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The routing protocol of wildlife monitoring Wi-Fi (Wireless Fidelity) networks
cannot balance node energy consumption, leading to early node death.
Therefore, the research on energy balance in wildlife monitoring Wi-Fi
networks is a hot topic. In order to balance the energy consumption of Wi-Fi
networks and extend the lifespan of wireless networks, we designed the low
energy dynamic routing protocol LEACH-EP (Low Energy Adaptive Clustering
Hierarchy- Energy Prediction) based on energy prediction by analyzing the long-
range dependent characteristics of the remaining energy time series (RETS) of
wireless network nodes. This protocol uses the LSTM (Long Short-Term Memory)
model to predict the remaining energy of network nodes, and then dynamically
plans routes using future remaining energy. We conducted a networking
experiment in the Anzihe Nature Reserve in Chengdu, China, and the Energy
Balance Factor index of the wireless network significantly improved. The Mean
Absolute Error value of network nodes is less than 60mW, which is less than 10%
of the average daily energy consumption of nodes. Half of the surviving network
nodes have achieved an increase to 55.2%, and the network death time has been
extended by 38.6%. The experimental results show that the energy prediction
routing protocol LEACH-EP can significantly extend the node survival life and
balance network energy consumption.
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1 Introduction

Wildlife is a precious ecological resource bestowed upon humans by nature and an
important component of the ecosystem. Strengthening the protection of wildlife species is an
urgent task for the entire society [1]. Researchers collect information on the number,
behavior, distribution, ecological environment, and other aspects of wildlife through wireless
sensor networks (WSNs) deployed in the wild. It can achieve tracking and early warning of
wildlife, providing scientific basis and decision-making support for wildlife protection. This
method does not require manual data collection, but it also has problems such as low
transmission bandwidth and inability to provide timely feedback [2–8], and cannot collect
video and image data captured by infrared cameras.

The Northeast China Tiger and Leopard National Park used to combine cable television
with an infrared camera network, but the network transmission bandwidth was not high [9,
10]. Yu Zhouyan [11] uses Zigbee and 3G networks to transmit wildlife data. The system can
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remotely and automatically monitor wildlife, but is not capable of
transmitting wildlife video. The wireless sensor networks in [12–15]
also have similar drawbacks.

Karunanithy et al. [16] used WSN and IOT technology to track
wildlife and identify their territory, quantity, and behavior. The
disadvantage of this system is that it can only collect location
information. Wotherspoon et al. [17] used a 433 MHz wireless
Lo-Ra module, which can transmit up to 5,500 m of wireless
network transmission distance at a power of 20 dBm and has a
packet loss rate of only 2%. The disadvantage of this system is that it
cannot transmit images and videos. Camacho et al. [18] used a
900 MHz radio frequency network to establish an infrared camera
network in the rainforest. Data was collected through drones, and
the distance between adjacent sensor nodes in this network was only
a few tens of meters. Giordano et al. [19] proposed a farmland
protection monitoring system that uses a Wi-Fi gateway to transmit
node data to the internet. The distance between network nodes and
base stations can reach 500 m, but the system has high power
consumption.

Wi-Fi wireless monitoring networks have solved the
bandwidth problem of video transmission, but there are still
several problems: 1) High energy consumption of Wi-Fi
transmission; 2) Difficult to remotely control and unable to
provide timely feedback on device status; 3) Unable to adapt to
changes in node energy consumption, nodes die prematurely, and
network lifespan is not long.

Therefore, we need to establish a newWi-Fi routing mechanism
to balance the energy consumption of Wi-Fi networks, in order to
reduce Wi-Fi network power consumption, extend service life, and
improve the performance of Wi-Fi networks in complex outdoor
environments.

Generally, we classify WSN routing protocols into two
categories: flat routing and hierarchical routing [20]. The flat
routing protocol is simple and robust, but the network latency is
high and the response speed is slow. Typical planar routing
protocols include Rumor [21], SPIN [22], and SAR [23]. The
hierarchical routing protocol belongs to the cluster routing

protocol, and typical cluster routing protocols include PEGASIS
[24], LEACH [25], HEED [26], etc.

