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The distribution of currents on critical percolation clusters is the fundamental
quantity describing the transport properties of weakly connected systems.
Nevertheless, its finite-size extrapolation is still one of the outstanding open
questions concerning disordered media. By hierarchically decomposing the 3-
connected components of the backbone, we disclose that the current distribution
is determined from two distributions, namely, the one corresponding to the
number of bonds in each level and another one corresponding to the factors
by which the current is reduced, when going from one level to the next. The first
distribution follows a finite-size scaling, while the second is a power law with an
exponent consistent with 3/4 in two dimensions. The standard hierarchical model
for the backbone is too simple to reproduce this complex scenario. Our new
decomposition method of the backbone also allows to calculate much smaller
currents than before, attaining a precision of 10−35 and systems of size L = 81922.
Moreover, our method is not restricted to electric currents on critical percolation
clusters but could also be applied to other transport problems on sparse graphs
including fluid flow and car traffic.
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1 Introduction

Percolation was originally proposed to model the flow through a porous medium [1] but
has since turned out to be a fundamental model in statistical physics [2], serving as a
geometrical template for phase transitions with multiple applications in physics and beyond,
including the sol–gel transition, the onset of fluid flow, the conductivity of random media,
opinion dynamics, and the outbreak of epidemics. An important issue in percolation theory
is the solution of linear transport at criticality [3]. Under such a framework, one replaces the
bonds of a percolation cluster by Ohmic resistors and applies a potential difference between
two distant sites on this cluster. Solving the set of linear equations given by Kirchhoff’s nodal
rule at each node yields the currents at each bond. This linear transport problem in
percolation has many applications. Examples include flow through porous materials [4–8],
oil production [9], and conductivity of semiconducting materials or metal–insulator
mixtures [10].

The distribution of the currents on the percolation cluster at criticality has been found to
be multifractal [11] since different moments exhibit unrelated scaling exponents. However,
its multifractal spectrum f(α) strongly depends on the system size [12]. Despite the great
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controversy generated about the asymptotic behavior of the
distribution for weak currents and large systems [13–15], no
satisfactory solution has been found yet [12].

By definition, a 3-connected component (3CC) is the set of
nodes of a graph that remains connected after any two bonds are
removed [16]. It should be noted that simple parallel and series
conformations cannot form 3CCs. This concept can be directly
associated with physical partitioning and has been very useful in the
solution of several problems in graph theory [16, 17]. For instance,
the partition of the critical conducting backbone in 3CCs has been
successfully used to demonstrate that these components are also
fractal [18], like other structures in critical percolation [19].

Here, we will focus precisely on weak currents and large system
sizes to introduce a new way to calculate the current distribution in
the critical conducting backbone based on its hierarchical partition
in terms of 3-connected components. The backbone is the part of the
infinite cluster that takes part in the conduction. Formally, the
backbone is defined as the union of the sets of self-avoiding paths
that connect two extremes of the cluster. By taking advantage of the
partition of the backbone on 3CCs, we are able to solve subsets of
coupled linear equations in sequence, starting from 3CCs on the
smallest scale. As illustrated in Figure 1, the solution of the electrical
transport problem on these components allows determining their
effective resistances. By replacing these 3CCs to their corresponding
effective conductances, the Kirchhoff problem can then be
sequentially solved on larger and larger 3CC scales, up to the
scale of the critical backbone itself.

1.1 Hierarchical structure of the conducting
backbone

It has been proposed that the conducting backbone can be
separated in blobs and red bonds, with the red bonds being the
connections that are removed to split the backbone into two separate
parts, while the blobs are the parts of the conducting backbone that
are multi-connected, that is, that remain connected after the removal
of any bond. Here, we expand on this idea using the concept of
3CCs. In our definition, 3CCs at the largest scale, namely, the blobs
of the backbone, are of level 1, and components of level 2 are those
that are replaced by effective bonds in components of level 1, and so
on, with components of one level replacing effective bonds in the
components of the level below. It should be reminded that sets of
bonds in simple parallel and series conformations, despite being
connected to the rest of the graph at just two points, do not form
3CCs. Therefore, one needs to include factors of level 0, accounting
for splits of the current that take place outside all 3CCs. A typical
example of the critical conducting backbone is shown in Figure 2,
where the bonds are colored according to their 3CC levels, clearly
indicating the underlying hierarchical structure of the partition.

