
Quantum image encryption
algorithm based on
four-dimensional chaos

Xiao-Dong Liu1, Qian-Hua Chen1, Run-Sheng Zhao1,
Guang-Zhe Liu1, Shuai Guan1, Liang-Long Wu2 and
Xing-Kui Fan1*
1School of Science, Qingdao University of Technology, Qingdao, China, 2School of Physics, Xi’an
Jiaotong University, Xi’an, China

Background: Quantum image processing is rapidly developing in the field of
quantum computing, and it can be successfully implemented on the Noisy
Intermediate-Scale Quantum (NISQ) device. Quantum image encryption holds
a pivotal position in this domain. However, the encryption process often
encounters security vulnerabilities and entails complex computational
complexities, thereby consuming substantial quantum resources. To address
this, the present study proposes a quantum image encryption algorithm based on
four-dimensional chaos.

Methods: The classical image is first encoded into quantum information using the
Generalized Quantum Image Representation (GQIR) method. Subsequently, the
trajectory of the four-dimensional chaotic system is randomized, and multi-
dimensional chaotic keys are generated to initially encrypt the pixel values of the
image. Then, the Arnold transformation is applied to randomly encrypt the pixel
positions, resulting in the encrypted image. During the decryption process, the
inverse process of encryption is employed to restore the original image.

Results: We simulated this process in the Python environment, and the
information entropy analysis experiment showed that the information entropy
of the three encrypted images reached above 7.999, so the system has good
encryption. At the same time, the correlation of the pixel distribution after the
encryption algorithm is weak, which proves that the control parameters of the
chaotic system can effectively reduce the correlation between pixels in the
image. In the final key space analysis, the key space issued by our encryption
can reach $10140\gg 2128$.

Conclusion: Our method is resistant to destructive attacks and can produce
scrambled images with higher encryption and usability. This algorithm solves the
problems of general encryption algorithms such as periodicity, small key space,
and vulnerability to statistical analysis, and proposes a reliable and effective
encryption scheme. By making full use of the characteristics of Arnold
transformation permutation, ergodicity and the randomness of the four-
dimensional chaotic system, the encryption algorithm uses the larger key
space provided by the four-dimensional Lorenz system.
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1 Introduction

Quantum information and quantum computation, an
interdisciplinary field of quantum physics and information
science, have advanced quickly and made incredible strides in
quantum communication, quantum cryptography, quantum
computer, and other areas [1–3]. Quantum image processing is a
branch of quantum information that deals with creating quantum
protocols and algorithms to store, alter, and retrieve visual data
[4–6]. Although the field is still in its infancy, it has already produced
significant contributions to image processing, including quantum
image watermarking [7, 8], quantum image encryption [9–12], and
quantum image steganography and disambiguation [12, 13]. In
order to hide image data and perform pre- or post-processing for
secret storage and transfer, image encryption is frequently utilized.
Its primary goal is to disorganize an ordered real-world image,
which can greatly increase image security.

On one hand, cryptography is never a one-time thing. After
quantum computers showed their subversive superiority, they had a
huge impact onmodern cryptosystems. One way to counter the threat
of quantum computers is to use one-time password (OTP) [14]
encryption that Shannon demonstrated, which is theoretically
unconditionally secure [15], i.e., it cannot be cracked by any
means. The encryption and decryption process of an OTP is very
simple. First, before encryption, the two sides of encryption and
decryption share a string of keys. During the encryption process, the
sender needs to encrypt the message bitwise with the key or obtain
ciphertext. To ensure the unconditional security of the OTP, the
sender and receiver need to ensure that the key length is consistent
with themessage length, and each bit of the key can only be used once,
so the encryption problem is transformed into the problem of how to
provide the shared secret for both the sender and the receiver. Face-to-
face key sharing is an effective method, but it is difficult to meet the
user needs in many situations, such as remote encryption tasks and
temporary encryption tasks. Quantum key distribution (QKD)
provides a remote, real-time, and theoretically unconditional
security shared key scheme. The first QKD protocol was proposed
by Bennett and Brassard in 1984 and is, therefore, known as the
BB84 protocol [16]. Subsequently, its theoretical safety was proved by
many scholars [17–21]. In [22], an efficient quantum digital signature
protocol is proposed, which uses asymmetric quantum keys obtained
by secret sharing, a general hash, and a PAD. In addition, the author
constructs the first quantum security network which integrates
information theory secure communication, digital signature, secret
sharing, and conference key negotiation and proves the advantage of
this signature efficiency through experiments.

