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In this work, the reparameterized Scarf II oscillator was employed to describe the
internal vibration of diatomic systems. Analytical equations for bound state pure
vibrational energies and canonical partition functionwere obtained. The equations
were used to derive statistical-mechanical models for the prediction of molar
entropy, enthalpy, Gibbs free energy and constant pressure (isobaric) heat
capacity of gaseous substances. The obtained model equations were used to
generate numerical data on bound state energy eigenvalues and, to investigate the
thermodynamic properties of the ground states chloroborane (BCl), bromine
fluoride (BrF), and bromine chloride (BrCl) molecules. With the aid of the
expression for molar entropy of the system, average absolute deviations
obtained for the molecules are 0.1878%, 0.1267%, and 0.0586% from
experimental data. The isobaric heat capacity model yields average absolute
deviation of 2.1608%, 1.8601%, and 1.9805%. The results obtained are in good
agreement with available literature data on gaseous molecule. The work could be
applicable in the fields of molecular physics, chemical physics, solid-state physics
and chemical engineering.
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1 Introduction

Potential energy function (simply known as potential) is a mathematical model used to
describe the interaction of a physical system with its environment. One of the problems of
this representation is the absence of a universal potential energy function that can model
every atomic and molecular interactions. Numerous versions of potential models have been
proposed by chemist and physicist to account for observed atomic and molecular
phenomena. The list of potential models includes the Morse potential [1], Eckart
potential [2], Frost-Musulin potential [3], Rosen-Morse potential [4], Tietz potential [5],
Hua potential [6], and Schiöberg potential [7] amongst others.

A potential energy function whose potential parameters are formulated in terms of the
spectroscopic constants of a diatomic molecule is referred to as oscillator. The oscillator is a
specialized model potential used to describe interactions in diatomic molecules. A diatomic
molecule oscillator is required to satisfy the so-called Varshni conditions [8, 9]. The Varshni
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conditions ensure that the potential parameters of an oscillator are
expressed in terms of molecular constants such as equilibrium
harmonic vibrational frequency (ωe), rotational-vibrational
coupling coefficient (αe), equilibrium dissociation energy (De),
anharmonicity constant (ωexe), and equilibrium bond length (re) [10].

The solution of Schrödinger and other wave equations of
quantum mechanics can be obtained analytically or by
numerical approach. Quite a number of analytical solution
methods have been suggested in the literature, the Nikiforov-
Uvarov (NU) method, exact and proper quantization rules,
supersymmetric quantum mechanics approach (SUSYQM),
asymptotic iteration method (AIM), and the recently introduced
Nikiforov-Uvarov functional analysis (NUFA) method are some of
the methods. Some illustrative examples where the different
solution techniques are used to solve the Schrödinger equation
can be found in Ref. [11–16] and the references therein. The
solution of Schrödinger wave equation has been instrumental in
retrieving information regarding the quantum mechanical system
of interest. For instance, expectation values, information theoretic,
optical, magnetic, electrical, and thermodynamic properties of
substances have been investigated through eigen energy levels
and eigenfunctions of wave Eqs 17–34.

The need to obtain analytical (or statistical-mechanical) models
for the prediction of thermodynamic properties of gaseous
substances have recently attracted much attention from the
research community. The thermodynamic property of a gaseous
molecule can be predicted theoretically with the aid of analytical
model equation; it can also be determined by experimental
procedures. The statistical-mechanical models are easy to use and
are not expensive, only few molecular constants of a diatomic
molecule are required to predict the thermal property of the
system. In contrast, experimental method is time consuming,
usually very expensive and require huge experimental task.

Different oscillator models have been employed to describe the
internal vibration of diatomic molecules. Through such
representation, canonical partition function is obtained which is
then used to derive other useful thermodynamic models for the
gaseous substance. Statistical-mechanical models such as Helmholtz
free energy (F), mean thermal energy (U), entropy (S), enthalpy (H),
Gibbs free energy (G), isobaric heat capacity (Cp), and constant
volume heat capacity (CV) have successfully been used to examine
thermal properties of substances [35–39].

This paper is concerned with improved versions of
hyperbolical-type oscillators. Available three parameter models
are the specialized Pöschl-Teller potential [40], improved
generalized Pöschl-Teller potential [41], and improved Scarf II
potential energy function (ISPEF) [42]. On the other hand,
existing four parameter models are the improved Pöschl-Teller
potential [43], improved q-deformed Scarf II oscillator [10], and
modified hyperbolical-type potential [44]. Analytical expressions
for the prediction of molar entropy, enthalpy, Gibbs free energy,
and isobaric heat capacity have been obtained with various
formulations of the improved hyperbolical-type oscillators [10,
45–48]. However, the reparameterized Scarf oscillator has not
been considered in the literature. It is against this background
that this research is aimed at obtaining the pure vibrational state
energies and some statistical-mechanical models for the
reparameterized Scarf oscillator (RSO). The paper is organized

as follows. In Section 2, potential parameters are developed for
the RSO. Equation for pure vibrational state energy is obtained in
Section 3. Statistical-mechanical models are derived in Section 4.
Results of numerical computations are discussed in Section 5. A
brief conclusion of the work is given in Section 6.