The idea that the structure of critical percolation clusters can be
described in terms of a hierarchical model to determine the current

FIGURE 1
Formally, a 3-connected component (3CC) is the set of nodes in
a graph that will remain in the same component after any two bonds
are removed [16]. For a physicist, however, an intuitive definition may
be any subset of the graph that connects to the rest only at a pair
of articulating nodes and is not formed by simple parallel and/or series
conformations. The hierarchical partition of a graph in 3CCs can be
used to solve efficiently the Kirchhoff problem [16]. In panel (A), we
show a graph with four 3CCs. After solving the Kirchhoff problem for
the three 3CCs shown in (B), these components can be replaced by
effective resistances, simplifying the solution of 3CC on a larger scale,
as shown in (C).

FIGURE 2
Typical critical backbone with bonds colored by level. Bonds of
level k are those inside a 3CC of level k but outside 3CCs of level k + 1.
The black dots indicate the pole nodes, between which a potential
difference is applied. The inset shows the hierarchical model
proposed in [11]. Inspired by the self-similarity property of the
conducting backbone, this simple model can be solved analytically to
compute the current distribution. Higher generations g reveal smaller
scales. Considering that every bond has the same resistance, the
current passing through resistor ℓ will be given by Iℓ � It2−nℓ , where It is
the total current, and the numbers nℓ follow a binomial distribution,
resulting in a log-normal distribution for the currents [20]. However,
although the critical backbone in the main figure is self-similar and
presents a hierarchical structure [18], the current distribution does not
follow a log-normal relation [12].
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distribution has been originally suggested in [20]. In this model, as
shown in the inset of Figure 2, each bond ℓ has a current Iℓ � It2−nℓ ,
where It is the total current through the lattice, and the exponents nℓ are
distributed according to a binomial distribution. As a result, the currents
follow a log-normal distribution and exhibit multifractal properties [20].
Unfortunately, the clever approach proposed in [20] does not succeed in
describing the current distribution on critical conducting backbones
since their distribution is not log-normal [12]. This deviation from a log-
normal may seem surprising since the critical conducting backbone is
self-similar and presents a hierarchical structure [18]. Even more
surprising is the fact that the current distribution on the critical
backbone does not appear to follow consistent finite-size scaling laws
since the distribution assumes different shapes at different scales [12].

2 Methods

Taking advantage of the partition in 3-connected components, the
complex problem of a large conducting backbone, with a large number
of unknown variables, is replaced by a series of steps. At each step, a
single Kirchhoff problem is solved for a single 3CC, which will be
replaced by an effective bond when solving the component at a larger
scale. In this way, at each step, the number of variables is much smaller.
Since the complexity of solving these sets of coupled equations grows
super-linearly, for large system sizes, the time gained by reducing the
rank of the equations should, therefore, compensate the pre-processing
step to obtain the partition. To give an idea of the advantage of
employing this decomposition, in two dimensions, the number of
nodes in the backbone scales with the system size L as Mb ~ L1.64

[21], while the largest 3CC scales as M3 ~ L1.15 [18].

After using the partition in 3-connected components to solve
the Kirchhoff problem on the conducting backbone, we proceed
with the recovering of the current distribution. To obtain the
current through a given bond ℓ, we need to collect the information
from every component containing this bond. Each bond will carry
a fraction fℓ � ∏k

j�0fjℓ of the total current, where the factors fjℓ
must be determined by solving the Kirchhoff problem on the 3CC
at level j, as shown in Figure 3. The number of factors in this
product is equal to the level k of the bond, that is, the number of
3CCs where bond ℓ is nested. At each step of the hierarchical
solution, the current in each effective bond is typically a significant
portion of the current passing through the component. However,
when the factors of several nested components are multiplied to
obtain the final current of a given bond, the result can be many
orders of magnitude smaller than the total current. As a
consequence, our hierarchical approach allows in accurately
obtaining a current distribution that spans over nearly
16 orders of magnitude, as seen in Figure 4.

