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Cubic fuzzy graphs (CFGs) offer greater utility as compared to interval-valued
fuzzy graphs and fuzzy graphs due to their ability to represent the degree of
membership for vertices and edges using both interval and fuzzy number forms.
The significance of these concepts motivates us to analyze and interpret intricate
networks, enabling more effective decision making and optimization in various
domains, including transportation, social networks, trade networks, and
communication systems. This paper introduces the concepts of vertex and
edge connectivity in CFGs, along with discussions on partial cubic fuzzy cut
nodes and partial cubic fuzzy edge cuts, and presents several related results with
the help of some examples to enhance understanding. In addition, this paper
introduces the idea of partial cubic α-strong and partial cubic δ-weak edges. An
example is discussed to explain the motivation behind partial cubic α-strong
edges. Moreover, it delves into the introduction of generalized vertex and edge
connectivity in CFGs, along with generalized partial cubic fuzzy cut nodes and
generalized partial cubic fuzzy edge cuts. Relevant results pertaining to these
concepts are also discussed. As an application, the concept of generalized partial
cubic fuzzy edge cuts is applied to identify regions that aremost affected by trade
deficits resulting from street crimes. Finally, the research findings are compared
with the existing method to demonstrate their suitability and creativity.
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1 Introduction

Graph theory plays a vital role in numerous disciplines, including mathematics,
engineering, physical sciences, social sciences, biology, computer science, linguistics, and
more. The concept of fuzzy graphs emerges from the recognition that networks can exhibit
ambiguity or uncertainty. This constitutes a crucial area of research. Traditional graphs face
limitations in adequately capturing the uncertain attributes of network measurements, such
as robust connections, accomplished individuals, and influential figures within social
networks. In contrast, fuzzy graphs offer a more effective representation of these less-
defined aspects. The acknowledgment of uncertainty in specific aspects of graph theory
problems has spurred the evolution of fuzzy theory. The concept of fuzzy set (FS) theory, an
extension of the classical set notion, was introduced by Zadeh [1] in 1965. Building upon
this theory, Zadeh proposed a mathematical approach that enables decision-making
problems through the use of fuzzy descriptions. In 1975, Rosenfeld [2] introduced fuzzy
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graph theory, combining the concepts of FS theory and graph
theory. Around the same time, Yeh and Bang [3] also introduced
the concept of fuzzy graphs (FGs). FGs find application in various
scientific and engineering fields, such as broadcast communications,
artificial reasoning, data hypothesis, and neural systems. Akram
et al. [4] presented the idea of m-polar fuzzy hypergraphs, m-polar
fuzzy line graphs, dual m-polar fuzzy hypergraphs, and 2-section of
m-polar fuzzy hypergraphs.

FG theory is a significant and extensive area of research with a
primary focus on connectivity. Different fuzzy connectivity measures
were discussed in [5–14], 15–19. Mathew and Sunitha [20, 21]
examined the concepts of edge connectivity, vertex connectivity,
and cycle connectivity in FGs. Banerjee [22] and Tong and Zheng
proposed various algorithms for analyzing connectivity in FGs. Ali
et al. [23] discussed the notion of t-connected fuzzy graphs and
average fuzzy vertex connectivity. Ahmad and Nawaz [24] explored
the application of connectivity in directed rough graphs for trade
networking. Shang [25] introduced some asymptotic results on
r-super connectedness for classical Erdos–Rényi random graphs as
the number of nodes tends to infinity. Su et al. [26] presented
sufficient conditions in terms of the forgotten topological index for
a graph to be l-connected, l-deficient, l-Hamiltonian, and
l-independent, respectively. Binu et al. investigated the connectivity
index of FGs and its application in the context of human trafficking.
Mandal and Pal [27] introduced the concept of the connectivity index
of m-polar fuzzy graphs and discussed the boundedness of the
connectivity index. Amer et al. [28] calculated the edge-based
counterparts of several notable topological degree-based indices,
including the Randic index, sum-connectivity index, Zagreb
indices, atom–bond connectivity (ABC) index, harmonic index,
and geometric–arithmetic (GA) index for Boron triangular
nanotubes. Irfan et al. [29] derived closed forms for

