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Purpose: To develop an algorithm using a residual base network guided by the
confidence map and transfer learning for limited dataset size and imbalanced
bladder wall segmentation.

Methods: The geometric transformation was made to the training data for data
augmentation, and a pre-trained Resnet50model on ImageNet was also adopted
for transfer learning. Three loss functions were put into the pre-trained
Resnet50 network, they are the cross-entropy loss function (CELF), the
generalized Dice loss function (GDLF) and the Tversky loss function (TLF).
Three models were obtained through training, and three corresponding
confidence maps were output after entering a new image. By selecting the
point with the maximum confidence values at the corresponding position, we
merged the three images into one figure, performed threshold filtering to avoid
external anomalies, and finally obtained the segmentation result.

Results: The average Jaccard similarity coefficient of model training based on the
CELF, GDLF and TLF is 0.9173, 0.8355, 0.8757, respectively, and the average
Jaccard similarity coefficient of our algorithm can be achieved at 0.9282. In
contrast, the classical 2D U-Net algorithm can only achieve 0.518. We also
qualitatively give the reasons for the improvement of model performance.

Conclusion: Our study demonstrates that a confidence map-assisted residual
base network can accurately segment bladder walls on a limited-size data set.
Compared with the segmentation results of each model alone, our method
originally improves the accuracy of the segmentation results by combining
confidence map guidance with threshold filtering.
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Introduction

With the rapid development of computer and medical accelerator technology,
radiotherapy plays a more and more important role in cancer treatment, including the
pelvic cancers of cervical cancer, endometrial cancer, prostate cancer and rectal cancer.
With the continuous increase of the dose and the growth of the patient’s survival time, the
protection of the bladder, especially the bladder wall, has received more and more attention.
So, it is necessary to outline the bladder wall in radiotherapy and reduce the accumulation of
radiation dose in the bladder wall.
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For example, prostate cancer is one of the most common cancers
in male patients, and its 5-year survival rate has risen to more than
98% [1]. With prolonged survival, the quality of life after
radiotherapy needs to be fully considered, so treatment-related
toxicity has become a major concern for patients with high
cancer survival rates. With the introduction of intensity-
modulated radiotherapy, the genitourinary system toxicity has
been significantly reduced compared with the past. However,
according to several clinical trials, the 5-year toxicity rate greater
than grade 2 is 12%–15%, and the common toxicity is dysuria,
urinary retention, hematuria, and incontinence [2]. The main cause
of toxicity is the high dose stacking in the bladder wall and urethra.
According to relevant studies, the bladder is a hollow organ that
stores urine, and the cumulative dose of the bladder wall can
represent the truly involved dose [3]. In addition, the size, shape
and position of the bladder will also be affected by factors such as
patient positioning, bladder filling, and movement of surrounding
organs during treatment. Therefore, it is of great clinical significance
to study the spatial morphological changes of the bladder, especially
the bladder wall during treatment, as well as superimposed dose
analysis for the management of radiotherapy toxicity in the bladder.
As an important part of bladder toxicity management, the accuracy
of bladder wall segmentation directly affects the final spatial
morphological changes and dose superposition analysis [4].

Conventional segmentation is time-consuming and labor-
intensive, and the segmentation results are easily affected by the
doctor’s temporal and spatial subjectivity. With the rapid
development of artificial intelligence, especially the development
of deep neural network algorithms, the automatic segmentation
technology of medical images based on deep neural network
algorithms has made great progress [5–8]. For segmentation
studies of the bladder wall, there are mainly three types: model-
based, data-driven, and methods that combine the two schemes. The
typical scheme of the model-based methods has two branches, one is
based on various prior models to adaptively extract the inner and
outer boundaries of the bladder wall, and the other is mainly to train
the classifier by selecting image low-order features, texture features,
and wavelet features to reduce their features to the selection, thereby
serving the bladder wall segmentation [9–11]. The advantage is that
the relevant features are clearly defined, and easy to be used, and the
disadvantage is that when the bladder wall and the surrounding
background have similar grayscale and texture characteristics, the
segmentation of the bladder wall often produces results with large
errors. This data-driven approach is primarily based on the
segmentation algorithm of U-Net and its modified deep neural
networks, which can achieve a maximum similarity coefficient of
0.8 [12–14]. The advantage of this scheme is that deep neural
networks can recognize multi-scale feature information, which is
more conducive to segmentation, and the disadvantage is that it is
limited by the training data, and the robustness and generalization
performance needs to be improved. The combination of these two
methods completes the segmentation task by organically combining
the advantages of model-based and data-driven methods, avoiding
their disadvantages, and achieving a maximum similarity coefficient
of 0.9224 [15, 16]. Due to the smooth gradient of grayscale between
adjacent areas, it is difficult to identify the weak boundary between
the bladder wall and the surrounding soft tissues. In addition,
complex backgrounds can easily affect the segmentation result.