2.1 Distribution of current factors

At this point, we make use of our method to study the
distribution of the multiplying factors, fks. In order to fully
describe their statistics, two different sampling ways are adopted,
as shown in Figure 3. In the first way, a factor fks is sampled by the
number of actual bonds of level k in segment s. A bond is of level k
when it is inside level k but outside level k + 1. Alternatively, we
sample the same factor fks by the number of internal bonds. The
internal bonds correspond to all other bonds in segment s that are
not actual bonds, namely, all bonds in the segment s that are nested
inside 3CCs of level k + 1 or higher.

FIGURE 3
Recovering the currents in a typical 3-connected component of
level k through which passes a current Ik. After its internal 3CCs have
been replaced by effective bonds, this component turns into a simple
Wheatstone bridge that can be readily solved to obtain the
fraction fks of the current Ik passing through each segment s of the
Wheatstone bridge. The current of every bond in segment s is then
reduced in level k by this factor fks. We consider two different ways of
sampling the factors fks. In the first sampling, we count the so-called
actual bonds of level k. These are bonds in segment s that are inside
level k but outside level k + 1. In the second sampling, we count the
internal bonds, namely, all other bonds in the segment s that are not
actual bonds of level k, that is, any bond in s found inside 3CCs of level
k + 1. In this example, the factor fk1 is sampled three times in the
distribution for actual bonds and is not included in the distribution for
internal bonds as there are no 3CCs in this segment. The factor fk5 is
sampled five times in the distribution of internal bonds and is not
included in the distribution of actual bonds as there is no bond
carrying the whole current passing through this segment. The factor
fk2 is sampled 10 times by internal bonds and just one by actual bonds.

FIGURE 4
Current distribution on critical conducting backbones for
different system sizes L × L. In this graph, x = log10(iℓ), with iℓ, being the
currents in each bond. The results were obtained for square lattice
subjected to bond percolation at the critical point pc = 1/2. For
each size, we simulated at least 2,000 samples. For each sample, we
recovered the largest cluster, applied a potential difference at a pair of
nodes separated by L/2 lattice units, and extracted the backbone [22].
Our approach allows obtaining with precision currents of the order of
10−35.
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As shown in Figure 5, the distributions of factors generated in
both sampling ways closely follow power-law behavior, P(f) ~ fα, for
over more than seven orders of magnitude. Moreover, the least-
squares fits to the datasets of this power-law for all levels k give
similar exponents that, within the statistical error bars, are
consistent with the value α = 3/4. Approaching the limit f = 1,
all distributions above level k = 0 display an exponential cut-off to a
vanishing probability. This is to be expected since inside a 3CC,
there are no bonds carrying the whole current. For k > 1, the
distributions appear to be independent on the level. Level 0 contains
the so-called red bonds that carry the total current. For bonds at level
0, very few bonds have f ≠ 1, indicating that only a very small fraction
of the blobs consists of parallel bonds, like the ones present in the
hierarchical model, as shown in the inset of Figure 2.

Since from level 1 upwards factors are strictly smaller than unity and
higher levels correspond to a multiplication of more factors, the current
distribution for bonds of higher levels should move toward smaller
values. This is confirmed in Figure 6, where we present the current
distributions separated by the bond level. The curves move toward weak
currents by over one order ofmagnitude per level, becoming less skewed.

FIGURE 5
Distribution of factors for each level k of the hierarchical
structure of the conducting backbone at the critical bond percolation
point, pc = 1/2. In this graph, y = log10(F), with f being the factor by
which the currents are reduced when split inside a given 3CC.
These results were obtained from numerical simulations using
10,000 realizations of two-dimensional square lattices with size L =
2048. In (A), we show the distribution of factors for actual bonds, and
in (B), the distribution for factors on effective bonds. As explained in
the main text and in the caption of Figure 3, both distributions are
obtained from the same set of factors but with different sampling
weights. The distributions closely follow power laws, P(F) ~ fα, over up
to seven orders of magnitude with exponents that are consistent with
the value α = 3/4. Except for k = 0, they all display an exponential cut-
off in the proximity of f = 1. Within the statistical fluctuations, the tail of
the curves falls on top of each other for k > 1.