M-polynomials pertaining to the line graphs of H-naphthalenic
nanotubes and chain silicate networks. Using these M-polynomials,
various topological indices based on degrees were obtained. The
characteristics of fuzzy trees were studied by Sunitha and
Vijayakumar [30] in 1999, while Mathew et al. [31] examined the
characterization of fuzzy trees and cycles using saturation counts.
Mordeson et al. [32] analyzed the properties of different types of fuzzy
bridges and fuzzy cut vertices in FGs. Bhutani et al. introduced the
concept of strong edges in fuzzy graphs and also discussed fuzzy end
nodes in [33]. Talebi et al. [34] presented the idea of weak
isomorphism, self-weak complementary, and co-weak isomorphism
on vague graphs. Talebi et al. [35] investigated relations among union,
join, and complement operations on bipolar fuzzy graphs. Mathew
and Sunitha proposed various types of arcs, such as α-strong, β-
strong, and δ-edges, in FGs [36]. Karunambigai et al. [37] introduced
different types of arcs in intuitionistic FGs. Akram et al. [38] presented
the idea of strong edges for m-polar fuzzy graphs in 2021. Naeem et al.
[39] proposed the connectivity index for intuitionistic FGs. Last, Binu
et al. [40] introduced the concept of the cyclic connectivity
index in 2020.

Zadeh [41] proposed interval-valued fuzzy sets (IVFSs) as an
extension of FSs, where membership degrees are represented by
interval numbers instead of single points. Akram [42] presented the
idea of interval-valued fuzzy line graphs and discussed some of their
properties. Talebi et al. [43] introduced novel concepts of interval-
valued intuitionistic fuzzy graphs (IVIFGs). Talebi et al. [44]
introduced the concept of interval-valued intuitionistic fuzzy
competition graphs of an interval-valued intuitionistic fuzzy
digraph and investigated their properties. Rashmanlou et al. [45]
introduced the concept of several types of interval-valued
intuitionistic (S, T)-fuzzy graphs and also introduced different
kinds of arc interval-valued intuitionistic (S, T)-fuzzy graphs.

TABLE 1 Abbreviations.

Description Abbreviation Description Abbreviation

Fuzzy sets FSs Fuzzy set FS

Fuzzy graphs FGs Fuzzy graph FG

Interval-valued IVFS Intuitionistic fuzzy IFG

fuzzy set graph

Interval-valued intuitionistic IVIFGs Cubic fuzzy sets CFSs

fuzzy graphs

Cubic fuzzy set CFS Cubic fuzzy graph CFG

Cubic Pythagorean CPFGs Cubic fuzzy graphs CFGs

fuzzy graphs

Strength of path S(P) Strength of (CONN∞
R )

connectedness

Partial cubic fuzzy PCFEC Partial cubic fuzzy PCFCN

edge cut cut node

Generalized partial cubic GPCFEC Generalized partial cubic GPCFNC

fuzzy edge cut fuzzy node cut
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In 2012, Jun et al. [46] introduced cubic fuzzy sets (CFSs) as a
combination of IVFSs and FSs, offering amore generalized approach
for handling uncertainty. They also provided an explanation of basic
properties and operations.

