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Within a generalized vector autoregressive framework comprising 22 country-
level economic policy uncertainty indices, this study used a 12-period-ahead
forecast error variance decomposition to compute spillovers. The results showed
that although it has been in a downtrend since the third quarter of 2016, the
overall spillover among themajor economies remains high. Net spillover analyses
in either the full or rolling samples illustrated that Singaporewas themost decisive
transmitter of spillovers, followed by Japan. Meanwhile, Ireland, the Netherlands,
Russia, Brazil, Colombia, Italy, and Mexico were clear receivers of net spillover.
After reorganizing the net pairwise spillovers into a directed weighted network,
the core–periphery structure and backbone were extracted, and the diffusion
centrality was calculated to ascertain the key player. Regardless of using the full or
rolling samples, Singapore played an influential role in the diffusion network of
global economic policy uncertainty.
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1 Introduction

Since Klößner and Sekkel [1] confirmed the existence of cross-country spillover among
economic policy uncertainties (EPU), scholars have made many efforts to investigate the
potential determinants of spillover effects [2,3], spillovers between EPU and global markets
[4,5], financial stress [6], and macroeconomic activity [7–9]. An extensive literature has also
empirically analyzed spillovers between EPU and different asset categories, especially for
stocks [10–16], crude oil [17–19], foreign exchange [20], and Bitcoin [21].

Recently, scholars have explored the links among the EPUs of major economies. Gupta
et al. [22] employ the Bayesian Additive Regression Trees (BART) algorithm to analyze
international uncertainty spillover and confirm EPU in Canada is linked to EPU in seven
other countries. Antonakakis et al. [23] reveal a significant uncertainty transmission from
the European Union to the United States, and that EPU changes in the long run tend to be
related to external uncertainty. Gabauer and Gupta [24] investigate spillovers between
categorical EPUs in the United States and Japan based on a time-varying parameter vector
autoregression model (TVP-VAR). The authors find that monetary policy uncertainty is the
main driving force, followed by uncertainties related to fiscal, currency market, and trade
policies. Bai et al. [25] analyze EPU spillovers among major economies in the time and
frequency domains. The authors show that the EPU of the United States dominates others
because the United States is both a major risk spillover contributor and receiver among
major economies. Gupta and Sun [26] find that for the BRICS bloc, incorporating the EPUs
of other countries is conducive to increasing the forecast gains.
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As globalization deepens, the economic policy making by
national governments is increasingly connected to each other and
forms a giant global information diffusion network. In an open
world, no nation’s economic policymaking is truly independent of
the others. Then, how do country-specific EPUs connect with each
other and form a global network? Jiang et al. [3] propose three
underlying EPU spillover channels. The first channel is the rational
expectation channel. With domestic and foreign EPUs,
microeconomic entities would not only postpone their
investments and consumption but also adjust their global
portfolios. The relative change in these behaviors becomes an
important source of economic fluctuation. To alleviate these
disturbances, authorities are inclined to take necessary measures
which actually cause the cross-border transmission of EPU. The
second channel is the transmission of foreign exchange rates and
international trade. Foreign exchange rate volatility causes the cross-
border flow of capital and a change in the terms of trade. This can
adversely affect the balance of payments. The authorities may thus
dynamically modify their original external economic policies, which
would also cause the cross-border transmission of EPU. The third
possible channel is financial markets. Financial market stability has
become one of the targets of monetary policy decisions. Extensive
empirical evidence supports the existence of spillovers between
foreign EPUs and domestic financial markets, thereby enabling
the cross-border transmission of EPU.

Among other studies, Kang and Yoon [27] explore the net
pairwise directional network across nine EPU indices in four
different regimes and show that the Chinese EPU is an
important contributor to the connectedness of the uncertainty
network. Marfatia et al. [28] build a centrality network using the
minimal spanning tree (MST) and a dependency network using
partial correlations to identify the interdependence among global
EPUs. Overall, although existing evidence implies strong links
between EPUs across countries, little effort has been made to
investigate the structure of the global EPU network. To the best
of our knowledge, no study has attempted to identify the key player
according to their importance in the global information diffusion
network. Understanding this is important to achieve global
economic stability and policy coordination.