2 Potential parameters of the RSO

In previous study, the Varshni conditions for diatomic molecule
potential were used to construct the IqSO. By employing the IqSO,
analytical equations for the prediction of molar entropy and Gibbs
free energy were derived [10]. However, statistical-mechanical
models for the prediction of molar enthalpy and heat capacity
have not been reported for the IqSO. In the present work,
statistical-mechanical models for the prediction of molar entropy,
enthalpy, Gibbs free energy and isobaric heat capacity are obtained
using the RSO. The RSO can be obtained by subjecting the ISPEF
through the transformation r → r–r0, where r0 is a real constant.
Using this transformation on Eq. 1 of Ref. [42], the RSO is proposed
via the following equation

V r( ) � De − V1 + V2 sinh α r − r0( )
cos h2α r − r0( ) , (1)

where V1,V2, and α are the potential parameters. The potential Eq. 1
is an oscillator if it satisfies the following constraints (Varshni
conditions)

V r → ∞( ) –V r ≈ re( ) � De, (2)
f1 � 0, (3)
f2 � μ 2πcωe( )2, (4)

αe � −6 B
2
e

ωe
1 + re f3

3f2
( ), (5)

where Be = ħ/(4πcμre2), ħ = h/2π, h being the Planck constant, c
represents the speed of light, and fj (j = 1, 2, 3, . . .) is the jth
derivative of V (r) at r = re. Substituting Eq. 1 into Eqs 2–4 yields

V1 � De 1 − sin h2α re − r0( ){ }, (6)
V2 � 2De sinh α re − r0( ), (7)

α � π cωe(2 μ
De
)1

2

. (8)

To obtain the parameter r0, we first note that f2 = 2α2De, and
f3 = – 6α3Detanhα (re–r0). Inserting these expressions into Eq. 5 gives

r0 � re + 1
2α

ln
1 − 1

αre
− ωeαe

6 αB2ere

1 + 1
αre

+ ωeαe
6 αB2ere

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣. (9)

3 Pure vibrational state energy levels for
the RSO

In this section, the analytical equation for bound state
vibrational energy levels is derived using the Nikiforov-Uvarov
(NU) solution approach. To ensure continuity of the concept, a
brief outline of the NU method is outlined.
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3.1 An overview of the NU solution method

The NU solution approach is one of the most widely used
methods of solving a second order differential equation.With the aid
of a convenient transformation, the Schrödinger equation can be
converted to a hypergeometric-type differential equation of the
form [11].

R] J
″ s( ) + ~τ s( )

σ s( )R] J
′ s( ) + ~σ s( )

σ2 s( )R] J s( ) � 0, (10)

where σ (s), ~σ (s) are polynomials at most of second-degree, ~τ (s) is a
first-degree polynomial and R]J (s) is a function of the
hypergeometric-type. Writing R]J (s) = ψ]J(s)y]J (s), by suitably
choosing the function ψ]J (s), expression Eq. 10 assumes the
following form

σ s( )y] J″ s( ) + τ s( )y] J′ s( ) + λy] J s( ) � 0, (11)
where

τ s( ) � ~τ s( ) + 2 π s( ), (12)
π(s) is a polynomial of degree at most one, it is given by [11].

π s( ) � σ′ − ~τ

2
±

���������������������
σ′ − ~τ

2
( )2

− ~σ s( ) + k σ s( )

√√
, (13)

k is obtained by requiring that the quantity under the square root is a
perfect square of a first degree polynomial. λ is deduced via the
expression

λ � k + π′ s( ). (14)
Successively differentiating Eq. 11 ] times (] = 0, 1, 2, . . .) leads

to quantum condition given as

λ] � −] τ′ s( ) − 1
2
] ] − 1( )σ″ s( ). (15)

energy eigenvalues are obtained by equating the expressions Eqs
14, 15.

3.2 Solution of schrödinger equation with
the RSO by NU method

The radial Schrödinger equation in the presence of any potential
field V (r) is given as

−Z
2

2μ
d2

d r2
+ V r( ) + J J + 1( )

2μr2
{ }R] J r( ) � E] JR] J r( ), (16)

where ], and J are the vibrational and rotational quantum numbers,
respectively. E]J is the ro-vibrational energy eigenvalue of the
quantum state ]J, R]J is the corresponding radial wave function.
For non-zero values of J, only approximate analytical solutions of
Eq. 16 are possible with the RSO. Nevertheless, exact analytical
solutions are feasible if J = 0, the solutions are referred to as the pure
vibrational state solutions. Thus, substituting Eq. 1 into Eq. 16 and
letting J = 0 gives

d2R]

d r2
+ 2μ

-2
E] −De + V1 + V2 sinh α r − r0( )

cos h2α r − r0( ){ }R] � 0, (17)

where E]0 → E], R]0 → R]. The substitution s = sinh α(r–r0)
transforms Eq. 17 to

R″
] s( ) + s

1 + s2
R′
] s( ) + −γ] s2 + γ0 s − γ1

1 + s2( )2 R] s( ) � 0, (18)

where, for compactness the following notations have been used;
γ] � − 2 μ

α2 -2
(E] −De), γ0 � 2 μV2

α2 -2
, γ1 � γ] − 2 μV1

α2 -2
. Comparing Eqs 10,

18 yields ~τ � s, σ = 1 + s2, ~σ � −γ] s2 + γ0 s − γ1. Substituting these
expressions in Eq. 13 gives

π s( ) � 1
2
s ±

������������������������
k + γ] +

1
4

( )s2 − γ0 s + k + γ1

√
. (19)

Setting the discriminant of the expression under square root to
zero gives

γ20 � 4 k + γ] +
1
4

( ) k + γ1( ). (20)

Eq. 20 leads to

k � −1
2

γ] + γ1 +
1
4

( ) ±
1
2

����������������
γ] − γ1 +

1
4

( )2

+ γ20

√
. (21)

Thus, k is a two-valued parameter viz: k = k obtained by
choosing the negative square root, and k = k+ if the positive
square root is chosen. Using Eq. 20 to eliminate γ0 in Eq. 19,
with some algebraic simplifications, one obtains

π s( ) � 1
2
s ±

��������
k + γ] +

1
4

√
s ±

�����
k + γ1

√( ). (22)

It is evident that for each value of k, π (s) has four possible
expressions: π--, π-+, π+-, and π++ obtained from all possible
combinations of the ± signs in Eq. 22. The next task is to deduce

TABLE 1 Molecular and potential parameters of the diatomic molecules analyzed in this work.