Jun et al. [27] further extended the CFS by merging it with the
neutrosophic complex, giving rise to the neutrosophic CFS.
Cubic fuzzy sets present clear advantages compared to other
fuzzy set types, such as interval-valued or general fuzzy sets.
Their distinctive shape and parameters offer exceptional
flexibility for modeling uncertainty. This flexibility allows for a
more precise representation of complex relationships within a
specific domain. The enhanced decision-making and reasoning
capabilities of cubic fuzzy sets make them invaluable tools in
various fields that depend on accurately modeling uncertainty. In
2018, Rashid et al. [47] introduced cubic fuzzy graphs (CFGs)
based on CFSs. However, the initial definition of CFGs proposed
by Rashid et al. [47] was later found to be incorrect, and a revised
definition was provided by Muhiuddin et al. [48] in 2020. Fang
et al. [49] discussed the planarity in cubic intuitionistic graphs
and also introduced the concept of the degree of planarity in
cubic intuitionistic planar graphs. Muhiuddin et al. [50] worked
on cubic Pythagorean fuzzy graphs (CPFGs) and introduced
certain fundamental operations, such as the lexicographical
product, semi-strong product, and symmetric difference of
two CPFGs. Muhiuddin et al. [51] discussed the concept of
strong and weak edges for cubic planar graphs in 2022. In
real-world scenarios, fuzzy graph ideas prove effective in
describing certain phenomena, while interval-valued graph
concepts excel in others. However, for more intricate
phenomena that cannot be adequately represented by either of
these approaches alone, a combination of both becomes valuable,
referred to as cubic fuzzy graphs. An example illustrating
the utility of this combined modeling approach is in
addressing the trade deficit problem. When decisions require
consideration of the past, present, and future simultaneously,
cubic fuzzy graphs prove quite advantageous. They serve as a
valuable tool for visually representing information spanning
multiple time dimensions, offering a comprehensive view of
the situation at hand.

1.1 Motivation and contribution

CFGs offer a more advantageous representation by integrating
the membership degree of vertices and edges in both interval and
fuzzy number forms. This enhanced representation fosters a more
profound and detailed understanding of the connections and
uncertainties inherent in the graph’s structure. The following
features of edge cuts and cut nodes in CFG theory serve as the
motivation for presenting this paper:

• While FGs or IVFGs may suffice for resolving certain practical
problems, more intricate issues often demand a fusion of both.
CFGs present a valuable approach for tackling such complex
problems. Examples encompass traffic flow modeling, trade
deficit modeling, and earthquake modeling, where CFGs can
offer insightful perspectives.

• The motivation behind our research stems from the fact that
the concepts of edge cuts and cut nodes have been well
documented in the literature for crisp and fuzzy graphs,
and their counterparts in CFGs are not widely known.
Investigating their relevance and implications in the context
of CFGs is, therefore, a worthwhile endeavor.

• The analysis of edge cuts and cut nodes holds significant
potential in various decision-making problems, offering
valuable insights and aiding in informed decision-
making processes.

This paper introduces the notions of partial cubic fuzzy edge
cuts, partial cubic fuzzy cut nodes, generalized partial cubic fuzzy
edge cuts, and generalized partial cubic fuzzy cut nodes for CFGs.
It builds upon the substantial significance and wide-ranging
applications of edge cuts and cut nodes in fuzzy networks.
Generalized partial cubic fuzzy edge cuts are particularly
advantageous in addressing practical issues where the concept
of fuzzy edge cuts may not be applicable. In particular, these
concepts become relevant when the IVF-connectivity experiences
a strict decrease upon the removal of a specific edge or any edge,
while the F-connectivity remains equivalent to the F-connectivity
of an edge after its removal or the removal of any specific edge

FIGURE 1
T � (L,K).