We fill this gap by revisiting global EPU spillovers from the
perspectives of network topology and information diffusion. We
explore the overall spillover dynamics and net spillover
distributions, and the net pairwise spillover structures to identify
the key player in the global EPU diffusion network.

The most prominent findings are as follows: First, spillovers
among the EPUs of major countries were important, with over 90%
of the forecast variance in the full-sample analysis coming from
spillovers. Although the rolling sample results illustrated that the
overall spillover has been declining since the third quarter of 2016,
nearly 70% of the forecast variance could still be attributed to
spillovers at the end of 2019. In terms of the full-sample net
spillovers, Singapore emerged as the influential transmitter.
Further, spillovers were mainly transmitted from developed
industrial countries to emerging markets.

Second, the full-sample pairwise spillover network showed that
the distribution of all countries’ EPUs in the network were relatively
even; 15 EPUs, excluding those of Brazil, Chile, India, Korea, Italy,
Ireland, and France, are in the core of the net pairwise spillover

network. A star-type sub-network centered on the EPU of Singapore
comprising many influential economic entities, such as the
United States, Germany, and China, and an extended circular
sub-structure was identified in the backbone. Notably, Singapore
and Russia were the two key information diffusion centers in the
full-sample pairwise spillover network.

Third, the rolling sample results showed that Singapore and
Japan were two decisive transmitters of net spillovers. Meanwhile,
Brazil, Colombia, Ireland, Italy, Mexico, the Netherlands, and Russia
were clear receivers of net spillover. Singapore was identified as one
of the two key players in 52 out of 84 rolling sample analyses of the
global EPU diffusion network. Since 2016, Singapore has been
steadily identified as the dominant key player. Together, this
evidence demonstrates that Singapore acts as the key player at
the core of the global EPU information diffusion network.

Our study contributes to the literature by exploring pairwise
spillovers in the global EPU system from the perspectives of network
topology structure and graph theory. We obtained the
core–periphery structure and backbone of the global EPU
network, and calculated diffusion centrality to identify the key
player in the information diffusion network. To the best of our
knowledge, this is the first attempt to identify the influential player
through a more scientific method and not simply via a numerical
comparison.

The rest of our work proceeds as follows: Section 2 first
introduces the data and then describes methods to measure
spillovers, extract the core-periphery structure and backbone, and
calculate the diffusion centrality. Section 3 reports the empirical
results of both the full and rolling sample analyses. Section 4
discusses the implications. Section 5 provides a brief conclusion.

2 Materials and methods

2.1 Data

To measure EPU, we relied on the EPU indices constructed by
Baker et al. [29] based on data mining of newspaper articles
pertaining to the economy (E), policy (P), and uncertainty (U).
We collected all 23 group monthly data from the beginning of
1985 to the end of 2019 including the Global EPU (GEPU_ppp)
index, which is a GDP-weighted average of national EPU indices for
21 countries, from the website, http://www.policyuncertainty.com/
index.html.

Figure 1 shows box and violin plots of the logarithms of all
EPUs. In terms of averages, Mexico had the lowest average EPU of
4.09, while the United Kingdom had the average of 5.2. China and
France also possessed high EPU averages over 5.0. By volatility,
Sweden had the smallest standard deviation (0.21) and fluctuation
range (1.07). Meanwhile, China and Mexico respectively had the
largest standard deviation (0.80) and fluctuation range (3.92),
respectively. In terms of skewness, the EPU indices of
11 countries (Canada, Colombia, France, Germany, Greece,
Ireland, Italy, Russia, Sweden, the United Kingdom, and the
United States) were left-skewed while the other 11 countries
(Australia, Brazil, Chile, China, India, Japan, Korea, Mexico,
Netherlands, Spain, and Singapore) were right-skewed. Compared
to the normal distribution, the EPUs of six countries–Brazil, Greece,
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Ireland, Italy, Korea, and Mexico–exhibited sharp peaks. In general,
the EPU of China had high fluctuations as well as a large average
value; thus, it was deemed to be the source of world economic
uncertainty.