At the same time, the scarcity of medical data determines that it
is difficult to have a large amount of medical data for
segmentation training.

In addition, with the deepening of segmentation research based
on deep neural networks, more and more networks have begun to be
applied to clinical practice. However, the black box effect of the deep
neural network algorithm limits its wide application in clinical
practice [17, 18]. The ability to capture complex nonlinear
relationships between input data and associated outputs often
comes at the expense of the comprehensibility of the resulting
model. Despite efforts to interpret relevant models in algorithmic
interpretation and multi-scale analysis of segmentation results, deep
neural network models notoriously evade direct human access.

There are many approaches to achieving explainability in deep
learning models, but in this article, we will focus on two techniques
that are relevant to our research: confidence maps and Grad-CAM.
Confidence maps are a graphical representation of the model’s
confidence or reliability. They help people better understand the
model’s predictive ability and which data points or features have a
significant impact on the model’s performance. In confidence maps,
different colours or shades are used to represent different levels of
confidence, making it easier for users to identify the model’s
performance. In practical applications, confidence maps are often
used in conjunction with other visualization techniques to help users
better understand data features and model performance. In image
segmentation tasks, confidence maps represent the probability
distribution of each pixel belonging to a specific class. Typically,
a neural network model generates confidence maps by classifying
input images and outputting the probability values for each pixel
belonging to each class. These probability values are then mapped to
a grayscale image to obtain a confidence map. In a confidence map,
areas with lighter colours represent uncertainty in the model’s
classification of the pixel, while darker areas represent greater
certainty in the model’s classification of the pixel. Post-processing
methods such as threshold segmentation are often applied to
confidence maps to obtain the final image segmentation
result [19, 20].

Gradient-weighted Class Activation Mapping (Grad-CAM) is
an explainable deep learning model technique used to determine
which layers and positions are most critical for the model’s
prediction of a particular class [21, 22]. This technique calculates
the weights of each convolutional layer based on gradients and
global average pooling and generates a heat map to visualize the
regions that the model focuses on.

To address the limited data problem, we adopted geometric data
augmentation and transfer learning techniques [23]. To solve the
black box problem of deep learning models, we introduced
confidence maps and Grad-CAM techniques. We also fused the
strengths of three different loss functions based on confidence maps
and ultimately developed our current solution.

We introduced the transfer learning algorithm to fine-tune the
trained neural network model for bladder wall segmentation
training with three loss functions: they are the cross-entropy loss
function (CELF), the generalized Dice loss function (GDLF) and the
Tversky loss function (TLF). Three models were obtained through
training, and three corresponding confidence maps were output
after entering a new image. By selecting the point with the maximum
confidence values at the corresponding position, we merged the
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three images into one figure, performed threshold filtering to avoid
external anomalies, and finally obtained the segmentation result. We
also qualitatively gave the reasons for the improvement of model
performance.

Material and methods

1088 T2 MRI images were used for model training. The data
were divided into three parts: training data, validating data and
testing data. 990 MRI images were used for training, 100 for
validating and 88 used for model testing. To address the issue of
insufficient data, we used data augmentation and transfer learning
techniques. For data augmentation, we employed geometric
augmentation techniques, including horizontal and vertical
flipping, random rotation, and random horizontal and
vertical shifting.