FIGURE 2
T � (E, S).
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and vice versa. In scenarios where we have information about the
past, future, and current conditions of a model or problem, we
can represent the past condition as a lower IVF-membership, the
future condition as an upper IVF-membership, and the present
condition as an F-membership value. Our objective is to
scrutinize the problem by deducing lower IVF-connectivity,
upper IVF-connectivity, and F-connectivity. Furthermore, we
aim to make new predictions based on this analysis. In these
situations, IVF-connectivity strictly decreases the IVF-
connectivity of an edge after removing that edge or any
specific edge, while the F-connectivity equates to the F-
connectivity of an edge after removing that edge or any
specific edge and vice versa. To tackle this issue effectively, we
can apply the concept of generalized partial cubic fuzzy edge cuts.
Such problems frequently arise in the analysis of transportation
networks, trading, and decision making under uncertainty and
optimization scenarios. Using the generalized partial cubic fuzzy
edge cuts allows for a more accurate and detailed depiction of the
connections between nodes or edges, enabling better modeling
and evaluation of uncertain or imprecise relationships. It is
important to note that throughout this study, we specifically
focused on simple connected CFGs. The main contributions of
this paper can be summarized as follows:

• The primary objective is to investigate the behavior of edge
cuts and cut nodes in CFGs

• This paper examines the behavior of edge cuts and cut nodes
in specific graph problems, aiming to gain insights into their
properties and applications

• It introduces the concepts of partial cubic fuzzy edge cuts,
partial cubic fuzzy cut nodes, generalized partial cubic fuzzy
edge cuts, and generalized partial cubic fuzzy cut nodes for
CFGs, providing a more comprehensive framework
for analysis

• This paper applies the concept of generalized partial cubic
fuzzy edge cuts to determine centrality in street crime
problems, offering a practical application of the
proposed concepts

• This research aims to enhance the understanding of complex
systems modeled by CFGs and develop effective strategies for
addressing real-world problems, such as analyzing trade
deficits in specific regions through the use of generalized
partial cubic fuzzy edge cuts

The organization of this research is structured as follows: Section 2
presents the necessary definitions and key findings that contribute to the
development of the concept. In Section 3, an in-depth exploration is
conducted on vertex and edge connectivity in CFGs and their
corresponding outcomes. Section 4 specifically addresses the concept
of generalized cubic fuzzy vertex and edge connectivity. The discussion
in Section 5 focuses on the use of generalized partial cubic fuzzy edge
cuts for examining regions impacted by trade congestion resulting from
street crimes. Section 6 offers a comprehensive analysis of the research
conducted. Finally, Section 7 serves as the conclusion of our
investigation. Throughout the paper, we use the abbreviations given
in Table 1.

2 Preliminaries

This section is composed of elementary ideas
affiliated with CFGs.

Definition 2.1. [46]. A CFS X on a non-empty set V is described as

X � 〈 σ− dw( ), σ+ dw( )[ ], σF dw( ) 〉|dw ∈ V{ },
where [σ−(dw), σ

+(dw)] is named as the IVF-membership value and
σF(tw) is named as the F-membership value of dw. The CFS X is
referred to as an internal CFS if σF(dw) ∈ [σ−(dw), σ+(dw)] for dw ∈V;
otherwise, it is called an external CFS.

Definition 2.2. [48]. A CFG over the set V is a pair R � (A, B),
whereA is a CFS inV and B is a CFS inV ×V so that for all (dw−1, dw)
∈ B,

μ− dw−1, dw( ) ≤ ∧ σ− dw−1( ), σ− dw( ){ },
μ+ dw−1, dw( ) ≤ ∧ σ+ dw−1( ), σ+ dw( ){ },
μF dw−1, dw( ) ≤ ∧ σF dw−1( ), σF dw( ){ }.

Definition 2.3. [48]. A CFG Q � (τ,ω) is called a partial cubic
fuzzy subgraph of R � (σ, ]) if

• τ−(g)≤ σ−(g), τ+(g)≤ σ+(g), τF(g)≤ σF(g) ∀ g ∈ τ+

• ω−(gs)≤ ]−(gs),ω+(gs)≤ ]+(gs),ωF(gs)≤ ]F(gs) ∀ gs ∈ ω+

Definition 2.4. [48]. A CFG R � (A, B) is said to be complete if

μ− dw−1, dw( ) � ∧ σ− dw−1( ), σ− dw( ){ },
μ+ dw−1, dw( ) � ∧ σ+ dw−1( ), σ+ dw( ){ },
μF dw−1, dw( ) � ∧ σF dw−1( ), σF dw( ){ },

∀dw−1, dw ∈ B.