Figure 2 presents the Pearson correlation coefficients among all
EPUs. Remarkably, the overwhelming majority of correlations among
EPUs were statistically significant, except Mexico’s EPU which
illustrated some independence from others. In magnitude, the
strength of correlations between EPUs of individual countries and
GEPU_ppp showed prominent differences. Specifically, the pairwise
correlations between GEPU_ppp and EPUs of Singapore, China,
Canada, the United Kingdom, the United States, and Germany all
exceeded 0.8. The correlations between GEPU_ppp and EPUs of
France, Korea, Colombia, Japan, Sweden, Australia, Chile, and Spain
lied between 0.6 and 0.8. Those for Russia, Ireland, Brazil, and Italy were
between 0.4 and 0.6; Greece, India, and Netherlands stayed between
0.2 and 0.4; andMexico did not exceed 0.2. On average, the correlations
between the EPUs of Mexico and other countries were the weakest and
merely 0.07 in magnitude. Correlations among GEPU_ppp, Canada,
Singapore, the United Kingdom, and the United States all exceeded 0.6.
Finally, the EPUs of Brazil, Greece, India, Netherlands, and Russia were
only weakly correlated. From the perspective of correlations, the EPU of
Mexico was distinct.

Visually, the EPUs showed meaningful correlations. However, a
higher contemporaneous correlation does not necessarily indicate
connectedness in the sense that the literature attempts to measure it.

2.2 Methodology

2.2.1 Measuring spillovers
Consider a multivariable covariance stationary process

described by the vector autoregression model with p lags
(VAR(p) model) whose roots of the matrix lag-polynomial |B(z)|
lie outside the unit circle (Eq. 1):

Y t � B1Y t−1 + B2Y t−2 +/ + BpY t−p + εt (1)

where Yt denotes the EPU indices for all 22 countries at time t = 1, 2,
. . ., T; B1, B2, . . ., Bp represent the coefficient matrices; p represents
the lag order; and εt refers to the white noise with covariance matrix
Σ. The VAR(p) can be rearranged as a vector moving average
representation (Eq. 2) as follows:

Y t � ψ L( )εt (2)
where ψ(L) = [B(L)]−1.

Within the generalized VAR framework of Koop et al. [30] and
Pesaran and Shin [31], the H-step-ahead forecasting error variance
decompositions denoted as θij(H) (Eq. 3) can be represented as:

θij H( ) � σ−1jj∑
H−1
h�0 e′iψh∑ej( )

2

∑H−1
h�0 e′iψh∑ψ ′

hei( )
(3)

where Σ is the variance-covariance matrix of error vector ε; σjj is the
standard deviation of the error term in the jth equation; and ei is the
selection vector, in which the ith element equals 1 and others equals 0.

To calculate the spillover index, following Diebold and Yilmaz’s
[32] methodology, each entry in the variance decomposition matrix
was normalized by the row sum as follows:

~θij H( ) � θij H( )
∑N

j�1θij H( ) (4)

Based on Eq. 4, the total spillover index (Eq. 5) can be
constructed as:

S H( ) �
∑N

i,j�1
i ≠ j

~θij H( )

N
· 100 (5)

For the EPU of country i which receives spillovers from the EPU
of country j, the directional spillover (Eq. 6) can be written as:

FIGURE 1
Descriptive statistics of all EPU Indices. The red and green dots in box plot represent the median and the mean, respectively.
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Sji H( ) �
~θij H( )

∑N
j,k�1~θjk H( ) · 100 (6)

Analogously, the spillover transmitted from the EPU of country
i to that of country j (Eq. 7) is:

Sij H( ) �
~θji H( )

∑N
i,k�1~θik H( ) · 100 (7)

Furthermore, the directional spillovers transmitted from the
EPUs of other countries to the EPU of country j, and the spillovers

transmitted from the EPU of country j to the EPUs of other
countries (Eqs 8, 9) are respectively calculated as follows:

S.j H( ) �
∑
N

i�1,i ≠ j

~θij H( )

∑
N

j,i�1
~θij H( )

· 100 (8)

Sj. H( ) �
∑
N

i�1,i ≠ j

~θji H( )

∑
N

j,i�1
~θji H( )

· 100 (9)

FIGURE 2
Correlogram of all EPU indices.
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Then, the net and net pairwise spillovers (Eqs 10, 11) can be
respectively obtained as follows:

Sj H( ) � S.j H( ) − Sj. H( ) (10)
SNji H( ) � Sji H( ) − Sij H( ) (11)

2.2.2 Identifying the rich-core in net pairwise
spillover network

As one of the key meso-scale structures in complex networks, a
core/periphery structure is often observed in many networks. In this
structure, the core refers to a group of central and densely connected
nodes governing the overall behavior (flows, impact adaptability,
flexibility, controllability, etc.) of a network. To discriminate the
two-class partition in the EPU spillover network without relying on
traditional subjective fine-tuning, we used the rich-core method,
which theoretically couples the underlying principle of a rich club
with the escape time of a randomwalker. The persistence probability
of cluster Sc related to the escape time (Eq. 12) is:

αc �
∑i,j∈Scπimij

∑i∈Scπi
(12)

where πi denotes the probability a random walker in node i, and mij

refers to the probability of a random walker moving from node i to
node j. The core boundary can be determined by locating the point
at which the transition of the different persistence probabilities
accelerates.

To determine the core of the net pairwise spillover network, we
followed the standard procedure proposed by Ma and Mondragón
[33] as follows:

a. Rank nodes in the decreasing order of their weight;
b. Evaluate the number of links k+ between the node with rank r

and nodes with rank r’<r; and
c. Find the boundary of the core, defined by node r* where

kr*
+>kr+ for all r > r*.

2.2.3 Extracting the backbone of pairwise spillover
network using multi-scale reduction algorithm

To extract the backbone of the net pairwise spillover network, we
introduced a measure of the fluctuations in the weights attached to a
node. The weights of edge-linking node i with its neighbor j (Eq. 13)
can be normalized as follows:

TABLE 1 Unit-root tests for country-level EPUs.

Type Lag selection Statistics

Australia drift AIC −3.9300

Brazil drift AIC −5.3902

Canada drift AIC −5.0940

Chile drift AIC −4.7465

China drift AIC −5.0552

Colombia drift AIC −5.0205

France drift AIC −3.6754

Germany drift AIC −4.5074

Greece drift AIC −4.0580

India drift AIC −4.4027

Ireland drift AIC −6.2521

Italy drift AIC −4.6444

Japan drift AIC −4.0085

Korea drift AIC −4.5954

Mexico drift AIC −5.6119

Netherlands drift AIC −4.6035

Russia drift AIC −5.2952

Spain drift AIC −3.7898

Singapore drift AIC −4.3857

Sweden drift AIC −4.9425

United Kingdom drift AIC −4.7624

United States drift AIC −4.4712

Note: critical values at 1%, 5% and 10% significant levels are −3.46, −2.88 and −2.57, respectively.
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pij � ωij/si (13)

where si represents the strength of node i and ωij denotes the weight
of connections between i and j. By introducing the disparity function
defined in Serrano et al. [34], we can distinguish that a few edges
carried a disproportionate fraction of the node’s strength while the
remaining edges carried only a small fraction. Regarding extracting
the backbone, we were typically interested in identifying all edges
with weights accounting for a significant fraction of the local
strength and the weight magnitude of each given node. In this
logic, introducing a null model that defines the relevant part of the
signal owing to the specific and relevant organizing principles of the
network structure is vital. Serrano et al. [34] propose such a null
model and deduce its statistical properties. Then, the connections for
every node belonging to the backbone with statistical significance
can be extracted.