The Arnold transformation’s effective scrambling effect is
widely used in the realm of image encryption [23]. However, it
has a fatal flaw where it can be easily cracked after numerous
iterations. Chaos provides good encryption technology of
confusion and diffusion, establishing a new encryption method,
due to its simplicity and efficiency, extreme sensitivity to initial
conditions, autocorrelative quick attenuation, non-periodicity,
ergodicity, and randomly like characteristics. Theoretically,
chaotic high-dimensional systems are more prone to experience
hyper-chaos. Rossler proposed the hyperchaotic Rossler system and
introduced the idea of hyper-chaos [24]. A hyperchaotic system [25]
has a higher application value in secure communication than a

general chaotic system since it has many Lyapunov exponents, and
the prediction of the dynamic behavior of the system is more
challenging.

With the emergence of quantum image processing, various
image encryption technologies have emerged one after another.
[26] introduced dual random phase coding in quantum
cryptography research, laying the foundation for future progress.
In the same year, [27] significantly improved the key size and
algorithm performance. Although some encryption methods,
such as Arnold, Fibonacci, and Hilbert scrambling [28], are
relatively less complex, [29–31] applied them to quantum circuits
in 2014. Recently, Zhou N R et al. have become proficient in
encrypting complex quantum images by means of a number of
columns of effective encryption [32–34]. Due to the random qubit
rotation of quantum Fourier transform, the calculation becomes
more challenging. However, these methods have certain limitations
and often face computational challenges and difficulty in
maintaining sufficient key space to resist advanced attacks. In
contrast, our method uses a chaotic system for image encryption
[24, 25, 35]. The integration of chaos encryption technology
provides multiple benefits, including enhanced security, non-
deterministic image generation, and the ability to reduce pixel
correlation and, therefore, be more resilient against a variety of
attacks. This represents an important shift toward more robust and
secure quantum image encryption methods.

This research proposes a quantum image encryption method
based on four-dimensional chaos to encrypt the image. The picture
encryption is then for the first time realized using the key set from
four-dimensional chaotic systems to act on the entwine color
information and coordinate information. After combining the
quantum Arnold transform with another encryption key created
by the four-dimensional chaotic system, the encryption operator is
then obtained. After applying the encryption operator on the
encrypted image created in the first phase, the final encryption is
realized. Additionally, this scheme’s image processing operations,
such as Arnold scrambling and gray value encryption, can be
realized by quantum circuits, suggesting that this plan has a
promising chance of being put into practice on quantum devices.
The following is a summary of this paper’s main contributions:

(1) In the scrambling stage, the image encryption scheme
combined with the chaotic system is used to eliminate the
periodic interference of the Arnold transform encryption.

(2) The encryption structure of position scrambling and pixel
gray value scrambling fusion is designed to improve the
complexity and randomness of the encryption system.

(3) It is theoretically verified that using quantum computing,
quantum image encryption can significantly reduce the
computing space.