Cluster routing technology meets the needs of WSN in data
collection, environmental monitoring, energy consumption
balancing, and is currently one of the main research directions of
WSN. Heinzelman et al. [25] proposed an adaptive, low-powerWSN
routing protocol LEACH, which lays the foundation for WSN
layered protocols. In cluster routing, cluster head election is a
key issue. The HEED [26] protocol uses probabilistic methods to
generate pre-selected cluster heads, and nodes compete within the
cluster to generate cluster heads.

By using this method, a more uniform cluster head can be
obtained, but it incurs a large cost of cluster head election. The
LEACH-C [27] protocol optimizes cluster head selection through
base stations and transfers node election costs to base stations. The
PEGASIS [24] protocol considers WSN as a chain topology at the
beginning of a chain, which can easily lead to early cluster head
death. The MMR [28] protocol layers nodes based on their distance
from the base station, selecting secondary and primary cluster heads
in different layers. The LEACH-X [29] protocol modifies the cluster
head election threshold function based on the current remaining
energy of nodes, without considering the future energy consumption
of the network.

Due to these clustering low-power routing protocols selecting
cluster heads and updating routes based on lagged and fixed energy
information within an election cycle. Therefore, it is unable to
respond to the latest energy changes of nodes in a timely
manner, which leads to imbalanced network energy
consumption, premature consumption of network node energy,
and premature death of wireless transmission networks.

Therefore, existing clustering routing protocols cannot meet the
needs of wildlife monitoring wireless networks, and more optimized
low-power routing algorithms must be designed in conjunction with
wildlife monitoring environments. We propose a Wi-Fi dynamic
routing algorithm LEACH-EP based on energy prediction by
analyzing the long-range dependent characteristics of the
remaining energy time series (RETS) of network nodes. This

FIGURE 1
Wi-Fi network structure.
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routing algorithm introduces predictive energy into Wi-Fi routing
planning, enabling its routing structure to reflect the current and
future changes in energy consumption of the network, balancing the
overall energy consumption of the Wi-Fi network. This routing
algorithm can better balance the energy consumption of network
nodes, extend the service life of the network, and improve the
stability of the field WSN.

2 Long-range dependent of RETS

2.1 Network description

The Wi-Fi network structure is shown in Figure 1, which is
based on the Lo-Ra network. Due to the high power consumption of
Wi-Fi networks, the communication link is only opened during data
transmission. When users retrieve data from infrared camera nodes,
the server calculates the optimal path from the base station to the
node through a routing protocol and sends control commands to
open the corresponding network node. Due to the limited
communication distance between individual Wi-Fi nodes in the
monitoring area, the network may require multi-level relay stations
(Sinks) to reach the terminal nodes.

The optimal path routing protocol LEACH-EP (Low Energy
Adaptive Clustering Hierarchy Energy Prediction) for our
designed Wi-Fi network considers the residual energy of
network nodes as a time series with long-range dependent
characteristics. The residual energy of network nodes in the
future is predicted through Long Short Term Memory
Network (LSTM), and the residual energy of network nodes is

introduced into the routing cluster head selection function,
Network routing protocols can reflect real-time fluctuations in
network energy. The Remaining Energy Time Series (RETS) of a
network node is composed of the remaining energy values of an
infrared camera every half hour, and the design lifespan of a
network node with one energy replenishment is greater than
160 days.

2.2 ACF of RETS

Theorem: Let RE(t) be a sequence composed of the remaining
energy values of nodes (i.e., infrared cameras) in the network every
half hour, and let t� 1, 2,/,n, n is the sequence length, then, the
autocorrelation function (ACF) of the sequence is shown in Eq. 2.1.

ACF k( ) � n

n − k
×
∑n

t�k+1 REt − μ( ) REt−k − μ( )∑n
t�1 xREt − μ( ) REt − μ( ) (2.1)

where, k is the lag order (k � 0, 1,/, n−1), μ is mean of the
sequence RE.

Proof. Let the mean μ of sequence REis shown in Eq. 2.2.