2.2.4 Calculating the diffusion centrality
Centrality is a fundamental network property that ranks the

nodes based on their structural importance. Banerjee et al. [35]
propose a new centrality measure, namely, diffusion centrality, to
depict how “central” the nodes are in their social network with
regard to spreading information. Diffusion centrality (Eq. 14) is
defined as the row sum of the following matrix:

S � ∑
T

i�1
q × g( )t (14)

where q represents the passing probability in a probability matrix, in
which each cell measures the probability that node i reaches node j, and
g refers to the adjacency matrix. Each element in S measures the
aggregate propensity that i reaches j in T iterations. Each row sum of
matrix S reveals the importance of a node in disseminating information.

3 Results

To mitigate the heterogeneity in raw data, we used the
logarithms of all 22 national EPU indices to build a generalized
VAR model. Table 1 illustrated that for all country-level EPUs the
null hypotheses of non-stationarity were rejected at 1%
significance level.

The Schwarz Information Criterion was used to determine the
optimal lag within the maximum length of eight. The 12-period-
ahead forecast error variance was employed to calculate the spillover
indices. As a robustness check, we also tried different forecast
horizons and found that spillover indices fluctuated in a very
narrow range surrounding the result we reported, which is
consistent with the sensitivity analysis in Diebold and Yilmaz [32].

FIGURE 3
Net spillovers of full-sample among all countries EPUs.
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3.1 Full sample analysis

The full sample overall spillover was 93.19%, indicating that
more than 90% of the forecast variance comes from spillovers. This
result confirms the importance of analyzing information
transmission and diffusion in the global network of EPUs.

Figure 3 displays the full-sample net spillovers of all countries’
EPUs. Notably, Singapore had the largest positive net spillover, thus
emerging as an important transmitter. The net spillovers of Ireland,
the Netherlands, Russia, Brazil, Colombia, Italy, Mexico, India,
China, Chile, Spain, Germany, and Korea were negative,
indicating that they are receivers of net spillovers. The net
spillovers of Greece, Sweden, the United States, France, Australia,
the United Kingdom, Canada, and Japan were positive, indicating

that they are transmitters of net spillovers. Visually, a linear
relationship among the net spillovers of all countries, except
Singapore, can be observed. However, the magnitude of the full-
sample net spillover effect was not linearly correlated with the
economic strength of each country. Comparatively, the result of
the full-sample net spillover seems to support the traditional two-
class partition of developed versus developing countries: spillovers
of policy uncertainties were mainly transmitted from developed
industrial countries to emerging markets. Interestingly, the EPU of
the United States barely exhibited characteristics as a transmitter,
with its net spillover effect being very limited compared to its
economic strength.

Further, 231 net pairwise spillovers were obtained in the full-
sample analysis. However, theoretically, it is a very hard task and
barely impossible to identify the most influential players in such a
tedious system. Fortunately, graph theory and network analysis
techniques are suitable for this task. Taking each country as a
node and net pairwise spillovers as links between different nodes,
a directed and weighted network comprising 22 vertices and
231 edges was built. Each country constituted one vertex. The
sign of pairwise spillovers pointed the direction of net spillover
between two vertices, while the magnitude of pairwise spillovers
reflected the strength of the edge connecting two vertices.

Figure 4 illustrates the network topology graph of the full-
sample pairwise spillover. The diameter of full sample pairwise
spillover network was 0.11, which shows that it is a typical
“small world” and the transmission of EPUs is easy.

Before identifying the key player in the global EPU network, we
first identified the core-periphery structure of the pairwise
spillover network.