Definition 2.5. [48]. A cubic fuzzy path P of length n is a sequence
of distinct vertices d0, d1, d2, _. . ., dn with μ+(dw−1, dw) > 0, μ−(dw−1,
dw) > 0, and μF(dw−1, dw)> 0 for w � 1, 2, 3, _. . ., n. A cubic fuzzy
path P is called a cycle if d0 = dn.

The strength of cubic fuzzy path P � d1, d2, d3, _. . ., dn is
defined as

S P( ) � 〈 L− P( ), L+ P( )[ ], LF P( )〉,
where

TABLE 2 PCFEC of R � (D, F).

PCFEC E S′∞(E)

(ij, jl) 〈[0.7, 1.1], 0.8〉

(ij, kl) 〈[0.6, 1], 0.8〉

(ij, ik) 〈[0.6, 1], 0.9〉

(jl, kl) 〈[0.7, 1.1], 0.8〉

(jl, ik) 〈[0.7, 1.1], 0.9〉

(kl, ik) 〈[0.6, 1], 0.9〉
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L+ P( ) � ∧n
w�1μ

+ dw−1, dw( ), L− P( ) � ∧n
w�1μ

− dw−1, dw( ), LF P( ) � ∧n
w�1μ

F dw−1, dw( ).

The strength of connectedness CONN∞
R among the vertices dw−1

and dw is defined as

CONN
∞
R dw−1, dw( ) � 〈 CONN

−
R dw−1, dw( ),CONN

+
R dw−1, dw( )[ ],

CONN
F

R dw−1, dw( )〉,
where

CONN
+
R dw−1, dw( ) � ∨ L+ P( ): P is a path between dw−1 and dw},

CONN
−
R dw−1, dw( ) � ∨ L− P( ): P is a path between dw−1 and dw},

CONN
F

R dw−1, dw( ) � ∨ LF P( ): P is a path between dw−1 and dw}.
The path P between dw−1 and dwwith L+(P) � CONN+

R(dw−1, dw) is
referred to as the L+-stronger path. Similarly, the L−-stronger and
LF-stronger paths are defined. The L+-stronger, L−-stronger, and
LF-stronger paths are denoted by P+,P−, and PF, respectively.

Definition 2.6. [52]. Let R � (A, B) be a CFG and (dw−1, dw) ∈ B.

1. If μ+(dw−1dw)>CONN+
R−dw−1dw(dw−1, dw),

μ−(dw−1dw)>CONN−
R−dw−1dw(dw−1, dw), and

μF(dw−1dw)>CONNF
R−dw−1dw(dw−1, dw), then dw−1dw is

called a cubic α-strong edge
2. If μ+(dw−1dw) � CONN+

R−dw−1dw(dw−1, dw),
μ−(dw−1dw) � CONN−

R−dw−1dw(dw−1, dw), and
μF(dw−1dw) � CONNF

R−dw−1dw(dw−1, dw), then dw−1dw is
called a cubic β-strong edge

3. If μ+(dw−1dw)<CONN+
R−dw−1dw(dw−1, dw),

μ−(dw−1dw)<CONN−
R−dw−1dw(dw−1, dw), and

μF(dw−1dw)<CONNF
R−dw−1dw(dw−1, dw), then dw−1dw is

called a cubic δ-weak edge

Definition 2.7. [52]. A CFG R is referred to be

• α-saturated if at each node of σ*, there are incident n ≥ 1 α-
strong edges to it

• β-saturated if at each node of σ*, there are incident n ≥ 1 β-
strong edges to it

• saturated if it is α- as well as β-saturated
• unsaturated if it is neither α- nor β-saturated