μ � E RE( ) (2.2)
Let the autocovariance ck of sequence RE be:

ck � 1
n − k

∑n

t�k+1 REt − μ( ) REt−k − μ( ) (2.3)

where, k is the lag order (k� 0, 1,/, n−1).
The ACF of sequence RE is:

FIGURE 2
The ACF values of the RETS of network nodes at 10th node, at 20th node, at 30th node. (A) The daily energy consumption, (B) The RETS, (C) The ACF
values of RETS.
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acf k( ) � ck
c0

(2.4)

Bring Eq. 2.3 into Eq. 2.4, get Eq. 2.5.

acf k( ) � n

n − k
×
∑n

t�k+1 REt − μ( ) REt−k − μ( )∑n
t�1 REt − μ( ) REt − μ( ) (2.5)

This finishes the proof.
Figure 2 show the ACF values of the RETS network nodes.

Figures a, b, and c show the daily energy consumption, the RETS,
and the ACF values of RETS at 10th node, 20th node,30th node.

If we believe that a time series may be long-rang dependence
sequence, then the ACF value of the sequence is greater than zero or
has tailing phenomenon [30]. Figure 2C shows that the ACF value of
the RETS is greater than zero, which indicates that the RETS may be
the long-range dependent sequence.

2.3 Hurst exponent of RETS

Hurst exponent (H) is an index established by H.E. Hurst, a
British hydrologist. The Hurst index (H) established using the
rescaled range (R/S) analysis method is used as an indicator to
determine whether time series data follows a random walk or a
biased random walk process [31].

When 0.5 < H < 1, according to the fractional Gaussian noise
model, time series data has long-range dependence [32].

Through the analysis in Section 2.2, we can see that the RETS
sequence may have long-range dependence. Next, we use the r/s
method to calculate the H index and further determine that RETS
has long-range dependence [33]. The calculation process is as follows:

1. Divide the sequence RS into G groups of non overlapping
subsequences with length n:

x11, x12, . . . ,x1r x21, x22, . . . ,x2r . . . xg1, xg2, . . . ,xgr

2. Calculate the mean value �xi of each group of subsequences
xg1, xg2, . . . ,xgr (i� 1, 2,/,g), as shown in Eq. 2.6.

�xi � 1
n
∑n

j�1xij i� 1, 2, . . . , g j � 1, 2, . . . , n (2.6)

3. Calculated deviation σ ij, as shown in Eq. 2.7.

σ ij � xij − �xi i � 1, 2, . . . , g j � 1, 2, . . . , n (2.7)

4. Calculate cumulative deviation zij, as shown in Eq. 2.8.

zij � ∑j

k�1σ ik i � 1, 2, . . . ,g j � 1, 2, . . . ,n (2.8)

5. Calculate range Ri, as shown in Eq. 2.9.

Ri � max (zij −) min zij( ) i � 1, 2, . . . ,g j � 1, 2, . . . ,n (2.9)

6. Calculate standard deviation Si, as shown in Eq. 2.10.

Si �
�����������
1

n−1∑n

j�1σ ij
2

√
i � 1, 2, . . . ,g (2.10)

7. Get value RSi, as shown in Eq. 2.11.

RSi � Ri

Si
i � 1, 2, . . . ,g (2.11)

The average value RS of each subsequence was obtained, as
shown in Eq. 2.12.

FIGURE 3
The H value of the RETS sequence at node10, 50.
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RS � 1
g
∑g
i�1
RSi (2.12)

Finally, logRS as the explained variable Y and log n as the
explanatory variable X, the data pair (log n, logRS) is obtained
for each grouping Xn(k � 1, 2,/, m), the slope H is estimated by
linear regression, that is, Hurst index.

Figure 3 shows theH value of the RETS sequence. Hurst index is
0.90 at node 10. Hurst index is 0.92 at node 50.

From Figure 3, we can see that theH value of the RETS sequence
is far greater than 0.5, close to 1, indicating that the RETS sequence
has long-range dependent characteristics.

In order to better verify the long-range dependent
characteristics of the RETS sequence of infrared cameras, we
calculated the Hurst index of the RETS sequence of infrared
camera nodes, as shown in Figure 4. The Hurst index of each
node RETS sequence is close to 1, indicating that the daily RETS
sequence of infrared camera nodes has good long-term memory

characteristics, and the daily residual energy of infrared camer
nodes can be predicted.