Figure 5 and Table 2 respectively showed the identified core-
periphery structure and relevant calculations based on the rich-core
methodology. In Figure 5, purple vertices and green vertices
respectively referred to the core and periphery structures of full
sample pairwise spillover. The core of pairwise spillover network was
comprised of 15 countries who governed the overall behavior of
global EPU network. Seven nodes, including two American
countries (Brazil and Chile), two Asian countries (India and
Korea) and three European countries (Italy, Ireland, and France)
were discriminated as lying in the periphery structure of pairwise
spillover network. The relative core size was 15/22 ≈ 0.6818, which is
higher than other real networks and implies that the EPUs network
is not only more flexible and adaptable to changes but also hard to be
controllable [36]. The highest ranked nodes in the core (Greece,
Japan, Mexico and Singapore) confirmed the diffusion of economic
policy uncertainty not only among different regions and continents
but also between developed and emerging markets. In the context of
global economic opening and cooperation, it is hard for any country
to stand aloof when making her own policies. Logically, influential
players should arise from the core of pairwise spillover network.

Next, the filtering method proposed by Serrano et al. [34] was
utilized to extract the backbone of the pairwise spillover network.
Figure 6 shows the backbone of the full-sample pairwise spillover
network at the 5% significance level. We took the left lower part in
Figure 6 as a star-type sub-network and the right lower part as an
extended circular sub-structure, respectively. The star-type sub-
network involved many influential countries with significant
economic power throughout Europe (Germany), America (the

FIGURE 4
Network topology graph of full-sample pairwise spillover.

FIGURE 5
Core-periphery structure with strong ties above the average. The
purple and green vertices refer to the core and periphery structures of
full-sample pairwise spillover, respectively.
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United States, Colombia, and Mexico), and Asia (China and South
Korea). In the star-type sub-network, Singapore was vital for
ensuring network functioning and played an important role as
the central player which was connected to other nodes. Without
Singapore, the fundamental network links would lose, which
illustrates that Singapore is important. In addition, Japan, Italy,
the Netherlands, and Australia together with India, formed an
extended circle. Japan and Australia were two key nodes in
maintaining this circle steady and functioning. Based on all
evidences, Singapore, Japan, and Australia all have potentials to
be key players of global EPU network.

Who is the most influential player in the global EPU diffusion
network? Which country’s EPU change influences others the most?
The answer to these questions is equivalent to how to useful
information can be implanted into social networks to benefit the
maximum number of people. If we could successfully locate the key
player, some targeted intervention mechanisms could be established
in the future to reduce the uncertainty of global economic policies.
Therefore, we must revisit every single node from the perspective of
information diffusion, but not traditional degree centrality or
closeness centrality. The information diffusion model provides a

new centrality measure of the effectiveness of alternative injection
points, and differs from standard centrality measures and even
performs better.

To locate the key player, we calculated the diffusion centrality, as
defined by Banerjee et al. [35]. Two key players were identified:
Russia and Singapore. These two countries are located at the
centrality of the full-sample pairwise spillover network from the
perspective of information diffusion. Together with the analysis of
the core-periphery structure and backbone, the results imply that
Singapore is located in the key position of the global EPU
diffusion network.

3.2 Rolling sample analyses

Considering the many changes which occurred during our
sample interval, full sample results as “average” spillover behavior
are likely to miss potential important secular and cyclical
movements. Thus, a rolling window size of 120-month was built
to calculate varying spillover dynamics. Choosing this window is a
trade-off between degree of freedom and forecast horizon. We also

TABLE 2 Identified rich-core in global EPU network.

