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Zn dopants to Cu sites in high-Tc cuprates strongly suppress superconductivity
and act as impurities with a strong quasiparticle scattering resonance. Using the
scanning tunneling microscope, we investigate the electronic structure in the
atomic scale around Zn impurities in Bi2Sr2Ca(Cu1-xZnx)2O8+δ. The intense
scattering resonance of the Zn impurity in the CuO2 layer strongly affects the
measured local density of states of the BiO layer on the surface. The pattern of the
bound state induced by a Zn impurity consists of a central spot at the Bi atom just
above the Zn impurity and eight symmetric spots at the next nearest neighboring
(NNN) and the third nearest neighboring (3NN) sites of Bi atoms. When the Bi
atom above the NNN Cu atom is missing, the corresponding scattering spot is
absent simultaneously. Our results indicate that the measured impurity-induced
bound state pattern is strongly influenced by Bi atoms on the surface and
therefore supports the “filter” theoretical model of the nonlocal interlayer
tunneling effect from the CuO2 layer to the BiO layer on the surface. Our
research provides extra information about the impurity-induced bound state
by Zn impurities.
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Introduction

High-Tc cuprates have been the focus of investigation in condensed matter physics for
decades because of the potential application and underlying mechanism of unconventional
high-Tc superconductivity. The parent compound of cuprates is a Mott insulator, and
superconductivity is induced by the hole or electron doping [1]. The chemical doping is
usually carried out to the ‘charge-reservoir’ layers in cuprates, while the charge carriers are
transferred to the conducting and superconducting CuO2 planes. However, substituting Cu
atoms in the CuO2 plane usually breaks the superconductivity and lowers Tc; meanwhile, the
impurity bound state is induced at the substitution site [2–4]. This impurity effect provides
critical insights into the underlying physics of high-Tc superconductivity. For instance,
according to Anderson’s theorem [5], the non-magnetic impurity does not influence
superconductivity in an s-wave superconductor, however, it has a strong pair-breaking
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effect in a d-wave superconductor with a gap sign change [6–8]. As a
result, in a d-wave superconductor, Tc decreases rapidly with the
increase in nonmagnetic impurities following the well-known
Abrikosov-Gor’kov formula [9, 10]. This formula can apply to other
superconductors with a sign-change order parameter like the s± or the p
wave. Moreover, impurities in a d-wave superconductor can give rise to
the so-called gapless superconductivity [11] and the phase transition to
this state is proved to be a Lifshitz type of the 2.5 order [12, 13].

Among the various impurity substitutions into CuO2 planes, Zn
dopants have attracted much experimental and theoretical attention.
Experimentally, a dramatic decrease of Tc is observed in Zn-doped
cuprates, which is evidence of a d-wave gap if Zn dopants are
regarded as non-magnetic impurities [14, 15]. Doping Zn impurities
reduces the superfluid density [16, 17] and increases the residual
specific heat coefficient [18], which can be explained by the non-
superconducting regions induced by Zn dopants with the effective
size of the coherence length [16]. The scanning tunneling
microscopy/spectroscopy (STM/STS) experiments confirm the
local effect of Zn impurities within a few nanometers [3], and
the impurity-induced resonance behaves as a strong in-gap peak
of density of states (DOS) located at about −2 meV near the Fermi
energy. The hole doping level can influence the impurity resonance,
and the bound state peak disappears in the underdoped sample with
a larger gap [19, 20]. Zn dopants are usually regarded as
nonmagnetic impurities. However, the staggered
antiferromagnetic spin structure is observed near the Zn dopant
[21–25], which may be due to the exposure of the antiferromagnetic
background after the superconductivity is killed by the Zn
impurities. These fascinating experimental findings demonstrate
how Zn impurities locally disturb the surrounding electronic and
spin structures. There are also theoretical interpretations to describe
the scattering resonance pattern. It is calculated that impurity bound
states are located at the four nearest Cu sites to the Zn impurity, and
the complex interlayer tunneling effect makes the surface pattern on
the BiO layer different from that on the CuO2 layer [26, 27]. Based
on the so-called ‘filter’ model, tunneling from the STM tip into the
CuO2 layer requires tunneling through the insulating BiO surface,
effectively filtering the signal [26, 27]. The subsequently developed
BdG-Wannier approach [28] further improves the model, and the
theoretical result shows excellent agreement with the experiment.