3 Prediction of residual energy of
network nodes

The Long Short Term Memory (LSTM) [34] model has been
widely used in time series prediction, with unique advantages in
dealing with long-range dependency problems and capturing
nonlinear relationships. And it alleviates the problem of gradient
vanishing caused by backpropagation during training. Therefore, we
use LSTM to predict the remaining energy of network nodes in the
future. The prediction model consists of an LSTM layer, a fully
connected layer, a Dropout layer, and a fully connected layer. The
residual energy prediction network model is shown in Figure 5.

In the training set, a sliding window is used to partition the
training set, as shown in Figure 6. The size of the training set

FIGURE 4
The Hurst index of the RETS sequence of infrared camera nodes.

FIGURE 5
Residual energy prediction model.
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window X for the prediction task is m, and the label is the
remaining energy of the node at time T. Predict the remaining
energy of nodes at the future T+1 time using the remaining
energy of the last m T time nodes. The model predicts the
remaining energy E of network nodes after time T+1 by
moving a sliding window.

4 The low energy dynamic routing
protocol

We construct a new routing algorithm LEACH-EP based on
the LEACH routing protocol and the predicted residual energy of
network nodes. Firstly, the cluster head is selected based on the
remaining energy of the current node in the next day as the main
factor; Then, based on the distance between nodes and cluster
heads, network nodes are clustered. When transmitting data from
network nodes, the distance between ordinary nodes and Sink
nodes is considered. Within a limited distance range, network
nodes directly transmit data to the aggregation node, further
saving energy consumption and improving data transmission
efficiency.

The LEACH-EP algorithm process is shown in Figure 7, and the
specific steps are as follows.

1) Calculate the distance S between each node and other nodes. The
calculation formula for S is as shown in Eq. 4.1.

S � 2arcsin

��������������������������������
sin 2

a

2
+ cos Lat1( ) × cos Lat2( ) × sin 2

b

2

√
× 6378.137

(4.1)
where, Lat1 represents the latitude and longitude of node A, and
Lat2 represents the latitude and longitude of node B; a represents
the difference in dimensions between A and B; a represents the
difference in longitude between A and B, and the unit of S is Km. The
values of Lat1 and Lat2 are obtained from the GPS information of
the infrared camera.

2) Use LSTM to predict the remaining energy Ei of each node in the
next energy cycle, and calculate the average remaining energy �Ei

using formula 4.2.

�Ei � 1
n
∑n

j�1Ei j( ) (4.2)

where, Ei(j) is the predicted residual energy of node i at each time in
the next cycle; �Ei is the average remaining energy of node i in the
next energy cycle, with a duration of 1 day; j represents time
(days), j � 1, 2,/n.

3) Calculate the threshold T(n) for each node to become a new
cluster head node based on the remaining energy of the node and
the number of nodes within a specific distance range. The
threshold calculation formula is shown in 4.3.

FIGURE 6
Sliding window of the model.

FIGURE 7
The LEACH-EP algorithm process.

Frontiers in Physics frontiersin.org06

Song et al. 10.3389/fphy.2023.1331072

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1331072


T n( ) �
pi

1 − pi rmod
1
pi

( )( ) · �Ei

E0
, n ∈ G

0, otherwise

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (4.3)

where, E0 is the initial energy of the node, pi � p · a/n, p is the
proportion of the cluster head node to the total number of nodes N
in the entire network, and a is the number of times the current node has
been a cluster;G represents the set of nodes in the current cycle r that have
not been selected as cluster heads; rmod( 1

pi
) is the number of infrared

camera nodes that have been selected as cluster heads in the current cycle.

4) The node will generate a random number of [0,1]. If the random
number is less than this threshold T(n), then the node becomes
the cluster head.

5) After all cluster heads are selected, the LoRa network broadcasts
the location information of all cluster head nodes. The remaining
ordinary nodes select the closest cluster head to enter the cluster
based on the distance information S, and record their own
identification as the identification number of the cluster head.

6) All nodes have completed clustering and transitioned to the data
transmission phase. Compared to the distance between the cluster
head and the Sink node, ordinary nodes within the cluster can
directly transmit data to the Sink node if the distance to the Sink
node is smaller. This reduces the consumption of network energy.