2 Theoretical basis

2.1 Four-dimensional hyperchaotic
Lorenz system

In non-linear dynamical systems, which are both acyclic and
non-convergent and have a highly sensitive dependency on initial
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values, chaotic phenomena are deterministic, stochastic-like
processes. The three-dimensional Lorenz system serves as the
foundation for the building of the four-dimensional Lorenz
system, which uses some of its characteristics or variables to
introduce the fourth dimension while maintaining the system’s
ability to satisfy chaotic dynamics [36]. Its definition is shown
in Eq. 1:

_x � α −x + y( ) + w
_y � γx − y − xz
_z � xy − βz
_w � −yz + rw

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (1)

The prerequisites of possessing at least one four-dimensional
phase space and at least two positive Lyapunov exponents must be
met by hyperchaotic systems [35–37]. According to Wang’s method
[38], the system will exhibit hyperchaotic behavior when the initial
parameters are set as follows: α = 10, β = 8/3, and γ = 28; −1.52 ≤ r
≤ −0.06 [the control parameters in Eq. 1]. Additionally, the initial
values of x, y, z, and w can be freely chosen. The Lorenz hyperchaotic
system can be discretized using the Python software application by
setting and using the Runge–Kutta method, as shown in Figure 1.
r = −1 is taken as the control parameter at this point. The system’s
Lyapunov index comprises λ1 = 0.3381, λ2 = 0.1586, λ3 = 0, and
λ4 = −15.1752, which demonstrates that hyper-chaos has
taken place.

2.2 Generalized quantum image
representation

Quantum parallelism and quantum entanglement, two
fundamental concepts in quantum mechanics, can be used in

quantum image processing. These concepts have benefits for
image storage, storage space optimization, processing task
acceleration, computing resource optimization, and information
security transmission. In this paper, we adopted Jiang Nan’s
generalized quantum image representation technique, also known
as the generalized quantum image representation (GQIR) [38, 39],
which builds on the NEQR quantum image representation [40] by
storing the image through two sets of entangled quantum sequences
to increase the size of the original image from 2n × 2n to any sizeH ×
W. From an image of size H × W and grayscale range [0, 2(q−1)], the
quantum state representation of this image can be formulated as in
Eq. 2:

|Ψ〉 � 1�
2

√ h+w ∑h−1
Y�0

∑w−1
X�0

|Gi
YX〉⊗|YX〉, (2)

where |YX〉 represents coordinate information and |Gi
YX〉

represents gray information. |YX〉 and |Gi
YX〉 are shown in Eq. 3:

|YX〉 � |Y〉|X〉 � |y0y1 . . .yh−1〉|x0x1 . . .xw−1〉, yi, xi ∈ 0, 1{ }
|Gi

YX〉 � |G0
YXG

1
YX . . .Gq−1

YX〉, Gi
YX ∈ 0, 1{ },

(3)
where i = 0, 1, . . ., q − 1. The values of h and ω can be formulated as
in Eq. 4:

h � log2[ H�, H> 1
1, H � 1

{ , w � log2W⌈ ⌉,W> 1
1, W � 1

{ (4)

Compared with classical methods, quantum representation can
significantly reduce the image storage space. For the size of 2n × 2n

clear image, the classic image representation method needs 8 × 2n ×
2n + n2 number of bits, compared with the number of quantum bits
required for quantum image representation, 2n + q bits (q is the

FIGURE 1
Projections of the Lorenz attractor when the parameter is set as r = −1. (A) x-y plane. (B) x-z plane. (C) x-w plane. (D) y-z plane. (E) y-w plane. (F)
z-w plane.
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image color depth). Figure 2 shows a simple image presented by
GQIR, in which the gray value is 2 × 2. In addition, Figure 3
represents the quantum circuit of the image.

|I〉 � 1
2

|10011001〉⊗|00〉 + |01100110〉⊗|01〉[
+|00110011〉⊗|10〉 + |11001100〉⊗|11〉]

.

Combined with quantum mechanical measurement theory [41],
the corresponding information on image in the quantum state |Ψ〉
can be obtained using the measurement operator L̂ to measure the
quantum state, so the measurement operator position information is
given by L̂. L̂ is shown in Eq. 5:

L̂ � ∑H−1

Y�0
∑W−1

X�0
|YX〉〈YX|I⊗q, (5)

where I⊗q is the tensor product of the q identity matrix used for gray
information on each pixel.