Recently, the charge-reservoir layer has been argued to play an
essential role in the unconventional superconductivity in cuprates.
For example, the obtained gap feature on the exposed surface of the
charge-reservoir layer is different from that on the CuO2 plane [29,
30]. These experiment results provide another angle of view showing
that the charge-reservoir layer may influence the detected local
density of states (LDOS) on the surface.

Using STM/STS, we investigate the influence to the impurity-
bound-state by Bi vacancies on the surface near the Zn impurity on
the CuO2 plane in Bi2Sr2Ca(Cu1-xZnx)2O8+δ (Zn-Bi2212).A Bi
vacancy above the next nearest neighboring Cu atom near the Zn
impurity leads to the missing of the corresponding scattering
resonance spot at the Bi vacancy. This result indicates that the
measured impurity-induced bound state on the surface is
significantly affected by the Bi atom in the BiO layer. Our
observation provides a crucial clue for understanding the
interaction between different layers in cuprates and facilitates the
comprehension of the tunneling path in STM experiments.

Material and methods

Bi2Sr2Ca(Cu1-xZnx)2O8+δ single crystals with a nominal
doping level of x = 2% were grown by the self-flux method
[31]. Stoichiometric proportional powders of Bi2O3, SrCO3,
CuO, CaCO3, and ZnO compounds were used as starting
material for growth. The mixed powder was calcined at 860°C
for 48 h and ground to fine powder again. To ensure a complete
solid-state reaction, the grinding and calcining procedure were
repeated three times [32]. The obtained polycrystalline powder is a
pure single phase examined by the powder x-ray diffraction. The
polycrystalline powder was calcined at 1,020°C for 2 hours; it was
cooled to 940°C at a rate of 2°C/h, then 840°C at a rate of 1°C/h, to
500°C at a rate of 1°C/min, and finally it is cooled to the room
temperature with the furnace. The superconducting property was
characterized by the magnetization measurement, and the
transition is sharp, with a Tc of about 86 K. The STM/STS
measurements were carried out in a scanning tunneling
microscope (USM-1300, Unisoku Co., Ltd.). The Zn-Bi2212
samples were cleaved at room temperature in an ultra-high
vacuum with a base pressure of about 2 × 10−10 torr and then
transferred into the STM system working at 1.5 K. All the STM/
STS measurements used the electrochemically etched chromium
tips. The Cr tip was electrochemically etched by 3 mol/L
NaOH solution with the immersed end covered by a
polytetrafluoroethylene tube with a specific length [33]. The
differential conductance is measured using the lock-in method
with an AC modulation amplitude of 2 mV and frequency of
987.5 Hz. All the STM/STS data were taken at 1.5 K in this
work. The setpoint conditions are Vset = −100 mV and Iset =
100 pA for all measurements of topographies and
tunneling spectra.