Molecule Molecular state Molecular parameter Potential parameter

De (eV) re (Å) ωe (cm−1) αe (cm−1) α (Å−1) r0 (Å)

BCl X 1Σ+ 5.3429 [54] 1.7159 [55] 839.12 [55] 0.006463 [54] 1.4244 0.8743

BrF X 1Σ+ 2.50 [56] 1.7532 [56] 669.9011 [57] 0.0025953 [57] 2.2481 1.2292

BrCl X 1Σ+ a2.2625 [58] 2.1361704 [58] 444.276 [55] 0.0007697 [55] 1.9176 1.5499

a2.2625 eV = 18,248 cm−1.
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TABLE 2 Potential energies (cm) and bound state pure vibrational state energies (cm−1) as a function of internuclear separation (Å) for the BCl (X 1Σ+) molecule.

] r [54] V (cm−1) E] (cm−1) ] r [54] V (cm−1) E] (cm−1)

rmin rmax Vmin Vmax [54] Eq. 28 rmin rmax Vmin Vmax [54] Eq. 28

0 1.6472 1.7872 447.033 407.866 416.825 418.228 21 1.3949 2.4088 12,582.599 17,676.846 15,915.836 16,152.605

1 1.6038 1.8473 1,249.641 1,286.214 1,242.629 1,249.181 22 1.3901 2.4322 13,013.619 18,362.203 16,565.828 16,811.994

2 1.5760 1.8920 2006.183 2,184.574 2058.795 2071.965 23 1.3855 2.4556 13,434.562 19,036.136 17,208.451 17,463.213

3 1.5546 1.9303 2,728.393 3,085.652 2,865.485 2,886.579 24 1.3810 2.4789 13,853.843 19,695.385 17,843.762 18,106.263

4 1.5369 1.9650 3,422.744 3,986.378 3,662.852 3,693.023 25 1.3767 2.5021 14,261.431 20,339.727 18,471.813 18,741.143

5 1.5217 1.9972 4,092.038 4,880.114 4,451.046 4,491.297 26 1.3726 2.5253 14,656.395 20,971.713 19,092.652 19,367.853

6 1.5084 2.0278 4,734.848 5,770.831 5,230.211 5,281.402 27 1.3687 2.5485 15,037.844 21,591.101 19,706.323 19,986.393

7 1.4964 2.0570 5,361.872 6,650.488 6,000.485 6,063.337 28 1.3648 2.5717 15,424.912 22,197.705 20,312.868 20,596.764

8 1.4855 2.0852 5,970.984 7,521.222 6,762.002 6,837.102 29 1.3611 2.5950 15,797.334 22,793.920 20,912.324 21,198.965

9 1.4756 2.1125 6,557.497 8,378.889 7,514.889 7,602.698 30 1.3575 2.6182 16,164.561 23,374.539 21,504.723 21,792.996

10 1.4664 2.1392 7,131.421 9,227.458 8,259.269 8,360.124 31 1.3541 2.6415 16,515.803 23,944.519 22,090.097 22,378.857

11 1.4578 2.1653 7,693.449 10,062.716 8,995.259 9,109.380 32 1.3507 2.6649 16,871.340 24,503.679 22,668.473 22,956.549

12 1.4498 2.1909 8,238.706 10,884.497 9,722.971 9,850.466 33 1.3475 2.6883 17,209.891 25,049.567 23,239.874 23,526.071

13 1.4423 2.2161 8,769.755 11,693.326 10,442.521 10,583.382 34 1.3443 2.7118 17,552.253 25,584.485 23,804.320 24,087.423

14 1.4353 2.2410 9,282.926 12,490.225 11,153.982 11,308.129 35 1.3412 2.7354 17,887.553 26,108.347 24,361.829 24,640.606

15 1.4286 2.2656 9,790.097 13,273.396 11,857.480 12,024.706 36 1.3383 2.7591 18,204.462 26,621.090 24,912.416 25,185.619

16 1.4223 2.2899 10,281.373 14,041.377 12,553.096 12,733.114 37 1.3354 2.7829 18,524.505 27,122.679 25,456.090 25,722.462

17 1.4163 2.3140 10,762.312 14,796.114 13,240.918 13,433.351 38 1.3326 2.8068 18,836.488 27,613.100 25,992.862 26,251.135

18 1.4106 2.3379 11,231.077 15,536.586 13,921.028 14,125.419 39 1.3299 2.8309 19,140.096 28,094.330 26,522.735 26,771.639

19 1.4051 2.3617 11,694.426 16,265.009 14,593.503 14,809.318 40 1.3272 2.8551 19,446.421 28,564.318 27,045.713 27,283.973