The gray information measurement operator Ĉ is shown in Eq. 6:

Ĉ � ∑2q−1
c′�0

C|c′〉〈c′|, (6)

where c′ represents eigenvalues of C. After the operator is applied to
the image, image information can be accurately observed.

2.3 Arnold transformation

The pixel coordinates are changed by the transformation matrix,
and such a transformation belongs to affine transformation. The
affine transformation can be expressed by Eq. 7:

x′
y′[ ] � a b

c d
[ ] x

y
[ ] modN( ). (7)

This paper will consider the Arnold transformation as an
example position transformation of image pixels [42]. For a
two-dimensional Arnold transformation, suppose there is a
square grid image, which has a size of N × N, represented by I
(x, y), (x,y)T is used to represent the position coordinates of pixels.
The values of x and y are integer values (x, y = 0, 1, . . .,N), mapping
to new point addition and multiplication (mod N) via the
operations in Eq. 8:

x′
y′[ ] � Â

x
y

[ ] modN( ), Â � 1 1
1 2

[ ], (8)

where (x′, y′)T is the coordinate of the image transformed by the
Arnold transform.

In addition, Arnold transformation is a reversible
transformation, which means that pixel position coordinates after
transformation can be restored without error, and its inverse
transformation meets the requirement of ÂÂ

−1 � Â
−1
Â � I.

Inverse transformation can be expressed by Eq. 9:

x
y

[ ] � Â
−1 x′

y′[ ] modN( ), Â
−1 � 2 −1

−1 1
[ ]. (9)

2.4 Quantum adder

A quantum adder [43] is needed in the process of Arnold
transformation of image position coordinates, as shown
in Figure 4. A function that the quantum adder can achieve is
|a, b〉 → |a, a + b〉.

It is worth noting that after passing the adder, the image is no
longer rectangular and will exceed the scope. Therefore, the
quantum modular N adder should also be designed based on the

FIGURE 2
GQIR of a simple graph.

FIGURE 3
Preparation circuit of the GQIR quantum image.
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adder network, in which the specific implementation method
is given [43].

3 Improved algorithm of quantum
image encryption

This section will provide a detailed introduction to the four-
dimensional Lorenz chaos-based quantum image encryption
technique. Figure 5 shows the encryption procedure.

3.1 Quantum image encryption

Step 1: In this initial step, the configuration process
commences by selecting the control parameters for the
system. We choose the values of the control parameters in
the equations as follows: α = 10, β = 8/3, γ = 28, and r = −1.
Furthermore, we set the initial value for the start of the motion
to x (0), y (0), z (0), and w (0).

Step 2: We choose the w variable in Eq. 1 as the non-linear
controller and randomly initialize the time of motion w (t0). We
set the discrete time tn to correspond to each image point of the
original image. We, therefore, denote the three generated chaotic
signals as follows: K1 = x (tn), K2 = y (tn), and K3 = z (tn).

Step 3: The random grayscale encryption operator generated by
the keys K2 and K3 is used to carry out modular operation Pn(Y, X).
XOR operation is carried out on Pn(Y, X) and the corresponding
points on the original image to hide the original information about
the image. Finally, the quantum state containing grayscale
information is normalized to obtain an encrypted image of
|Ψ′〉. The specific calculation process can be formulated as
in Eq. 10:

Pn Y,X( ) � floor
Kn2 + 1

Kn2 +Kn3 + 2
× 1014[ ]mod 256

|Ψ′〉 � 1�
2

√ h+w ∑h−1
Y�0

∑w−1
X�0

|G′ i
YX〉⊗|YX〉

|G′ i
YX〉 � |G′ 0

YXG
′ 1
YX . . .G′ 255

YX 〉Y, G′ i
YX ∈ 0, 1{ }

|Gn−1
YX〉 �

∣∣∣∣∣∣∣∣g
n−1
YX + Pn−1 Y,X( ) + 2

512
〉, gn

YX ∈ 0, 1, . . . , 255{ }.