Sigma_in Sigma_out Sigma_all RANK RANK_out RANK_in CP_in CP_out CP_all

Australia 119.06 66.94 186.00 7 7 19 0 1 1

Brazil 0.00 84.17 84.17 19 19 3 1 0 0

Canada 123.59 26.96 150.55 10 10 15 0 1 1

Chile 102.32 405.47 507.79 18 18 5 1 0 0

China 412.96 131.31 544.27 11 11 14 0 1 1

Colombia 235.21 190.21 425.42 6 6 20 0 1 1

France 127.02 422.71 549.73 16 16 11 0 0 0

Germany 23.26 11.64 34.90 9 9 7 1 1 1

Greece 172.68 0.00 172.68 1 1 22 0 1 1

India 0.00 125.79 125.79 20 20 1 1 0 0

Ireland 74.62 247.58 322.20 21 21 2 1 0 0

Italy 333.05 157.20 490.25 22 22 6 1 0 0

Japan 83.73 0.00 83.73 2 2 17 0 1 1

Korea 347.55 59.87 407.41 17 17 10 0 0 0

Mexico 273.94 247.14 521.08 3 3 18 0 1 1

Netherlands 214.65 107.82 322.47 8 8 12 0 1 1

Russia 460.92 430.52 891.43 15 15 9 1 1 1

Singapore 102.47 100.82 203.29 4 4 21 0 1 1

Spain 107.62 258.20 365.81 12 12 8 1 1 1

Sweden 174.92 31.88 206.81 5 5 16 0 1 1

United Kingdom 101.16 136.62 237.78 14 14 4 1 1 1

United States 245.80 323.91 569.71 13 13 13 0 1 1

Notes: For a directed and weighted network, a rich–core does not only depend on the weight of nodes but also the direction of their links. Thus, each node was assigned to sigma links according

to the rich-core method. The importance of nodes were ranked in descending order of their degree. “CP” stood for core-periphery structure, in which “1”refers to nodes in core and

“0”corresponds to nodes in periphery.
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tried different rolling window sizes within a meaningful range, and
no significant differences were found; thus, the empirical results
were robust. In large systems, small sample bias may occur; hence,
we used a parametric bootstrap, as suggested by Engsted and

Pedersen [37], to obtain unbiased estimates of
connectedness measures.

Figure 7 illustrates the overall spillover dynamics of the rolling
sample. Three segmented trends appeared: from December 2012 to
September 2013, the overall spillover dynamic declined from 78.72%
to 75.97%; from October 2013 to July 2016, it rose from 77.44% to
81.33%; and from August 2016 to November 2019, it was again in a
downtrend, falling from 80.68% to 69.19%. Our findings are
consistent with recent political developments that highlight the
fraying consensus on the benefits of cross-border economic
integration. The rise of unilateralism, represented by “the
United States first,” to some extent weakens the positive spillover
of global economic policy coordination. A potential widening of
global imbalances together with sharp exchange rate fluctuations,
should those occur in response to major policy shifts, could further
intensify protectionist pressures. Increasing restrictions on trade and
migration would hurt global economic growth, and take an
immediate toll on market sentiment.

Figure 8 shows the distributions of rolling-sample net
spillovers. Besides heterogeneity, some of the 22 countries
had steady transmitting/receiving characteristics: Singapore
and Japan were the two decisive transmitters of net spillover,
and Brazil, Colombia, Ireland, Italy, Mexico, the Netherlands,
and Russia were clear receivers of net spillover. Notably,
emerging markets and developing countries mainly received
net external spillovers. Meanwhile, developed countries tended

FIGURE 6
The backbone of full-sample pairwise spillover network. This
disparity backbone includes entirely the top 5% of the heaviest edges.

FIGURE 7
Rolling-sample overall spillovers.
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to transmit net external spillovers, except Germany, Italy, and
the Netherlands. As an important country of the Eurozone,
Germany played the role of a stabilizer. The net spillover of
United States’ EPU was narrowly distributed around zero,
which may imply that its influence is not as strong as
imagined. Besides, China barely transmitted net external
spillovers, which strongly refutes the theory that “China is
a threat.”

Figure 9 shows the frequency of the main countries identified as
one of the two key players in the rolling-sample net pairwise
spillover networks. Again, Singapore appears to be the most
important information hub of the global EPU network and has
been identified in 52 out of the 84 rolling-sample analysis on the
global EPU diffusion network. Ireland and Australia were also
identified most frequently than other countries.