Results and discussion

Figure 1A shows the crystal structure of the Bi2Sr2CaCu2O8+δ

(Bi2212) unit cell. STM measurement is carried out after cleavage,
and the exposed surface is universally the BiO layer because of the
weak interaction between adjacent BiO planes. Cu atoms reside
directly beneath the Bi atoms based on the crystal structure. When
Zn impurities are doped into Bi2212, they replace the Cu atoms, and
the situation of the BiO surface with an individual Zn impurity is
shown in Figure 1B. To facilitate the discussion, we label the Bi atom
positions as Bi0, Bi1, Bi2, and Bi3, representing the Bi atom directly
above the Zn impurity, the nearest neighboring (NN) Cu atom, the
next nearest neighboring (NNN) Cu atom, and the third nearest
neighboring (3NN) Cu atom, respectively. Figure 1C shows the
topography of the cleaved surface of Zn-Bi2212, and the atoms are Bi
atoms. There are supermodulations on the surface along the
diagonal direction. The Cu atoms are supposed to be just below
the Bi atoms on the surface, even considering the impact of
supermodulation [34]. Due to the supermodulation, the Zn
impurity is unclear on the topographic image. Following a
previous study [3], the bound-state pattern induced by a Zn
impurity can be recognized by the differential conductance
mapping at −2 mV, and the result is shown in Figure 1D. Here,
the differential conductance is proportional to the LDOS, and the
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brightest spot corresponds to the strongest in-gap density of states
at −2 mV. Compared to a previous study [3], the center of the
brightest spot is just above the Zn site. Eight bright spots also
surround the Zn impurity symmetrically: four second-brightest
spots near the NNN Cu atoms and four third-brightest spots
near the 3NN Cu atoms. In contrast, no prominent spot is near
the NN Cu atoms. Tunneling spectra are measured at Bi0 sites just
above the Zn impurity, and the Bi atoms above the Cu atoms
surrounding the Zn impurity; they are displayed in Figure 1E. The
spectrum measured far away from the Zn impurity is also shown in
the figure, and the superconducting coherence peaks are indicated
by arrows at about ±37 meV. The finite zero-bias differential
conductance is due to the impurity scattering in the d-wave
superconductor [35–37]. On the spectrum measured at the Zn
impurity, one can see the significant suppression of the
coherence peak. Meanwhile, there is a solid bound state peak at
Ω ≈ −1.7 mV, similar to the value from the previous report [3]. It
should be noted that Ω slightly changes from −5 to 0 meV for
different Zn impurities, and the peak amplitude also changes. This is
possibly due to the slight difference in impurity scattering potential
or the local superconducting gap [37, 38]. Nevertheless, a relatively
small value of Ω compared to the superconducting gap suggests a
strong scattering close to the unitary limit [7, 8]. The impurity
bound state is weakened at the NNN and the 3NN Cu sites, and the
peak is negligible at the NN Cu site. Meanwhile, the recovery of the
coherence peak energy and the peak amplitude only correlates to the
distance between the site and the Zn impurity.

The supermodulation structure in Bi2212 can spontaneously
introduce lattice defects, particularly Bi defects, and it is interesting
to investigate the influence on the Zn impurity by the missing Bi

atoms. One example in the presence of Bi vacancies is shown in
Figure 2, and the topography is shown in Figure 2A. Two Bi1 atoms
are missing above two NN Cu sites around the Zn impurity, as
illustrated in Figure 2D. This feature is more evident in the inverse
Fourier transform result to the Bragg peaks and the vectors around
(± π

a0
, ± π

a0
), where a0 is the lattice constant of Zn-Bi2212. The inverse

Fourier transform image is shown in Figure 2B. Figure 2C shows the
differential conductance mapping measured at −2 mV, similar to the
one measured in the typical case of the Zn impurity without Bi
vacancies (Figure 1D). We also measure the tunneling spectra at the
Zn and Bi1 sites or vacancies above the NN Cu atom. The results are
shown in Figure 2E. The spectrum measured at the Zn impurity
shows a strong resonance peak at about −2.3 mV. It should be noted
that impurity resonance peaks have different energies and
amplitudes for different impurities. Therefore, the slight shift of
the bound state energy and the decrease of the bound state peak is
unlikely due to the B1 vacancies. For spectra measured at the
Bi1 sites and Bi1 vacancies just above NN Cu sites, the impurity
bound state peaks are weak at these two positions.