20 1.3999 2.3853 12,142.518 16,977.613 15,258.416 15,485.046 . . . . . . . . . . . . . . . . . . . . .
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equations for λ and λ] whose results are required to derive
vibrational energy levels of the RSO. To satisfy the restriction τ′
(s) < 0 of the NU method, we choose from Eqs 21, 22

k+ � −1
2

γ] + γ1 +
1
4

( ) + 1
2

����������������
γ] − γ1 +

1
4

( )2

+ γ20

√
, (23)

π−− s( ) � 1
2
−

���������
k− + γ] +

1
4

√( )s + ������
k− + γ1

√
. (24)

with the help of expressions Eqs 12, 23, 24, gives

~τ s( ) � 2 − 2

���������
k− + γ] +

1
4

√( )s + 2
������
k− + γ1

√
. (25)

with the help of relationships Eqs 23–25, and recalling that ~τ(s) �
s, σ(s) � 1 + s2, Eqs 14, 15 gives

λ] � −] ] + 1( ) + 2 ]

���������������������������������
1
2

γ] − γ1 +
1
4

( ) + 1
2

����������������
γ] − γ1 +

1
4

( )2

+ γ20

√√√
,

(26)

λ � 3
8
− 1
2

γ] + γ1( ) + 1
2

����������������
γ] − γ1 +

1
4

( )2

+ γ20

√
−

���������������������������������
1
2

γ] − γ1 +
1
4

( ) + 1
2

����������������
γ] − γ1 +

1
4

( )2

+ γ20

√√√
. (27)

By equating expressions Eqs 26, 27, and eliminating γ], γ0, γ1 in
the resulting equation, the vibrational energy levels for the RSO is
obtained as

E] � De

− α2-2

2μ
] + 1

2
−

������������������������������
1
8
+ μV1

α2 -2
+

�������������������
1
8
+ μV1

α2 -2
( )2

+ μV2

α2 -2
( )2

√√√⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭

2

.

(28)
The energy spectrum defined by Eq. 28 increases with increasing

], the upper bound vibrational quantum number, ]max at which the
eigen energies ceases to increase is given by E′

](]max) � 0, where
prime denotes derivative with respect to ν. Inserting Eq. 28 into this
equation, we find

TABLE 3 Potential energies (cm) and bound state pure vibrational state
energies (cm−1) as a function of internuclear separation (Å) for the BrF (X 1Σ+)
molecule.

] r [59] V (cm−1) Eν (cm−1)

rmin rmax Vmin Vmax RKR [59] Eq. 28

0 1.7046 1.8195 262.9 394.9 334.3 333.1

1 1.6682 1.8683 856.5 1,081.5 996.5 991.9

2 1.6448 1.9043 1,448.0 1735.2 1,651.1 1,639.6

3 1.6266 1.9352 2033.2 2,366.8 2,297.6 2,276.1

4 1.6113 1.9634 2,615.3 2,983.7 2,935.1 2,901.5

5 1.5987 1.9889 3,159.4 3,564.8 3,569.0 3,515.7

6 1.5867 2.0141 3,733.8 4,153.1 4,190.7 4,118.9

7 1.5759 2.0383 4,298.9 4,725.4 4,801.0 4,710.9

8 1.5666 2.0609 4,822.8 5,262.2 5,406.7 5,291.8

9 1.5597 2.0804 5,234.3 5,724.7 6,019.8 5,861.5

10 1.5473 2.1089 6,022.9 6,395.5 6,596.8 6,420.2

11 1.5433 2.1245 6,290.9 6,758.7 7,178.8 6,967.7

12 1.5340 2.1492 6,940.0 7,325.9 7,751.0 7,504.0

13 1.5283 2.1684 7,355.8 7,758.9 8,316.9 8,029.3

FIGURE 1
Modeling of reparameterized Scarf II oscillator to (A)
multireference configuration interaction curve for the BCl (X 1Σ+)
molecule. (B) Rydberg-Klein-Rees internuclear potential energy curve
for the BrF (X 1Σ+).

FIGURE 2
Variation of bound state energy eigenvalues versus vibrational
quantum number for the ground state BCl, BrF, and BrCl molecules.
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] max � −1
2
+

������������������������������
1
8
+ μV1

α2 -2
+

�������������������
1
8
+ μV1

α2 -2
( )2

+ μV2

α2 -2
( )2

√√√
. (29)

Therefore, ] can assume values 0, 1, 2, . . ., []max]. Here, the
notation []max] means the largest integer less than ]max for non-
integer values of ]max.

4 Some statistical-mechanical models
for the RSO

The partition function is the master key connecting the
microscopic model of a system with its macroscopic property.
Other thermodynamic quantities can easily be expressed in terms
of the partition function. Therefore, explicit expression of the
partition function of a gas system is vital in this study. Statistical-
mechanical models considered in this paper include molar entropy,
enthalpy, Gibbs free energy, and isobaric specific heat capacity.

4.1 The canonical partition function

The canonical partition function of a gaseousmolecule is composed
of the translation (Qtra), vibrational (Qvib), and rotational (Qrot) [49]
components. The canonical partition function is given by the productQ

(T) = QtraQvibQrot, T being the temperature of the enclosed gas. The
vibrational partition function depends on the vibrational energy levels
of the diatomic systemwhich in turn depends on the diatomic oscillator
used to describe the internal vibration of the gas molecules. The
vibrational partition function is given by [50].