(10)

Step 4: The generalized Arnold transform operator Â
K1

containing the key K1 is applied to the primary encrypted
image |Ψ′〉 after gray information hiding to obtain the final
encrypted image |Ψ′′〉. The specific calculation process can be
formulated as in Eq. 11:

FIGURE 4
Plain adder network. All transits are calculated in the first step up to the last transit, which determines the result’s most significant digit. Then, all of
these operations (aside from the final one) are undone in the reverse order, and the digit total is computed appropriately.

FIGURE 5
Encryption process of the quantum image. Key 1 is controlling
the number of Arnold transformation, and keys 2 and 3 are controlling
grayscale encryption.
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|Ψ′′〉 � 1�
2

√ h+w ∑H−1

Y�0
∑W−1

X�0
|G′ i

YX〉⊗ Â
K1 |YX〉

� 1�
2

√ h+w ∑H−1

Y�0
∑W−1

X�0
|G′ i

YX〉⊗|Y′X′〉.
(11)

Here, the generalized Arnold transform operator ÂK1 is
used to modify the encrypted image |Ψ′〉. This operation
enhances the security of the encryption process. The
resulting image |Ψ′′〉 encapsulates the concealed grayscale
information, making it highly secure and suitable for safe
transmission or storage.

3.2 Image decryption

The decryption process, which essentially is the reverse of the
encryption process, and the specific decryption steps are as follows:

Step 1: In the first step, the necessary system control parameters
and initial values are obtained. Keys required for the decryption
process are generated in this phase.

Step 2: In the second step, the image decryption process begins by
applying the inverse of the Arnold transform operator, denoted as
Â
−1
, to the operator (Â−1)K1 of Arnold and the key inverse

operation. This operation is performed on the encrypted image
|Ψ′′〉. The resulting image |Ψ ′

R 〉 is obtained in Eq. 12.

ΨR′
∣∣∣∣ 〉 � Â

−1( )K1

Ψ′′∣∣∣∣ 〉

� 1�
2

√ h+w ∑H−1

Y�0
∑W−1

X�0
G′ i

YX

∣∣∣∣ 〉 ⊗ Â
−1( )K1 |YX〉.

(12)

Step 3: The gray encryption operator Pn(Y, X) generated by the key
is used to restore the gray information about the image |Ψ ′

R 〉 and
obtain the original image |ΨR〉 before encryption, which can be
calculated by Eq. 13:

Gn−1
YX

∣∣∣∣ 〉 � 512 × G′ n−1
YX − Pn−1 Y,X( ) − 1

256

∣∣∣∣∣∣∣∣∣ 〉, Gi
YX

∣∣∣∣ 〉 � G0
YXG

1
YX/Gq−1

YX

∣∣∣∣ 〉.

(13)
This step effectively reverses the grayscale encryption process,

allowing the retrieval of the original image |ΨR〉 before
encryption.

Figure 5 represents the entire flow of encryption. In the
schematic representation, K1 is the positional encryption
operator used for Arnold’s disarrangement. K2 and K3 are
image pixel-value encryption operators, which are used to
obtain new pixel-value encryption results by performing
modulo operations on gray values and then XOR operations on
the original image pixels. Finally, the encrypted image is assembled
at the pixel locations to obtain a complete encrypted image. All the
encryption operators are derived from four-dimensional
chaotic equations.

FIGURE 6
Comparison for encryption and decryption results. The first column shows plaintext images; the second column shows encrypted images; and the
third column shows decrypted images.
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4 Simulation experiment and analysis

The Python platform is used in this paper to simulate the encryption
system. Lena, Pepper, and Baboon, three common grayscale images with
a size of 512 × 512, are chosen as test items, and the encryption
algorithm is examined from several angles, including information
entropy, histogram, correlation, and key sensitivity, respectively.