Although Bi1 vacancies have negligible influence on the bound
state pattern on the surface, Bi2 vacancies seem to have a significant
impact on the pattern. One example is shown in Figure 3. The
Bi2 atom is missing from the topography shown in Figure 3A, while
the resonance spot of the bound state pattern is missing
simultaneously (Figure 3B). Figure 3D shows tunneling spectra
measured at the Zn impurity, the Bi2 site above the NNN Cu
atom, and the Bi2 vacancy above the NNN Cu atom. The resonance
peak on the spectrum measured at the Bi2 site is similar to that
shown in Figure 1E. However, the resonance peak is significantly
weakened on the spectrum measure at the Bi2 vacancy. To

FIGURE 1
(A) Crystal structure of Bi2212 shown in a unit cell. (B) Schematic diagram of the BiO plane with a single Zn impurity (denoted by a red spot). The
impurity bound state is also illustrated in the figure as yellow patterns, and different colors plot the neighbored Cu atoms in the central effective area by
the Zn. (C) Atomically resolved topographic image near a Zn impurity. (D) Differential conductance mapping recorded at −2 mV in the same field of view
of (C). Locations of the Zn impurity and neighbored Cu atoms are shown in (C) and (D) by using some symbols in (B). (E) Several tunneling spectra
measured at specific positions. The shown spectra for Bi1, Bi2, and Bi3 sites are the average one of four spectra measured above the four corresponding
Bi1, Bi2, and Bi3 sites.
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FIGURE 2
(A) Typical topographic image near a Zn impurity with two Bi1 vacancies on the surface. (B) Inverse Fourier transform results in the Bragg peaks and
the vectors around (± π

a0
, ± π

a0
) in the Fourier transform pattern of (A). There are two Bi vacancies near the Zn impurity. (C) Differential conductance

mapping measured at −2 mV in the same field of view as (A). (D) Schematic illustration of the Zn impurity with two Bi1 vacancies, just above two NN Cu
sites. (E) Tunneling spectra measured at Zn impurity and B1 sites or vacancies. The spectrum for Bi1 sites (or Bi1 vacancies) is the average of two
spectra measured above two Bi1 sites (or two Bi1 vacancies).

FIGURE 3
(A) Topographic image near a Zn impurity with a Bi2 vacancy on the surface. (B) Differential conductance mapping measured at −2 mVmeasured in
the same area of (A). The resonance spot of the bound state pattern is missing at the B2 vacancy site. (C) Schematic illustration of the Zn impurity with a
Bi2 vacancy nearby. (D) Spectra measured at the Zn impurity, Bi2 sites above the NNNCu atoms, and Bi2 vacancy above the NNNCu atom. The spectrum
of Bi2 sites is the average one of three spectra measured above three NNNCu sites. The bound state peak behaves differently at the Bi2 vacancy and
at Bi2 sites. (E) Height profile along the arrowed line in (A) or (B). (F) A set of tunneling spectra measured along the arrowed line in (A) or (B). The bound
state peak is missing from the spectra measured near the Bi2 vacancy.

Frontiers in Physics frontiersin.org04

Wang et al. 10.3389/fphy.2023.1337271

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1337271


investigate the electronic property of the Bi2 vacancy, we measure
a set of tunneling spectra along an arrowed line in Figure 3A across
a Bi2 site, a Zn impurity, and the Bi2 vacancy, and the result is
shown in Figure 3F. Meanwhile, the corresponding height profile
along the arrowed line is shown in Figure 3E, and the Bi2 vacancy
can be observed as a valley. The superconducting gapped feature
can be identified on spectra measured at the terminus of the
arrowed line, indicating that the impurity scattering from the
Zn dopant is localized. Above the Zn impurity, the bound state
peak can be seen on the spectra measured at positions within the
range with a diameter approximately equaling the size of a Bi atom.
The bound state peak with a weakened amplitude can be seen on
the spectra near the Bi2 atom. However, the bound state peak is
absent on the spectra measured near the Bi2 vacancy.
Consequently, one can robustly conclude that the Bi2 vacancy
will strongly affect the Zn impurity-induced bound state pattern
on the surface and cause the absence of the scattering resonance
spot at the Bi vacancy.