For transfer learning, a pre-trained Resnet50 model was utilized
for deep neural network training. The pre-trained Resnet50 model is
a three-channel, 50-layer deep model trained on the ImageNet
database. The training period is 50 times, and 990 images are
trained 49,500 times for a model in total. The learning rate is
adaptive, and the final learning rate is 8.1e-6. Using NVIDIA
3070 graphics card, combined with 11th Gen Intel(R) Core (TM)
i7-11800H @ 2.30 GHz processor, 32G RAM for training, a total of
265 min and 22 s were used for each model of the three.

Figure 1 illustrates the workflow of our method, where
990 images were input into three pre-trained Resnet50 models
with different loss functions (loss functions 1, 2, and 3 as shown
in equations 2; (3); (4), respectively). Each model is a three-channel
input architecture, so each image was duplicated as three identical
images for training. 100 images were used for validation to prevent
overfitting or excessive deviation, resulting in three models. 88 test
images were pre-processed and sequentially input into the three

trained models to obtain corresponding confidence distribution
maps. For the three confidence distribution maps, we selected the
points with the maximum confidence values at each corresponding
position for integration to obtain a confidence distribution
map. Considering the reliability of the confidence map, we
needed to select a suitable threshold to perform image
binarization on the confidence distribution map for image
segmentation. We also provided a set of standards for selecting
suitable thresholds. Figure 2 shows the size distribution of
confidence maps between 0 and 1. By calculating the relevant
indicators at the five thresholds of 0.9, 0.8, 0.7, 0.6, and 0.5, and
considering that confidence values below 0.5 are not reliable, we
compared and analyzed to find the optimal threshold of 0.6. The
selection of 0.6 is more of a balance between segmentation accuracy
and error. Threshold selection from 0.5 to 0.9 essentially resulted in
a decrease in average segmentation accuracy, while other parameters
showed some fluctuations, but the differences were not significant.
Considering that confidence selection at 0.5 is not reliable enough,
we chose 0.6 empirically as our segmentation threshold to balance
segmentation accuracy and error. These relevant indicators include
Global Accuracy, Mean Accuracy, Mean IoU, Weighted IoU, and
Mean BFScore. Global Accuracy is the ratio of correctly classified
pixels, regardless of class, to the total number of pixels. Intersection
over union (IoU), also known as the Jaccard similarity coefficient, is
the most commonly used metric. The IoU metric is a statistical
accuracy measurement that penalizes false positives. For each class,
IoU is the ratio of correctly classified pixels to the total number of
ground truth and predicted pixels in that class. In other words,

IoU score � TP / TP + FP + FN( ) (1)

The image describes the true positives (TP), false positives (FP),
and false negatives (FN). The average IoU of each class is weighted
by the number of pixels in that class. This metric is used if images
have disproportionally sized classes, to reduce the impact of errors in

FIGURE 1
workflow of the confidence map-assisted residual base network for bladder wall segmentation.
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the small classes on the aggregate quality score. The boundary F1
(BF) contour matching score indicates how well the predicted
boundary of each class aligns with the true boundary. The BF
score is a metric that tends to correlate better with human
qualitative assessment than the IoU metric. For each class, Mean
BFScore is the average BF score of that class over all images.

To better understand the principle of image segmentation
guided by confidence maps, we have depicted that in Figure 2.
Figure 2 shows three confidence distribution maps were obtained by
inputting a new test image into the three trained models. After
selecting the maximum confidence values at the corresponding
positions of the three confidence distribution maps, they were
merged into a single confidence distribution map. Subsequently,
the confidence distribution map was transformed into a binary
image using a threshold of 0.6 as a standard to guide image
segmentation.