Example 2.8. consider a CFG T � (L,K) (Figure 1) with
L � i

〈 0.4, 0.5[ ], 0.4〉,
j

〈 0.3, 0.9[ ], 0.5〉,
k

〈 0.3, 0.5[ ], 0.5〉,
l

〈 0.2, 0.8[ ], 0.6〉( ),
K � ij

〈 0.3, 0.5[ ], 0.3〉,
ik

〈 0.1, 0.3[ ], 0.2〉,
jl

〈 0.1, 0.3[ ], 0.2〉,
kl

〈 0.2, 0.5[ ], 0.4〉( ).

The connectivity among the pairs (i, j), (k, l), (j, l), and (i, k) is
computed as follows:

〈 CONN−
T− ij( ) i, j( ),CONN+

T− ij( ) i, j( )[ ],CONNF

T− ij( ) i, j( )〉 � 〈 0.1, 0.3[ ], 0.2〉,
〈 CONN

−
T− kl( ) k, l( ),CONN

+
T− kl( ) k, l( )[ ],CONN

F

T− kl( ) k, l( )〉 � 〈 0.1, 0.3[ ], 0.2〉,
〈 CONN

−
T− ik( ) i, k( ),CONN

+
T− ik( ) i, k( )[ ],CONN

F

T− ik( ) i, k( )〉 � 〈 0.1, 0.3[ ], 0.2〉,
〈 CONN

−
T− jl( ) j, l( ),CONN

+
T− jl( ) j, l( )[ ],CONN

F

T− jl( ) j, l( )〉 � 〈 0.1, 0.3[ ], 0.2〉.
(1)

From Equation 1, if we follow Definition 2.6, it is clear that ij and kl
are α-strong edges and ik and jl are β-strong edges. If we follow

Definition 2.7 CFG T � (L,K) is saturated because all the vertices
of T are incident to at least one α-strong edge and at least one β-
strong edge. Definition 2.6 specifically addresses strong edges,
but by following 2.7, we can also discern the saturation status of
the graph. Moreover, it enables us to understand the extent to
which our graph is interconnected with both strong and
weak edges.

3 Vertex and edge connectivity in a CFG

In this section, we present the notion of a partial cubic fuzzy cut
node, cubic fuzzy vertex connectivity, partial cubic fuzzy edge cut,
and cubic fuzzy edge connectivity and engage in a thorough
exploration of their pertinent findings.

Definition 3.1. A collection of cubic fuzzy vertices denoted as X =
v1, v2, . . . , vn ⊂ σ* within a cubic fuzzy graphR � (σ, μ) is referred to
as a partial cubic fuzzy cut node (PCFCN) if either the removal of X
from R leads to the disconnection of the remaining graph or for
some pair of the vertices t, v ∈ σ* (where t, v ≠ vi for i = 1, 2, . . . , n), at
least one of the following statements holds:

CONN−
R t, v( ),CONN+

R t, v( )[ ]> CONN−
R−X t, v( ),CONN+

R−X t, v( )[ ]
and CONNF

R t, v( )≥CONNF

R−X t, v( ), (2)
CONN

−
R t, v( ),CONN

+
R t, v( )[ ]≥ CONN

−
R−X t, v( ),CONN

+
R−X t, v( )[ ]

and CONN
F

R t, v( )>CONN
F

R−X t, v( ). (3)

If Eq. (2) holds, then a set of cubic fuzzy vertices is referred to as an
IVF cut node, whereas if Eq. (2) and Eq. (3) is satisfied, then it is
referred to as an F cut node. If both Eq. (2) are satisfied for the same
pair of vertices, then it is referred to as a strict cubic fuzzy cut node. If
X contains n vertices, then X is referred to as an n-PCFCN.