Here we report the influence on the Zn impurity-induced
bound states by the out-of-plane Bi defects on the surface, which
has not been reported in previous works [3, 19, 20]. The detailed
STM/STS measurement shows that the Bi2 vacancy significantly
weakens the bound-state peak and the resonance spot measured
at the impurity bound state energy. Besides, a similar
phenomenon can also be observed in the case of the
Bi3 vacancy, and the corresponding resonance spot also
disappears in the presence of the Bi3 vacancy. In contrast, the

Bi1 vacancy does not affect the bound state pattern at the bound
state energy. However, it should be noted that the impurity
bound state peak is negligible at the Bi1 site. Therefore, it is
understandable that the Bi1 vacancy does not influence the
impurity bound state pattern. Bi atoms are located in the
charge-reservoir layer, and the Bi vacancy may induce a slight
hole doping. Meanwhile, the Bi vacancy may increase the
distance between the apical oxygen and the Cu atom
underneath, which may be related to the superconductivity in
the CuO2 layer [39–41] and further modify the impurity bound
state. These are the possible ways that the Bi vacancy in the
charge-reservoir layer affects the impurity bound state in the
CuO2 layer. However, the resonance peak recorded just above the
Zn impurity seems to be not affected by any Bi vacancies. In
addition, the Bi1 site is closer to the Zn impurity than the Bi2 site,
but the Bi1 vacancy has negligible influence on the impurity-
bound-state peak or the bound-state pattern at the peak energy.
Therefore, it is unlikely that the Bi vacancies will directly
influence the Zn impurity state on the CuO2 plane.

Based on theoretical calculations [26–28], the impurity bound
state pattern behaves differently on the CuO2 plane and the
surface BiO layer because the measured pattern on the surface
is affected by the interlayer tunneling matrix elements with the
so-called “filter effects”. In this picture, the hybridization of the
in-plane 3dx2−y2 orbital of the metal atom (Zn or Cu) with p
orbitals of apical O and Bi right above is forbidden by symmetry.
Specifically, the strongest impurity bound state is located at four
NN Cu atoms from the calculation [26–28], and the result is
shown in Figure 4A. Figure 4B shows the tunneling process
proposed by the theory, and the tunneling to the Bi atom
through 6pz orbital on the surface is from the in-plane 3dx2−y2

orbital of neighboring metal atoms (Zn or Cu) instead of the one
right underneath. Additionally, the tunneling is assisted by the p
orbital of apical O just below the surface Bi atom [28]. Based on
this model, the obtained resonance pattern (Figure 4C) on the
surface is very similar to the experimental result (Figure 3B) in
the presence of a Bi2 vacancy since the impurity bound state in
the CuO2 plane cannot show up without the Bi2 atom
(Figure 4D). Therefore, our experiment strongly supports the
theoretical calculation results of the “filter effects” in the
interlayer tunneling process.

Conclusion

In summary, we have carried out the studies on the influence of
Bi defects on Zn impurity scattering resonance states in Zn-Bi2212
using STM/STS. Our findings reveal several intriguing
characteristics: i) In the case of Bi1 defects, we observed no
significant deviations compared to normal resonance states. ii)
for the Bi2 defects situation, we detected a notable absence of
LDOS at the corresponding Cu sites beneath these Bi defects.
These observations collectively indicate that the BiO plane plays
a crucial role in the impurity-induced bound state formation from a
different perspective. Our research underscores how structural
distortions and defects, even outside the CuO2 plane, significantly
impact resonance states we measured through STM/STS. These
results shed new light on understanding the interaction between

FIGURE 4
(A) Schematic illustration of CuO2 plane with one Zn impurity. (B)
Schematic illustration of the tunneling process when the STM tip is
directly above the Bi0 site. (C) Schematic illustration of BiO plane
corresponding to the case of one Zn impurity with one
Bi2 defect. (D) Schematic illustration of the tunneling process when
the STM tip is directly above the Bi2 vacancy. The dotted arrows
indicate that themissing Bi atomwill lead to the failure of the tunneling
from the neighboring Cu-3dx2-y2 to the surface and then to the
STM tip.
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different layers in cuprate and facilitate the comprehension of the
tunneling process.
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