7) The cluster head node receives data from non cluster head nodes
within the cluster, and sends the data to the Sink node after
calculation and fusion. After running one round in this stage,
proceed to the next round, proceed to step 2), and calculate the
average remaining energy �Ei of the node.

5 Experiment and discussion

Due to the maximum Wi-Fi communication distance of the
infrared camera node being less than 100 m. The Sink node has
photovoltaic power generation, and its energy can be infinitely large.
At the same time, in order to verify the networking capability of routing
protocols in outdoor environments. Therefore, in areas that cannot be
covered by 5G signals, infrared cameras are deployed in a single ormulti
hop manner, communicating with Sink nodes through Wi-Fi.

So, the site for the field experiment is located in the Anzihe
Nature Reserve in Sichuan, China. The nodes of the field infrared
camera network are distributed in an area of 4,000 m × 3,000 m,
and the base station is connected to the internet through 5G
signals. The field infrared camera network consists of 10 Sink
nodes and 100 infrared camera nodes. Each Sink node
communicates with the base station through a network bridge,
with 10 infrared cameras distributed around each Sink node. The
network structure is shown in Figure 8. The duration of Wi-Fi
transmission is determined by the amount of data obtained from
photography and video recording. The Wi-Fi transmission
bandwidth is 10 Mb/s. The parameters of each node in the
network are shown in Table 1.

FIGURE 8
Infrared camera Wi Fi network node distribution.

TABLE 1 Network node parameters.

Parameters Value (mW)

Node initial energy E0 74,000

Photography energy consumption (<15 times/day, 1s/times) 189

Recording energy consumption (<15 times/day, 10s/times) 521

Lo-Ra energy consumption (100 times/day, 3s/times) 105

Wi-Fi energy consumption (times) 653

Infrared fill light energy consumption (<5 times/day, 10s/times) 300

Standby power (24 h) 50
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5.1 Prediction of residual energy of network
nodes

The Mean Absolute Error (MAE) indicator reflects the average
change in the distance between the predicted values of the model
and the true values of the sample, and has the characteristics of
insensitivity to outliers and inclusiveness.

We use the MAE index to evaluate the accuracy of residual
energy prediction for infrared camera nodes, as shown in
formula 5.1.

MAE � 1
N

∑N

i�1 yi − ypre

∣∣∣∣ ∣∣∣∣ (5.1)

where, yi and ypre represent the true and predicted values.

FIGURE 9
The actual and predicted residual energy values of the 10th infrared camera node.

FIGURE 10
The deviation curve between the predicted residual energy values of all nodes in the network and the true residual energy values.
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We use the LSTM model from Section 3 to predict the
remaining energy data of infrared cameras. The infrared
camera captures the remaining energy every 10 min, and the
remaining energy of each life form a time series of remaining
energy in the infrared camera. Conduct two rounds of
experiments on 50 infrared cameras to form the training set
data for the remaining energy time series (RETS). The dataset
contains 100 remaining energy time series samples, each with a
total of 25,920 points. The parameter T of the LSTM model is set
to 10 days, and the sliding window size is set to 20. The model

starts from the 1440th data of each sequence and predicts the
remaining energy of T+1 for the next day.

Figure 9 shows the actual and predicted residual energy values
of the 10th infrared camera node, while Figure 10 shows the
MAE curves of between predicted residual energy values and
actual residual energy values of all nodes in the network. It can
be seen that the MAE value is less than 60mW, which is less than
10% of the average daily energy consumption of nodes,
indicating that it can timely reflect changes in network energy
consumption.

FIGURE 11
Curve of the number of surviving nodes over time.

FIGURE 12
Curve of node energy consumption factor over time.
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5.2 Changes in the number of nodes
surviving over time

In infrared camera wireless networks, once the camera node
runs out of energy, the node cannot do any work, and it may also
affect the transmission of data by other nodes. Therefore, this article
compares the changes in the number of surviving nodes over time in
the network under three protocols: LEACH [25], LEACH-X [29],
and LEACH-EP. Figure 11 shows the curve of the number of
surviving nodes in the network over time.