The cross-entropy loss function described by Loss 1 is used to
calculate the cross-entropy loss between the network-predicted
values and the true values. The formula for calculating the cross-
entropy loss function is:

loss1 � − 1
N
∑

N

n�1 ∑
K

i�1 (Tni ln Yni( ) + 1 − Tni( ) ln 1 − Yni( ) (2)

Where N is the number of observations, K is the number of
classes; Tni is the true result, and Yni is the predicted result. The
formula for calculating the generalized Dice similarity loss function
described by Loss 2 is as follows:

Loss2 � 1-
2∑K

k�1 wk∑M
m�1 YkmTkm

∑K
k�1 wk∑M

m�1 Y
2
km + T2

km

(3)

Where K is the number of classes, M is the number of elements
along the first two dimensions of the predicted result Ykm, Wk is a
weight factor specific to each class that controls the contribution of

each class to the result, and Tkm is the true result. The generalized
Dice similarity loss is based on the Sørensen-Dice similarity and is
used to measure the overlap between two segmented images. The
formula for calculating the Tversky loss function described by Loss
3 is as follows:

Loss3 � ∑M
m�1 YcmTcm

∑M
m�1 YcmTcm + α∑M

m�1 YcmTc
_
m + β∑M

m�1 Yc
_
mTcm

(4)

Where c corresponds to the class, c corresponds to not being in
class c; Ycm is the predicted result, Tcm is the true result; M is the
number of elements along the first two dimensions of the predicted
result Ycm; α is a weighted factor controlling the contribution of false
positives for each class; β is a weighted factor controlling the
contribution of false negatives for each class. The Tversky loss
function described by Loss 3 is based on the Tversky index and
is used to measure the overlap between two segmented images.

Table 1 displays the segmentation result metrics at different
thresholds of 0.5, 0.6, 0.7, 0.8, and 0.9. The metrics include Global
Accuracy, Mean Accuracy, Mean IoU, Weighted IoU, and Mean
BFScore, which are commonly used to evaluate the accuracy of
segmentation results. The table shows how the segmentation
performance varies at different confidence thresholds, with lower
thresholds generally resulting in better performance but potentially
at the cost of reduced sensitivity. The metrics can be used to select an
appropriate threshold for a specific application based on the desired
trade-off between precision and recall.

Results

As shown in Figure 3, we selected one of the 88 images to display
the results of our models and compared them with the results based
on the 2D_UNet model. The quantitative analysis is shown in

FIGURE 2
Shows a schematic diagram of how confidence maps guided image segmentation. The network generates the confidence map and represents the
likelihood of each pixel belonging to a certain class. This map is then used to guide the segmentation process by assigning each pixel to the class with the
highest confidence.
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Table 2, which shows that our approach achieved the best
performance.

The Not a Number (NaN) problem with the Mean BFScore
corresponding to 2DUNet is primarily due to the model segmenting
fewer classified points. As shown in the prediction results of the
UNet model in Figure 3, in some layers, the bladder wall cannot be
properly segmented or visualized, resulting in the occurrence of
NaN problems. This indicates that the classic 2D UNet neural
network algorithm is unsuitable for bladder wall segmentation.

Table 2 displays the segmentation result metrics for different
models. The metrics include Global Accuracy, Mean Accuracy,
Mean IoU, Weighted IoU, and Mean BFScore, which are
commonly used to evaluate the accuracy of segmentation results.
The table shows how the segmentation performance varies in
different models; our method has the highest mean accuracy at
the cost of reduced sensitivity. Although our model did not achieve
the best performance in terms of global accuracy, mean IOU,
weighted IOU, and other parameters, the differences were not

TABLE 1 The segmentation result metrics at different thresholds of 0.5, 0.6, 0.7, 0.8, and 0.9.

Threshold value Global accuracy Mean accuracy Mean IoU Weighted IoU Mean BFScore

0.5 0.9830 0.9337 0.7201 0.9743 0.812

0.6 0.9842 0.9282 0.7277 0.9757 0.8209

0.7 0.9854 0.9218 0.7359 0.9771 0.8299

0.8 0.9867 0.9129 0.7456 0.9787 0.8382

0.9 0.9883 0.8962 0.7568 0.9826 0.847

FIGURE 3
The segmentation performance on a test image. The Unet model is based on the training of the 2D_UNet neural network. The TLF model, GDLF
model and CELFmodel are the correspondingmodels of Restnet50with different loss functions: the Tversky loss function (TLF), the generalized Dice loss
function (GDLF), and the cross-entropy loss function (CELF).