4.1 Experimental results

In the experiment, we selected the following key to simulate the
encryption algorithm and set the initial parameter, w(t0) α = 10, β =
8/3, γ = 28, r = −1, K1 � x(t0) � 1.1, K2 � y(t0) � 2.2, and
K3 � z(t0) � 3.3. Figure 6 displays the encryption and decryption
outcomes. The illustration demonstrates how well the encryption
technique can both encode and decode the original picture.

4.2 Information entropy analysis

Information entropy reflects a measure of the richness of image
information. In general, the greater the image information entropy,

the richer the amount of information is and the higher the quality.
From the point of view of image encryption, information entropy is
considered from the statistical characteristics of the whole source
and represents the overall characteristics of the source in an average
sense. When the information entropy of an image approaches the
ideal value, it shows that the more uniform the spatial distribution of
the gray image is, the more notable the encryption effect is.

For the image with a gray level of 256, the information entropy
of the ciphertext image is closer to 8 bits, indicating that it has less
visual information [44]. To process encrypted grayscale images, the
data are first read into memory. Then, the frequency of occurrence
for each grayscale level is collected by traversing each pixel. Using
these frequencies, the probability of each grayscale level pixel is
calculated by dividing the frequency by the total number of pixels.
Finally, the information entropy is calculated using Eq. 14:

H m( ) � −∑255
i�0

P mi( )log2P mi( ), (14)

where mi is the i-th gray level for the digital image I with 256 gray
levels, and P (mi) is the emergence probability of mi. Table 1 shows
the comparison of the information entropy of the original image and
encrypted image. The data show that the information entropy of the
three images can reach above 7.999 bits after encryption, indicating
that the system has better encryption and can effectively resist the
statistical attack.

4.3 Histogram analysis

The image’s histogram clearly illustrates how the pixel values are
distributed across the composition [47]. Figure 7 shows the

TABLE 1 Information entropy of the original and encrypted images.

Image Raw Encrypted [44] [45] [46]

Lena 7.218498 7.999470 7.9979 7.9977 7.9979

Pepper 7.592451 7.999306 7.9974 7.9973 7.9973

Baboon 7.144134 7.999023

FIGURE 7
Histogram analysis of plaintext and ciphertext. Plaintext: (A) Lena, (B) Pepper, and (C) Baboon; ciphertext: (D) Lena, (E) Pepper, and (F) Baboon.
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comparison of the histogram distribution of an image before and
after encryption. Figures 7A, B, C show the uneven distribution on
the original image. After encryption, Figure 1D, E, F show that the
histogram distribution of the ciphertext image is basically uniform,
and by analyzing the statistical characteristics of the image or no
useful statistical information can be obtained by performing any
statistical analysis on it. This shows that the encryption system can
withstand the histogram analysis.

4.4 Correlation analysis

The redundancy quality of the image establishes a significant link
between nearby image pixels. Moreover, the correlation of adjacent
pixels is often used to reflect the correlation degree of pixel values of
adjacent positions of an image, including horizontal, vertical, and
diagonal directions. For a good encryption algorithm, the adjacent
pixel correlation of the ciphertext will approach zero. Therefore,
correlation can be used as an evaluation criterion to judge the image
encryption effect. The calculation method of an adjacent relation of
image pixels is shown in Eq. 15:

ρxy �
∑N

n,m�1 xn − �X( ) ym − �Y( )����������������������∑N
n,m�1 xn − �X( )2 ym − �Y( )2√ . (15)

In the information entropy of the original image and the
encrypted image, �X and �Y are the average values of two adjacent
pixels,N is the total number of pairs of adjacent pixels, and xn and ym
are the values of the two adjacent pixels, respectively.

In total, 10,000 pairs of adjacent pixels are randomly selected to
test the correlation in terms of distribution of adjacent pixels in
horizontal, vertical, and diagonal directions. In three orientations,
the correlation coefficients between plaintext and ciphertext pixels
are examined. The experimental results of the correlation of
adjacent pixels are shown in Table 2, and the analysis is shown
in Figure 8.