Figure 10 depicts the evolution of diffusion centrality in the
rolling sample pairwise spillover network. Before 2015, countries
other than Singapore acted as the key player. In 2015, the
information center of the global EPU network gradually moved
from other countries to Singapore. Since 2016, Singapore has been
steadily identified as the dominant key player.

Considering the full sample results as well as the stability of the
rolling sample results, the EPU of Singapore has played a very crucial
role as an information diffusion center in the global EPU
network since 2016.

4 Discussion

Why is Singapore most frequently identified as the key player?
In our opinion, it is both Singapore and not Singapore that lies at the
information diffusion center.

Specifically, Singapore lies at the information diffusion center of
the global EPU network due to the following considerations: First,
economically, Singapore is an export-oriented economic country
with unique characteristics, and thus, easily becomes the
thermometer of global economic fluctuations. Singapore adheres
to economic diplomacy, and aggressively pursues trade and
investment liberalization. Its economic activities rely heavily on
American, European, Japanese, and other surrounding markets,
making Singapore’s economic policy very sensitive to uncertainty.
Singapore is also a principal participant in the global industrial chain
and international specialization. It is not only the biggest
shipbuilding base in Southeast Asia but also the world’s third
largest petroleum refining center. As a world-class transshipment
port and the fourth important global international finance center,
Singapore has all necessary conditions of receiving and
transmitting EPU.

Second, geographically, Singapore is a gateway city that lies at
the outpost of Western people’s perceptions of Eastern civilization.
It is not only a crucial international trade hub but also a key air
harbor that connects Asia, Europe, Africa, and Oceania. This

FIGURE 8
Distribution of rolling-sample net spillovers.
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advantageous geographical location endows the country with
incomparable innate advantages in cross-cultural communication.
This may explain why Singapore is capable of being the hub of the
EPU diffusion network.

Despite this, that it is not Singapore which lies at the
information diffusion center of the global EPU network
stems from statistical facts. Singapore’s EPU is highly
related to the GDP-weighted average of national EPUs. In
the full sample, the contemporaneous correlation between
Singapore’s EPU and GEPU_ppp reached 0.99. That is,
Singapore’s EPU can be reasonably considered as the weighted
average of all countries’ EPUs. Logically, Singapore’s EPU is
more likely to be identified as the core of the global
EPU network.

The implications of our findings are clear. Regardless of how
the tide of anti-globalization reshapes the world economy,
policy-relevant uncertainties are interconnected across the
world. As the empirical results showed, the EPU of none of
the countries is capable of dominating the global EPU diffusion
network. Rather than strenuously tracking the change in the EPU
of a single country, paying close attention to global EPU is
probably more conducive for macroeconomic stability.
Likewise, unilaterally accusing others of being troublemakers

FIGURE 9
The frequency of main countries as key player identified by diffusion centrality.

FIGURE 10
The evolution of diffusion centrality in rolling-sample pairwise
spillover network. The vertical coordinate is a binary variable in which
1 denotes Singapore being identified as the key player and 0 denotes
other countries being identified as the key player.
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is helpless for global economic recovery. Cooperation is the only
way to solve globalized issues.

5 Conclusion

To identify the most influential player in the global EPU
network, we included 22 country-level EPUs to build a large
VAR system and used a 12-period-ahead forecast error variance
decomposition to calculate the spillovers. We found a high overall
spillover value, confirming the importance of spillovers. With
conspicuously large positive net spillovers, Singapore emerged as
the most powerful transmitter of spillovers. After reorganizing the
pairwise spillovers into a directed weighted network, the core-
periphery structure and backbone were extracted. Furthermore,
the diffusion centrality was calculated to ascertain the key player
in the information diffusion network. Singapore was most
frequently identified as the key player. Our work reveals a
promising new research direction surrounding economic policy
risk spillover and contagion. Further work can focus on the
process of formation of the global EPU dynamic diffusion network.
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