TABLE 2 The segmentation result metrics for different models.

Model name Global accuracy Mean accuracy Mean IoU Weighted IoU Mean BFScore

2D_UNet 0.98428 0.5180 0.5101 0.9689 NaN

TLF 0.9871 0.8757 0.7372 0.9788 0.8327

CELF 0.9842 0.9173 0.7248 0.9756 0.8399

GDLF 0.9904 0.8355 0.7617 0.9829 0.8382

Our method 0.9830 0.9282 0.7277 0.9757 0.8209
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significant, and in some cases, even marginal. Furthermore, global
accuracy represents the ratio of correctly classified pixels, regardless
of class, to the total number of pixels. However, the increase in the
proportion of background pixels does not significantly impact the
accuracy of bladder wall segmentation, and similar trends were
observed for other parameters. Therefore, we adopted mean
accuracy as the primary evaluation metric, with other parameters
serving as secondary evaluation metrics. Compared to the highest
CELF model with a mean accuracy of 0.9173, our proposed
algorithm achieved a mean accuracy of 0.9282. This 1%
improvement in mean accuracy is based on the overall
improvement of 88 test images, which demonstrates the
effectiveness of our results.

Figure 4 shows the Grad-Cam maps analysis for four models.
The heatmaps in the latter two columns are displayed on a Jet colour
map scale, where blue represents low correlation, yellow represents
medium correlation, and red represents high correlation. It has been
shown that there is less red in the heatmap in small details and
blurred border areas, indicating that the activation is weak there, and
it also explains why the Resnet50 model still lacks accuracy in small
detail segmentation, especially blurred borders. Through
comparative analysis, it can be found that our proposed method
does effectively integrate three models, but it may also amplify some
minor errors, which will be analyzed in the limitation section.

Table 2: The segmentation result metrics for differentmodels. The
metrics include Global Accuracy, Mean Accuracy, Mean IoU,
Weighted IoU, and Mean BFScore, which are commonly used to
evaluate the accuracy of segmentation results. The table shows how
the segmentation performance varies in different models. Ourmethod
has the highest mean accuracy at the cost of reduced sensitivity.

Discussion

The proposed method in this paper aims to address the issue of
bladder wall segmentation with limited data. Although geometric
data augmentation and transfer learning are employed, along with
confidence map-guided segmentation using three models based on
different loss functions, there are still limitations. Firstly, it is
inevitable that individual models have limitations, and their
errors may be amplified when combined, resulting in a cascading
effect. Although the three models are trained based on different loss
functions and can extract different dimensions of information for
image segmentation within a short training period, but how to
further improve the utilization of the models and reduce the
cascading effect of errors requires further research.

Due to limitations in the size of the datasets, our proposed solution
is a two-dimensional approach, which has the following advantages
compared to the currently popular 3D segmentation algorithms: 1. Fast
computation: The 2Dmodel only needs to process planar images, so the
computation speed is usually relatively fast. 2. Simple algorithm: Since it
only needs to process planar images, the algorithm is relatively simple,
easy to implement, and debug. 3. More suitable for scenarios with
limited data: When combined with transfer learning and data
augmentation, it can achieve better results. However, it also has
obvious disadvantages: 1. Information loss: Due to only processing
planar images, some depth information may be lost, leading to less
accurate segmentation results. 2. Not suitable for complex structures:
The 2D model may not be able to accurately segment complex 3D
structures. In summary, the 2D model is suitable for simple medical
image segmentation, with fast computation speed and a simple
algorithm, while the 3D model is suitable for complex medical

FIGURE 4
The Grad-Cam maps analysis for four models. The heatmaps in the latter two columns are displayed on a Jet colour map scale, where blue
represents low correlation, yellow represents medium correlation, and red represents high correlation.
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image segmentation, providing more accurate segmentation results, but
with higher computational complexity and difficulty in data acquisition.
In practical applications, the appropriate model or a combination of 2D
and 3Dmodels can be selected based on the specific characteristics and
requirements of the medical images.