Qνib T( ) � ∑
]
g] exp −βE]( ). (30)

where g] is the factor of the degeneration of the spectrum, β =
(kBT)

−1, kB is the Boltzmann constant. Given a non-degenerate
system of gas molecules, g] = 1. Eqs 28–30 leads to

Qνib T( ) � exp −βDe( )∑]max

]�0
Ω ]( ), (31)

where

Ω ]( ) � exp
α2β -2

2μ
] − ] max( )2{ }, (32)

for a finite series with an upper bound ]max, the Poisson series
formula can be written [51].

∑]max

]�0
Ω ]( ) � 1

2
Ω 0( ) − Ω ] max + 1( ){ } + ∑j�+∞

j�−∞

× ∫]max+1

0

Ω y( ) exp −i 2 π j y( )( )dy, (33)

TABLE 4 Computed data on molar entropy (J mol−1 K−1), reduced enthalpy (kJ mol−1), reduced Gibbs free energy, and isobaric specific heat capacity for the BCl (X
1Σ+) molecule. Np = 60.

T (K) [60] Entropy Enthalpy – Gibbs free energy Isobaric specific heat
capacity

SNIST [60] S Eq. 40 HNIST [60] Hred Eq. 45 GNIST [60] Gred Eq. 48 CpNIST [60] Cp Eq. 51

300 213.441 212.994 0.059 0.062 213.245 212.786 31.693 33.746

350 218.394 218.225 1.666 1.760 213.635 213.198 32.572 34.132

400 222.794 222.805 3.314 3.475 214.510 214.119 33.335 34.462

450 226.759 226.881 4.997 5.205 215.654 215.314 33.976 34.748

500 230.367 230.555 6.710 6.949 216.948 216.658 34.510 34.997

. . . . . . . . . . . . . . . . . . . . . . . . . . .

2,800 294.016 293.471 92.756 91.729 260.889 260.711 38.385 37.613

2,900 295.364 294.792 96.597 95.492 262.055 261.863 38.433 37.648

3,000 296.668 296.069 100.443 99.259 263.187 262.982 38.480 37.683

3,100 297.930 297.305 104.293 103.029 264.287 264.070 38.527 37.716

3,200 299.154 298.503 108.148 106.802 265.358 265.127 38.572 37.750

. . . . . . . . . . . . . . . . . . . . . . . . . . .

5,600 321.001 319.837 201.954 198.394 284.938 284.410 39.581 38.595

5,700 321.702 320.521 205.914 202.259 285.577 285.037 39.621 38.634

5,800 322.391 321.194 209.878 206.128 286.205 285.655 39.662 38.673

5,900 323.070 321.856 213.846 210.001 286.824 286.263 39.702 38.712

6,000 323.737 322.508 217.818 213.879 287.434 286.862 39.742 38.751
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Inserting expression Eq. 32 in Eq. 33 gives

∑]max

]�0
Ω ]( ) � 1

2
exp

α2β -2

2μ
( ) − exp

α2β ] 2
max -

2

2μ
( ){ }

+ ∑j�+∞
j�−∞

exp
2π2μj2

α2β -2
− i2π] maxj( ) ∫]max+1

0

exp
α2β -2

2μ
y − ] max − i2πμj

α2β -2
( )2{ }dy . (34)

by evaluating the definite integral, Eq. 34 yields

∑]max

]�0
Ω ]( ) � 1

2
exp

α2β-2

2μ
( ) − exp

α2β] 2
max -

2

2μ
( ){ }

+ ∑j�+∞
j�−∞

1
α-

���
πμ

2β

√
exp

2π2μ] 2
max j

2

α2β -2
− i2π] maxj( )

erfi α-

��
β

2μ

√
− i2πμj

αβ-

��
β

2μ

√⎛⎝ ⎞⎠ + erfi α-] max

��
β

2μ

√
+ i2πμj

αβ-

��
β

2μ

√⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭
. (35)

where erfi(x) � 2�π√ ∫x
0
exp(t2)d t is the imaginary error function of

parameter x. Eq. 35 contains quantum correction terms, these are
terms with j ≠ 0, contributions from these terms are significant if T is
small. However, if T is large, the contributions from the quantum
correction terms are relatively small. The lowest order
approximation has previously been used to obtain approximate
expression for the high temperature vibrational partition function
of diatomic molecule oscillators [52, 53]. In the lowest order
approximation, only contribution from the term with j = 0 is

considered, the contributions from quantum correction terms are
ignored. Due to the temperature range of the diatomic systems
considered in this work, with the help of the lowest order
approximation model, expression Eq. 35 is reduced to

∑]max

]�0
Ω ]( ) � 1

2
exp

α2β-2

2μ
( ) − exp

α2β] 2
max -

2

2μ
( ){ }

+ 1
α-

���
πμ

2β

√
erfi α-

��
β

2μ

√⎛⎝ ⎞⎠ + erfi α-] max

��
β

2μ

√⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭.

(36)
If the molecules of a diatomic gas are visualized as rigid rotors,

neglecting molecular interactions, the translational and rotational
partition functions are given as [33, 47].

Qtra T( ) � 2 πm kB T
h2

( ) 3
2
kB T
p

, (37)

Qrot T( ) � T

σ Θrot
1 + 1

3
Θrot

T
+ 1
15

Θr

T
( )2

+ 4
315

Θrot

T
( )3{ }, (38)

where σ is assigned the value 1, 2 for heteronuclear and homonuclear
diatomic molecules, respectively. Θrot = ħ2/(2μre

2kB) is the
characteristic temperature, m is the mass of the molecules which
make up gas, p is the gas pressure.