From Figure 11, it can be seen that the LEACH protocol had
the first node die on the day 64th, the surviving nodes were less
than 50 on the day 84th, and all nodes died on the day 98th; The
LEACH-X protocol causes the first node to die on the 82nd day,
with 50 surviving nodes on the 109th day, and all nodes dying on
the 134th day; LEACH-EP died on the first node on the 99th day,
half of the nodes on the 166th day, and all nodes on the 191th day.
Compared with LEACH and LEACH-X algorithms, the LEACH-
EP algorithm has a greater number of surviving nodes in routing
at all times, and its routing energy balance advantage is obvious.

Compared with the LEACH-X algorithm, the LEACH-EP
algorithm has a delay of approximately 55.2% and 31.5% when the
network energy loss is 50%;When the network energy loss is 95%, the
LEACH-EP algorithm has a delay of approximately 68.8% and 38.6%.

5.3 Energy consumption factor changes
over time

The Energy Balance Factor (EBF) index can reflect the
fluctuations of the residual energy sequence. We use the EBF
indicator to evaluate the overall energy balance performance of
the network. EBF is shown in formula 5.2.

EBF �
���������������
1
N

∑N

i�0 Ei − Eavg( )√
(5.2)

Where Eavg represents the average remaining energy of all
nodes, Ei represents the average remaining energy of all nodes i.

The EBF indicator measures the balance of energy
consumption of sensor nodes by observing the changes in

FIGURE 13
Data packets sent to the base station.
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energy consumption factors over time. The smaller the EBF
value, the stronger the routing protocol’s ability to balance
energy consumption. As shown in Figure 12, without energy
prediction, the EBF of LEACH-X and LEACH-EP remain
consistent; After 45 days, the EBF curve of LEACH-EP is
below that of LEACH-X, indicating that LEACH-EP can
better balance network energy consumption; As time goes
on, the EBF curve of LEACH-X rapidly decreases as nodes
gradually die, and the predicted route EBF changes relatively
smoothly, indicating that LEACH-EP nodes have a longer
survival time.

5.4 Network received data volume

Due to the fact that the infrared camera Wi-Fi network does not
require the establishment of a downlink network from the base station
to the camera node, we only measure uplink data transmission. The
relationship between the data received by the base stations of the
LEACH, LEACH-X, and LEACH-EP algorithms is shown in Figure 13.

From the three curves in Figure 13, it can be seen that the data
volume of the LEACHalgorithmno longer changes in less than 80 days,
the data volume of the LEACH-X algorithm no longer changes in less
than 110 days, and the LEACH-EP algorithm reaches 161 days. By
analyzing the total data volume of the LEACH-EP and LEACH-X
routing protocols, we can find that the data volume of LEACH-EP is
more than 20 times that of the LEACH-X algorithm. It can be seen that
the network life cycle using the LEACH-EP protocol is longer, and the
overall network sends more data. Therefore, the LEACH-EP algorithm
is more optimized overall than the LEACH-X algorithm.

6 Conclusion

In order to reduce Wi-Fi network power consumption, extend
service life, and improve the performance of Wi-Fi networks in
complex outdoor environments. To ensure reliable and stable
operation of the infrared camera wireless network and balance
network energy consumption, we have designed a Wi-Fi dynamic
routing based on energy prediction.

We first analyzed the long-term memory characteristics of the
residual energy sequence of infrared cameras using theHurst index, and
then used the LSTM prediction model to predict the residual energy of
network nodes. Finally, the predicted remaining energy is fed back into
the LEACH-EP routing protocol to achieve dynamic routing planning.

We conducted a LEACH-EP networking experiment in the
Anzihe Nature Reserve in Sichuan, China, testing the number of
Wi-Fi network data transfers and network lifetime indicators. The

wireless network constructed using LEACH-EP achieved a 55.2%
improvement in the survival of half of the network nodes, a 38.6%
extension in network death time, and a significant improvement in
data throughput. Experiments have shown that energy prediction
routing effectively prolongs node survival time and balances
network energy consumption. These indicate that our proposed
routing protocol LEACH-EP has significant advantages and is more
suitable for field monitoring scenarios.
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