FIGURE 6
Current distribution segregated by the bond level. In this graph
x = log10(iℓ), with iℓ being the currents in a given bond. The solid lines
correspond to the current distributions on the bonds within a given
level k. As expected, the bonds at higher levels tend to carry a
smaller fraction of the total current. In order to test for the presence of
correlations between values of factors at different levels, we also
generate current distributions from randomly shuffled data (dots). As
can be seen, the shuffled data follow closely the numerical results,
suggesting that the factors at different levels are statistically
independent.

FIGURE 7
Distribution of bond levels k. As shown in the main panel, the
distribution of levels seems to obey a scaling relation since the variable
k/Lθ, with θ=0.16 ± 0.01, allows collapsing the data for all system sizes.
Some deviation at the tail of the distribution is most likely due to
fluctuations resulting from the small frequency of extremely small
currents. It should be noted, however, that the same scaling does not
hold for bonds of level 0, which seem to collapse with an exponent
consistent with 3/4 (not shown). In the inset, we show the distribution
without rescaling the axis.
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In order to see if there are correlations between factors of
different levels, we also compute the distributions after randomly
shuffling the data. Precisely, we construct a shuffled current of level k
in the following way. Precisely, to construct a shuffled current of
level k, for each level from 0 to k − 1, we chose randomly a factor
from the distribution of factors for internal bonds (Figure 5B), while
for the level k, we chose randomly a factor from the distribution of
factors for actual bonds (Figure 5A). As can be seen in Figure 6, the
distributions for the shuffled data follow closely the distributions
obtained for the real current, suggesting that factors at each level are
drawn from independent distributions. The current distribution of
the whole network should be obtained by summing the expected
distributions for each level weighted by the fraction of bonds of each
level in the backbone.

2.2 Distribution of hierarchical levels

Figure 7 shows that the distributions of bond levels k display
exponential decays for sufficiently large values of k, indicating that
the appearance of a 3CC is a Poissonian process. Moreover, the
larger the system size L, the less abrupt the decay becomes. As shown
in the main panel of Figure 7, for k ≠ 0, this size dependence is
suppressed for levels at the interval 1 ≤ k ≤ 10 when both axes are re-
scaled by a factor Lθ, where the exponent θ = 0.16 ± 0.01. The
fraction of bonds in level 0 systematically decreases with system size
like L−5/4 � Ldr−2, where dr = 1/] = 3/4 is the fractal dimension of the
red bonds [23].

3 Discussion

By exploiting the self-similarity of a critical percolation
backbone, we disclosed a hierarchical structure in its 3-connected
components, which ends up allowing an extremely efficient
decomposition of the whole system. Level 0 of this hierarchy
corresponds to bonds that are just in series or in parallel, and
their number increases with system size like the red bonds. The
occupancy of higher levels follows a Poisson distribution scaling
with the fractal dimension of 3CCs, while the fractions of the current
at each level are power-law-distributed with exponents consistent
with the value 3/4. Finally, through data reshuffling, we showed that
the distributions of factors for internal and actual bonds are
uncorrelated. In this way, the complex finite-size behavior of the
current distribution can be recovered by multiplying factors
randomly drawn from their power law distributions, according to
the Poisson distribution of levels.

Another important outcome of our work is the development of a
very efficient solver for the local currents in the critical backbone.
We also implemented our algorithm on triangular and hexagonal
lattices obtaining the same scaling relations and exponents observed
for the square lattice. The generalization of our algorithm to higher
dimensions is straightforward, and we are presently working on
three-dimensional lattices.

Our new way of evaluating current distributions on fractal
graphs and the huge gain in precision that we could achieve with
this method will allow not only to gain insights on the multifractality
of percolation clusters, as shown in the present work, but also to
analyze with higher precision than before, for instance, traffic on
sparse networks, fluid flow in capillary systems, or the effect of weak
bonds in incipient gels.
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