TABLE 5 Computed data on molar entropy (J mol−1 K−1), reduced enthalpy (kJ mol−1), reduced Gibbs free energy, and isobaric specific heat capacity for the BrF (X
1Σ+) molecule. Np = 60.

T(K) [60] Entropy Enthalpy – Gibbs free energy Isobaric specific heat
capacity

SNIST [60] S Eq. 40 HNIST [60] Hred Eq. 45 GNIST [60] Gred Eq. 48 CpNIST [60] Cp Eq. 51

300 229.171 228.945 0.061 0.064 228.968 228.733 32.991 34.346

350 234.324 234.269 1.733 1.791 229.373 229.153 33.852 34.730

400 238.891 238.928 3.443 3.536 230.283 230.089 34.537 35.054

450 242.991 243.073 5.184 5.295 231.471 231.306 35.080 35.329

500 246.710 246.808 6.949 7.068 232.812 232.673 35.513 35.566

. . . . . . . . . . . . . . . . . . . . . . . . . . .

2,800 311.252 310.729 94.040 93.312 277.666 277.403 38.828 38.638

2,900 312.615 312.089 97.925 97.186 278.848 278.576 38.887 38.725

3,000 313.934 313.406 101.817 101.071 279.995 279.715 38.946 38.810

3,100 315.212 314.683 105.714 104.966 281.111 280.823 39.003 38.891

3,200 316.452 315.923 109.618 108.872 282.196 281.900 39.061 38.967

. . . . . . . . . . . . . . . . . . . . . . . . . . .

5,600 338.650 338.182 204.967 204.423 302.049 301.678 40.385 37.775

5,700 339.365 338.886 209.008 208.401 302.697 302.324 40.439 37.606

5,800 340.069 339.576 213.055 212.372 303.336 302.961 40.494 37.432

5,900 340.762 340.254 217.107 216.336 303.964 303.587 40.548 37.252

6,000 341.444 340.919 221.164 220.293 304.583 304.204 40.602 37.068
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4.2 Molar entropy model for the RSO

The molar entropy for the system is evaluated from the
expression [48].

S � R lnQ + RT
z lnQ
zT

( )
V

, (39)

where R = NAkB is the molar gas constant, NA is the Avogadro
number, V is the volume of gas enclosed. Substituting Q =
QtraQvibQrot into the second term in Eq. 39 gives

S � R lnQ + Ξvib + 5
2

( ) + R
σ Qrot

T

Θrot
− 1
15

Θrot

T
− 8
315

Θ3
rot

T3
( ), (40)

where, for brevity we have employed the representation

Ξvib � β

2Qvib

De − α2-2

2μ
− 1
β

( )exp
α2β-2

2μ
( )− De − α2] 2

max-
2

2μ
+ ]max

β
( )exp

α2β] 2
max-

2

2μ
( )

+]max

α-

����
2πμ
β

√
De + 1

2β
( ) erfi α-

��
β

2μ

√⎛⎝ ⎞⎠+ erfi α]max-

��
β

2μ

√⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭ exp −βDe( ).
(41)

4.3 Molar enthalpy model for the RSO

The molar enthalpy of the system is defined by the
equation [48].

H � RT2 z lnQ
zT

( )
V

+ RTV
z lnQ
zV

( )
T

. (42)

with the aid of the substitution Q = QtraQvibQrot, expression Eq. 42
and the relations Eqs 36–38 gives

H � RT Ξvib + 5
2
+ 1
σ Qrot

T

Θrot
− 1
15

Θrot

T
− 8
315

Θ3
rot

T3
( ){ }. (43)

For the purpose of comparing theoretical results to experimental
data, the reducedmolar enthalpy is considered, it is given as [46–48].

Hred � H –H298.15
′, (44)

where H298.15 is the molar enthalpy computed at p = 1 bar, and T =
298.15 K. Therefore, putting Eq. 43 in Eq. 44, we have

Hred � RT Ξvib + 5
2
+ 1
σ Qrot

T

Θrot
− 1
15

Θrot

T
− 8
315

Θ3
rot

T3
( ){ }

−H298.15
′. (45)

4.4 Molar Gibbs free energy model for
the RSO

The molar Gibbs free energy of the system can be deduced from
the expression [48].

TABLE 6 Computed data on molar entropy (J mol−1 K−1), reduced enthalpy (kJ mol−1), reduced Gibbs free energy, and isobaric specific heat capacity for the BrCl (X
1Σ+) molecule. Np = 60.

T(K) [60] Entropy Enthalpy – Gibbs free energy Isobaric specific heat
capacity

SNIST [60] S Eq. 40 HNIST [60] Hred Eq. 45 GNIST [60] Gred Eq. 48 CpNIST [60] Cp Eq. 51

300 240.218 240.256 0.065 0.065 240.002 240.038 35.015 35.302

350 245.662 245.724 1.831 1.839 240.430 240.469 35.604 35.638

400 250.445 250.501 3.622 3.628 241.389 241.431 36.029 35.910

450 254.708 254.744 5.432 5.429 242.637 242.679 36.344 36.134

500 258.550 258.561 7.256 7.241 244.039 244.080 36.586 36.322

. . . . . . . . . . . . . . . . . . . . . . . . . . .