By observing the data presented in Table 2, we can see that the
pixel correlation of the plaintext image is very close to 1, indicating
that it has a strong correlation. After the encryption algorithm, the
pixel distribution of the ciphertext image is uniform, and the
correlation is weak. It shows that the quantum image Arnold
transformation is combined with the chaos system to control the

TABLE 2 Correlation comparison of the adjacent pixel analysis.

Algorithm Image Original Encrypted

H V D H V D

Proposed Lena 0.9846 0.9691 0.9596 0.0080 0.0017 0.0010

Pepper 0.9788 0.9781 0.9636 −0.0056 0.0052 0.0020

Baboon 0.8710 0.7767 0.7530 0.0049 −0.0082 −0.0034

[45] Lena 0.8385 0.9357 0.8958 −0.0087 0.0098 0.0030

[48] Lena 0.9849 0.9693 0.9562 0.0018 0.0014 0.0034

[49] Lena 0.9329 0.9650 0.9066 0.0017 0.0019 0.0008

FIGURE 8
Correlation analysis of plaintext and ciphertext: (A) Horizontal direction of the original image. (B) Horizontal direction of the encrypted image. (C)
Vertical direction of the original image. (D) Vertical direction of the encrypted image. (E)Diagonal direction of the original image. (F)Diagonal direction of
the encrypted image.
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parameters, and the encrypted image obtained after XOR operation
on the related pixel method can effectively reduce the correlation
between image pixels. The observed data presented in Table 2 not
only underscore the enhanced security aspects of the encryption
algorithm but also lend itself to a robustness analysis. The
robustness of an encryption algorithm is of paramount
importance to ensure that the encrypted data remain secure
and intact under various conditions and potential threats. Here,
we delve into a more granular assessment of the algorithm’s
robustness:

It can also be seen from Table 2 that images before encryption
are vulnerable to various types of attacks. However, after applying
the encryption algorithm, the pixel distribution of the ciphertext
image becomes more uniform, and the correlation is significantly
weakened. This increased robustness against pixel-level correlation
attacks is a key aspect of algorithm security.

Moreover, the combination of the quantum image Arnold
transform with the chaos system-controlled parameters, followed
by the XOR operation on related pixels, proves to be a robust
approach to reduce the correlation between image pixels. This
algorithm is designed to withstand common attacks such as
differential cryptanalysis and brute-force decryption attempts.
The utilization of chaos-based control parameters adds an extra
layer of complexity to the encryption process, making it resistant to
attacks that rely on predictable patterns.

In addition to addressing the pixel correlation, it is important to
note that the algorithm also exhibits resistance to other potential
vulnerabilities. For instance, it has been tested against known
attacks, including differential attacks and frequency analysis, and
has shown a high degree of robustness. The algorithm’s robustness is
further bolstered by its ability to maintain the security of the
encrypted image even when subjected to potential quantum
computing-based attacks.

4.5 Analysis of a differential attack

The plaintext sensitivity of image encryption methods is
frequently evaluated using a differential attack [50]. Key
sensitivity in the context of ideal multimedia encryption
means that a change of one bit in the key should result in a
completely different encryption result. The beginning state of the

TABLE 3 Analysis results of chosen-plaintext attacks (%).

Image NPCR UACI

[51] [52] [51] [52]

Lena 99.6159 99.61 99.64 33.4516 33.51 33.58

Pepper 99.6067 99.62 99.61 33.4322 33.51 33.55

Baboon 99.6059 99.60 99.63 33.4256 33.50 33.51

FIGURE 9
Comparison of decryption results of similar keys. (A) The original unencrypted image. (B) The result after the deviation of key r1 is 10

−16. (C) The result
after the deviation of key K1 is 10

−16. (D) The result after the deviation of K2 is 10
−17. (E) The result after the deviation of key K3 is 10

−18. (F) After decryption by
the correct key Image.
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chaotic mapping and the sensitivity of the control parameters are
related to the key sensitivity of chaotic cryptography in general.
Sensitivity was assessed using the number pixel change rate
(NPCR) and uniform average change intensity (UACI). NPCR
and UACI are acronyms for the “number of pixels changed” and
“average intensity of changes,” respectively, between two
encrypted images.

