectors at the XFEL. In: 2009 16th IEEE-NPSS real time conference (2009). p. 434–7.
doi:10.1109/RTC.2009.5321620

78. Leonarski F, Brückner M, Lopez-Cuenca C, Mozzanica A, Stadler HC, Matěj Z,
et al. Jungfraujoch: hardware-accelerated data-acquisition system for kilohertz pixel-
array X-ray detectors. J Synchrotron Radiat (2023) 30:227–34. doi:10.1107/
S1600577522010268

79. Grimes M, Pauwels K, Schülli TU, Martin T, Fajardo P, Douissard PA, et al. Bragg
coherent diffraction imaging with the CITIUS charge-integrating detector. J Appl
Crystallogr (2023) 56:1032–7. doi:10.1107/S1600576723004314

Frontiers in Physics frontiersin.org16

Pennicard et al. 10.3389/fphy.2024.1285854

https://doi.org/10.1107/s1600577518004873
https://doi.org/10.3390/s20113085
https://doi.org/10.1146/annurev-nucl-020420-093547
https://doi.org/10.1017/S0885715613000924
https://doi.org/10.1017/S0885715613000924
https://doi.org/10.1107/S0108767321085263
https://doi.org/10.1107/S0108767321085263
https://doi.org/10.1109/NSSMIC.2014.7431129
https://doi.org/10.1109/NSSMIC.2014.7431129
https://doi.org/10.1109/NSS/MIC42101.2019.9059671
https://doi.org/10.1109/NSS/MIC42101.2019.9059671
https://doi.org/10.1561/2200000056
https://doi.org/10.1002/adts.202200613
https://doi.org/10.1080/08940886.2023.2245700
https://doi.org/10.1080/08940886.2023.2245693
https://doi.org/10.1109/access.2018.2878271
https://doi.org/10.1109/access.2018.2878271
https://doi.org/10.1109/mcse.2010.69
https://doi.org/10.1109/mcse.2010.69
https://doi.org/10.3390/jimaging4030051
https://doi.org/10.3390/electronics8111289
https://doi.org/10.3390/electronics8111289
https://doi.org/10.1109/MM.2021.3061394
https://doi.org/10.1109/MM.2021.3061394
https://doi.org/10.1145/3233244
https://doi.org/10.1145/3373087.3375887
https://doi.org/10.1145/3373087.3375887
https://doi.org/10.1109/AERO55745.2023.10115906
https://doi.org/10.1109/PMBS56514.2022.00007
https://doi.org/10.1109/PMBS56514.2022.00007
https://doi.org/10.3389/fphy.2022.957509
https://doi.org/10.1186/s40679-016-0037-7
https://doi.org/10.1186/s40679-016-0037-7
https://doi.org/10.1002/smll.201802291
https://doi.org/10.1088/1748-0221/17/01/C01044
https://doi.org/10.1088/1748-0221/17/01/C01044
https://doi.org/10.1016/j.nima.2018.08.067
https://doi.org/10.1109/NSS/MIC42677.2020.9507754
https://doi.org/10.1088/1748-0221/13/01/C01026
https://doi.org/10.1016/j.nima.2023.168665
https://doi.org/10.1109/RTC.2009.5321620
https://doi.org/10.1107/S1600577522010268
https://doi.org/10.1107/S1600577522010268
https://doi.org/10.1107/S1600576723004314
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2024.1285854

	Data reduction and processing for photon science detectors
	1 Introduction
	2 Detector data correction
	3 Data compression and photon science datasets
	3.1 Noise in X-ray images, and its effects on compression
	3.2 Applying lossless compression to diffraction data
	3.2.1 Example—lossless compression with DEFLATE (GZIP) and Bitshuffle/LZ4

	3.3 Applying lossy compression to imaging data
	3.3.1 Example—lossy compression with JPEG2000

	3.4 Novel methods for lossy compression

	4 Other forms of data reduction
	4.1 Data rejection/vetoing
	4.2 Data reduction by processing
	4.3 Connections between data reduction and on-the-fly analysis

	5 Overview of data processing hardware
	5.1 CPUs—central processing units
	5.2 GPUs—graphics processing units
	5.3 FPGAs—field programmable gate arrays
	5.4 AI accelerators

	6 Data transfer and processing chains in detectors
	6.1 On-chip data reduction
	6.2 On-detector processing and compression
	6.3 Data acquisition hardware such as PCs with accelerator cards
	6.4 Computing clusters

	7 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