2,800 323.446 323.235 94.448 94.365 289.714 289.534 38.549 38.948

2,900 324.799 324.608 98.305 98.277 290.901 290.719 38.593 39.027

3,000 326.108 325.938 102.166 102.199 292.053 291.871 38.637 39.099

3,100 327.376 327.227 106.032 106.132 293.172 292.991 38.681 39.162

3,200 328.605 328.479 109.903 110.076 294.260 294.081 38.724 39.215

. . . . . . . . . . . . . . . . . . . . . . . . . . .

5,600 350.536 350.785 204.072 205.732 314.095 314.047 39.745 36.704

5,700 351.240 351.481 208.049 209.665 314.740 314.698 39.788 36.488

5,800 351.932 352.163 212.030 213.587 315.375 315.338 39.830 36.270

5,900 352.614 352.832 216.015 217.499 316.001 315.968 39.872 36.049

6,000 353.284 353.488 220.004 221.401 316.617 316.588 39.914 35.826
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FIGURE 3
Variation of (A)molar entropy (J mol−1 K−1), (B) reduced enthalpy (kJ mol−1), (C) reduced Gibbs free energy (J mol−1 K−1), and (D) isobaric specific heat
capacity as a function of temperature for the ground state BCl (X 1Σ+) molecule.

FIGURE 4
Variation of (A)molar entropy (J mol−1 K−1), (B) reduced enthalpy (kJ mol−1), (C) reducedGibbs free energy (J mol−1 K−1), and (D) isobaric specific heat
capacity as a function of temperature for the ground state BrF (X 1Σ+) molecule.
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G � RTV
z lnQ
zV

( )
T

− RT lnQ. (46)

Inserting the equation of canonical partition function in to the
first term of Eq. 46, we obtain the molar Gibbs free energy in
compact form as

G � –RT lnQ. (47)
The reduced or scaled Gibbs free energy is often required for

comparison with experimental data, it is given as Gred =
(G–H′298.15)/T. Inserting Eq. 47 into this equation yields

Gred � – RlnQ +H298.15
′ /T( ). (48)

4.5 Molar specific heat capacity model for
the RSO

Molar specific heat capacity at constant pressure can be deduced
from the Eq. 33.

Cp � zH
zT

. (49)

Substituting Eq. 43 in Eq. 49 and using expressions Eqs 36–38 to
simplify the resulting equation, we obtained

Cp � R
5
2
+ 2Ξvib − Ξ2

vib + Γvib( ) + 2R
σ Qrot

T

Θrot
+ 4
315

Θ2
rot

T2
( )

− R
σ Qrot

1
15

+ T2

Θ2
rot

+ 16
315

Θrot

T
( )2

, (50)

where the parameter Γvib is given by

Γvib � 1
2Qvib

βDe − α2-2

2μ
−2( )2

− α2-2

2μ
− 1
2

⎡⎣ ⎤⎦exp α2β-2

2μ
( )

− βDe − α2β] 2
max-

2

2μ
+]max −1( )2

+ α2β] 2
max-

2

2μ
− ε2 + 3

2
]max −1⎡⎣ ⎤⎦exp α2β] 2

max-
2

2μ
( )

+]max

α-

����
2πμ
β

√
De + 1

2β
( ) βDe − 1

2
( )2

− 1
2

[ ] erfi α-

��
β

2μ

√⎛⎝ ⎞⎠+ erfi α]max-

��
β

2μ

√⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
exp −βDe( ).

(51)

5 Results and discussion

In this section, the analytical equations developed for the
reparameterized Scarf II oscillator are analyzed on some selected
diatomic molecules. The experimental values of the relevant
molecular constants De, re, ωe, αe of the ground state BCl, BrF,
and BrCl molecules are taken from Refs. [54–59]. The molecular
constants and computed potential parameters of the molecules are
shown in Table 1.

FIGURE 5
Variation of (A)molar entropy (J mol−1 K−1), (B) reduced enthalpy (kJ mol−1), (C) reduced Gibbs free energy (J mol−1 K−1), and (D) isobaric specific heat
capacity as a function of temperature for the ground state BrCl (X 1Σ+) molecule.
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With the aid of Eq. 1, potential energy data, V (rmin) = Vmin, and
V (rmax) = Vmax are obtained. Due to unavailability of literature data
on BrCl molecule, only results for BCl and BrF molecules are
obtained. Tables 2, 3 summarizes results of numerical
computations, and available literature data on vibrational
energies of the molecules. The literature data were those obtained
by multireference configuration interaction (MRCI), and Rydberg-
Klein-Rees (RKR) method [54, 59].

Figure 1 shows graphical fitting of the RSO to (A) MRCI data
points of BCl molecule, and (B) RKR data points of BrF molecule.
The plots reveal that the RSO could model the internuclear
potential energy curves of the BCl and BrF molecules.
However, graphical plots only give an idea of the agreement
between predicted data and experimental results. The average
absolute deviation from experimental data (σave) is one of the
most widely used goodness-of-fit indicators to evaluate the
accuracy of an empirical model. Previously, the average
absolute deviation has been used to substantiate the accuracy
of proposed model Eqs 38, 41, 43, 48. The average absolute
deviation can be written as

σave � 100
Np

∑ X − Y
Z

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣. (52)

where Np is the number of experimental data points, (X, Y, Z) ≡ (V,
E, S, H, G, Cp). Average absolute deviations less than 1% shows good
agreement between predicted and observed data, the smaller the σave,
better the model.

Using Eq. 52 and the data in Tables 2, 3, average absolute
deviations of 5.3976% and 1.6790% are obtained from the
experimental data of the BCl and BrF molecules, respectively.
The results show that data predicted by the RSO are relatively
high for the BCl molecule. To within 2% error limit of the RKR data,
the RSO can approximately reproduced the internuclear potential
energy curve of the ground state BrF molecule.