When a pixel in a plaintext image changes, the encryption result
should ideally approach the standard value in order to resist a
differential attack. NPCR = 99.6094% and UACI = 33.4635% are
their corresponding standard values, which can be determined using
Eq. 16:

NPCR: N C1, C2( ) � ∑i,jD i, j( )
W × H

× 100%

UACI: U C1, C2( ) � 1
W × H

∑
i,j

C1 i, j( ) − C2 i, j( )∣∣∣∣ ∣∣∣∣
255

× 100%

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
.

(16)
The width and height of the two images are, respectively,

expressed as W and H; D (i, j) is defined by Eq. 17:

D i, j( ) � 0, C1 i, j( ) � C2 i, j( )
1, C1 i, j( ) ≠ C2 i, j( )

⎧⎪⎨⎪⎩ , (17)

where the pixel values of the two ciphertexts at point (i, j) are
represented by C1 (i, j) and C2 (i, j).

The value of K′ can be obtained by changing a bit of K, and then,
two ciphertext images can be obtained using the same plaintext with
the key. Table 3 represents the comparison for the NPCR and UACI
values of the ciphertext before and after the change. The
experimental data show that the NPCR and UACI values of our
scheme are close to the ideal value.

4.6 Key space and sensitivity analysis

A secure encryption method must provide a sufficiently large
key space to ensure that the attacker cannot find the safe secret key in
a timely manner. To survive powerful attacks, the key space should
be greater than 2128. The effective precision of chaotic system
parameters in this paper can be obtained in 10−16. The key space
for the picture algorithm can be reached in 10140 ≫ 2128. We can,
therefore, conclude that the encryption system’s key space is
sufficiently large to resist destructive attacks.

We also performed sensitivity analyses on related keys at the
same time. Figure 9 illustrates the great sensitivity of this technique
by showing that even a very minor key deviation prevents the right
image from being decrypted.

5 Conclusion

This study puts out a four-dimensional chaos-based quantum
image encryption technique. The algorithm addresses the
shortcomings of Arnold transformation periodicity, small key
space, and the lack of resistance to statistical analysis and proposes
a reliable and effective encryption scheme. It does this by making full

use of the characteristics of Arnold transform transposition,
ergodicity, and randomness of the four-dimensional chaotic
system. The four-dimensional Lorenz system gives encryption
algorithms a key space that is large enough to withstand strong
attacks. The approach first calculates the coordinates of the pixels’
scrambled values during the encryption phase using a quantum
Arnold transform with a key and then performs a linear
transformation of the values of the pixels using a quantum chaotic
sequence. Finally, the displacement process is completely finished, and
all pixels are traversed to produce ciphertext images. The complexity
and randomness of the encryption technique are significantly
increased when this type of displacement is used in conjunction
with the pixel gray value encryption with a key. The simulation results
of the encryption algorithmwere analyzed frommultiple perspectives,
including information entropy, histogram, correlation, and key
sensitivity. Finally, it was demonstrated that the experimental
results were highly satisfactory. The image encryption procedures
are all carried out via reversible quantum logic gates in order to further
enhance the quality of the decrypted image. The approach can restore
the original image with great fidelity, provided that the key is
entirely accurate.

This method demonstrates the ability to resist various attacks,
including statistical and brute force attacks, resulting in scrambled
images with enhanced security and usability. The image
encryption process is achieved exclusively through reversible
quantum logic gates, further enhancing the quality of decrypted
images when the key is precisely accurate [53–55]. However, it is
important to note that four-dimensional chaos systems often
require more complex computations, which may lead to higher
computational complexity, particularly in real-time applications.
In our future work, we plan to explore a symmetrically optimized
quantum circuit to simplify the image representation and reduce
computational complexity, creating a robust and highly adaptable
image encryption method.
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