Furthermore, for data augmentation and transfer learning,
simple geometric data augmentation may not be sufficient. Other
image augmentation techniques such as adversarial neural network
techniques, style transfer, and stable diffusion should be considered
to increase the richness of data augmentation. The selection and
training of transfer learning models should also be reconsidered. In
addition to the Resnet50 model, other pre-trained network models
and models based on medical images that have already been trained
should also be tried. Data augmentation and transfer learning should
be organically combined rather than isolated techniques spliced
together. The combination of these two techniques should be
considered from the beginning, starting from the image training
to obtain the pre-trained model, which may yield better results.

Finally, the introduction of confidence maps and Grad-CAM
techniques is intended to better understand the internal operation
mechanism of deep neural network models and provide a more
hierarchical explanation of our new algorithm. However, existing
explainable techniques lack a systematic explanation, only explaining
or displaying the neural network model from a certain layer or result
perspective. There is a lack of relevant explanatory theories for the
overall understanding of model training. This requires us to develop
relevant explanatory theories to reasonably control the model process
at the training level. For example, how does the model change along
with the decrease in loss function during model training? How to
avoid suboptimal points reasonably during model training? How to
prove that what we obtain is not a suboptimal model? Along with
these issues, we also need to delve into the monitorability and
explainability of the training process of deep learning models.

In addition to the calculation of cumulative bladder wall dose
during patient radiotherapy and toxicity assessment, bladder wall
segmentation has important applications in other medical scenarios,
primarily in the following areas:

Bladder wall lesion diagnosis: Bladder wall segmentation can
help doctors accurately analyze the condition of bladder wall lesions,
such as tumors, ulcers, inflammation, etc. By segmenting the bladder
wall, doctors can observe and analyze the morphological, size, and
location characteristics of the lesion area in more detail. This allows
for a comprehensive evaluation of the lesions, aiding in the diagnosis
process. Moreover, it helps in determining the stage and severity of
the lesions, providing valuable information for treatment planning.

Bladder wall disease treatment planning: In the treatment planning
of bladder wall diseases, bladder wall segmentation plays a crucial role
by providing important anatomical information to doctors. By
segmenting the bladder wall, doctors can accurately determine the
relationship between the lesion area and surrounding tissues. This
information is essential in designing tailored treatment plans that
ensure optimal outcomes. Furthermore, bladder wall segmentation
helps in defining the extent of surgical procedures, minimizing the
risk of complications andmaximizing the effectiveness of the treatment.

Bladder wall surgical navigation: Accurate identification and
segmentation of the bladder wall are vital in bladder wall surgery.
By segmenting the bladder wall, doctors can provide precise
information for surgical navigation and real-time positioning. This

allows them to accurately locate the surgical resection area, ensuring
the removal of all abnormal tissues while minimizing the damage to
healthy bladder wall tissues. Ultimately, this improves the safety and
accuracy of the surgery, leading to better patient outcomes.

Bladder wall lesion monitoring: Bladder wall segmentation aids
doctors inmonitoring bladder wall lesions regularly. By segmenting the
bladder wall, doctors can accurately measure and compare the size,
shape, and other key information of the lesion area. This enables them
to monitor the progression of the lesions over time, evaluate the
effectiveness of the ongoing treatment, and make necessary
adjustments to subsequent treatment plans. This proactive approach
ensures timely intervention and helps in optimizing patient care.

Overall, bladder wall segmentation serves as a versatile tool in
various medical scenarios beyond calculating cumulative bladder
wall dose during patient radiotherapy and toxicity assessment. It
enables precise diagnosis, aids in treatment planning, enhances
surgical navigation, and facilitates lesion monitoring, thereby
promoting better patient care and outcomes.

Conclusion

Our study demonstrates that a confidence map-assisted residual
base network can accurately segment bladder walls on a limited-size
data set. Comparedwith the segmentation results of eachmodel alone,
our method originally improves the accuracy of the segmentation
results by combining confidence map guidance with threshold
filtering. Qualitative interpretability analysis also opens up the
black box effect of neural network models and explains the
reasons behind the improvement of the accuracy of our method.
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