Figure 2 shows the variation of energy levels Eq. 28 of the
molecules against vibrational quantum number, ]. The plot reveal
that as ] is gradually increased from zero, the energy of the molecules
also increases. The upper bound vibrational quantum numbers
obtained for the BCl, BrF and BrCl molecules are 102, 60 and 82,
respectively. As ] is further increased beyond ]max, the bound state
energy of the molecules begins to decrease, leading to degenerate
energy levels of the molecules. Eq. 28 is also used to generate
numerical data on bound state pure vibrational energies of the
molecules. As there are no available literature data on energies of
BrCl molecule to allow comparison, only the results for BCl and BrF
molecules are displayed in Tables 2, 3. Using Eq. 52 and the energy
data in Tables 2, 3, average absolute deviation obtained are 1.1949%
for BCl molecule, and 1.8353% for BrF molecule. Thus, it can be seen
that the energy values predicted by expression Eq. 28 are in good
agreement with existing experimental data on the diatomic molecules.

To authenticate the applicability of the statistical-mechanical
models proposed in this study, Eq. 43 is used to compute the value of
H′298.15 at T = 298.15 K, p = 0.1 MPa to yield; 14.502 kJmol−1 for BCl,
13.626 kJmol−1 for BrF and 12.533 kJmol−1 for BrCl molecules.
Using these results and the data in Table 1, the expressions for
molar entropy Eq. 40, reduced enthalpy Eq. 45, reduced Gibbs free
energy Eq. 48, and constant pressure specific heat capacity Eq. 51 are
used to obtain numerical data for the diatomic molecules. The

computations are carried out at p = 0.1 MPa and temperature in the
range 300 K–6,000 K. The results of computations are shown in
Tables 4–6. Also included in the tables are literature data on molar
entropy (SNIST), reduced molar enthalpy (HNIST), reduced molar
Gibbs free energy (GNIST) and constant pressure specific heat
capacity (CpNIST). The data are those reported in the National
Institute of Standards and Technology (NIST) database [60].
Figures 2–5 represent the temperature variation of the thermal
functions.

Choosing X ≡ Z ≡ SNIST to represent experimental data on molar
entropy and setting Y ≡ S, average absolute deviations obtained for the
BCl, BrF and BrCl molecules are 0.2011%, 0.1224% and 0.5323%,
respectively. Thus, it is obvious that within error limit of 1% of theNIST
data, entropy equation proposed in this work can accurately predict the
experimental data on molar entropy of the diatomic molecules.

To confirm the suitability of expression Eq. 45 to predict molar
entropy of the diatomic molecules, we let X ≡ Y ≡ HNIST to denote
the experimental data on reducedmolar entropy. Choosing Y ≡Hred.
The average absolute deviation deduced for the diatomic molecules
are 1.5346% for BCl, 0.688% for BrF and 0.5323% for BrCl
molecules. The results reveal that statistical-mechanical model
proposed for the RSO can accurately predict the NIST data on
molar enthalpy of the examined molecules.

To show the relevance of expression Eq. 51 to model
experimental data on molar Gibbs free energy, average absolute
deviation is computed for each of the molecules. By appropriately
choosing the parameters in Eq. 52 with respect to experimental data,
such that X ≡ Y ≡ GNIST, and Z ≡ Gred, average absolute deviations
obtained for the BCl, BrF and BrCl diatomic molecules are 0.1033%,
0.0903%, and 0.0367%, respectively. The results show that on a scale
of 1% of the NIST data, Gibbs free energy expression proposed by
the RSO is a near perfect model to accurately predict experimental
results of the examined diatomic molecules.

The analytical expression of constant pressure specific heat
capacity is also analyzed for the diatomic molecules. Average
absolute deviation deduced for the BCl, BrF, and BrCl molecules
are 2.1565%, 1.9731%, and 1.9805%, respectively. The results are in
good agreement with NIST data particularly in the low to moderate
temperature regions. However, in the high temperature regime, the
predicted results are relatively higher than observed data. The
discrepancy arises as a result of rigid-rotor approximation of the
diatomic molecules and also, the quantum correction terms
excluded in the expression of vibrational partition function,
which by extension are also excluded in all the statistical-
mechanical models of the system.

6 Conclusion

In this paper, conditions to be satisfied by a diatomic molecule
potential are used to construct the reparameterized Scarf II oscillator
(RSO), suitable for application to diatomic molecules. Using the
Nikiforov-Uvarov method to solve the radial Schrödinger equation
for the RSO, analytical expression of bound state pure vibrational
energy is derived for the system. With the aid of the formula for
energy eigenvalues, analytical equations representing canonical
partition function and other relevant statistical-mechanical
models are obtained, including molar entropy, enthalpy, Gibbs
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free energy and isobaric specific heat capacity. The obtained
equations were used to study thermodynamic properties of three
diatomic molecules viz BCl, BrF, and BrCl. Average absolute
deviations of 1.5364%, 0.688%, and 0.5323%, respectively are
obtained using the expression of reduced molar enthalpy. The
equation of reduced Gibbs free energy yields average absolute
deviations of 0.1033%, 0.0903%, and 0.0367% for the diatomic
molecules. The results are in excellent agreement with existing
literature data on the diatomic molecules. The developed
statistical-mechanical models could be useful in scientific and
engineering researches involving thermochemical processes.
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