Definition 3.2. Let X be a partial cubic fuzzy cut node in R. The
strong weight of X is denoted as S∞(X) and is defined as

S
∞ X( ) � 〈 ∑

t∈X
μ− t, z( ),∑

t∈X
μ+ t, z( )⎡⎣ ⎤⎦,∑

t∈X
μF t, z( )〉,

where μ−(t, z), μ+(t, z) and μFt, z) is the minimum weight of strong
edges incident at t.

Definition 3.3. The cubic fuzzy vertex connectivity of R

denoted by κ∞(R) and κ∞(R) � 〈[κ−(R), κ+(R)], κF(R)〉 is
defined as

κ∞ R( )� ∧X S
∞ X( )( ).

Definition 3.4. Considering R as a cubic fuzzy graph and {V1,
V2} as a partition of its vertex set, the set of edges connecting
vertices from V1 to vertices in V2 is referred to as a cut set of R,
denoted as (V1, V2) with respect to the partition {V1, V2}. The
weight assigned to the cut-set (V1, V2) is defined as

〈 ∑
c∈V1 ,z∈V2

μ− c, z( ), ∑
c∈V1 ,z∈V2

μ+ c, z( )⎡⎢⎣ ⎤⎥⎦, ∑
c∈V1 ,z∈V2

μF c, z( )〉.
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Considering R as a cubic fuzzy graph, the edge connectivity of R is
represented by λ∞(R), and λ∞(R) � 〈[λ−(R), λ+(R)], λF(R)〉 is
defined as

λ∞ R( )� ∧ V1 ,V2( )〈 ∑
c∈V1 ,z∈V2

μ− c, z( ), ∑
c∈V1 ,z∈V2

μ+ c, z( )⎡⎢⎣ ⎤⎥⎦, ∑
c∈V1 ,z∈V2

μF c, z( )〉.

Definition 3.5. For a CF edge dw−1dw in a CFG, if one of the
following holds, then dw−1, dw is called a partial cubic α-strong edge.

1. [μ−R(dw−1, dw), μ+R(dw−1, dw)]≥ [CONNR−dw−1dw (dw−1, dw),
CONN+

R−dw−1dw(dw−1, dw)] and μFR(dw−1dw)>CONNF
R−dw−1dw

(dw−1, dw)
2. [μ−R(dw−1, dw), μ+R(dw−1, dw)]> [CONN−

R−dw−1dw (dw−1, dw),
CONN+

R−dw−1dw(dw−1, dw)] and μFR(dw−1dw)≥CONNF
R−dw−1dw

(dw−1, dw)
The CF α-strong is defined in [52]. However, we note that there

are CFGs which contain edges which are either IVF α-strong and F
β-strong or IVF β-strong and F α-strong but not CF α-strong. These
types of edges seem very close to CF α-strong edges andmay bemore
useful in different CF connectivity problems. The following example
is helpful to understand this situation:

Example 3.6. consider a CFG T � (E, S) (Figure 2) with

E � l

〈 0.3, 0.5[ ], 0.3〉,
j

〈 0.5, 0.9[ ], 0.8〉,
k

〈 0.2, 0.7[ ], 0.5〉,
i

〈 0.4, 0.8[ ], 0.6〉( ),
S � ij

〈 0.3, 0.7[ ], 0.5〉,
ik

〈 0.2, 0.5[ ], 0.5〉,
jk

〈 0.2, 0.5[ ], 0.5〉,(
jl

〈 0.3, 0.4[ ], 0.3〉,
kl

〈 0.1, 0.4[ ], 0.3〉).
The connectivity for the pair i, j is computed as

CONN
−
T− ij( ) i, j( ),CONN

+
T− ij( ) i, j( )[ ] � 0.2, 0.5[ ],CONN

F

T− ij( ) i, j( ) � 0.5,

μ− ij( ), μ+ ij( )[ ] � 0.3, 0.7[ ], μF ij( ) � 0.5.

It is clear that the edge ij is an IVF α-strong edge but an F β-strong
edge. We can see that if we slightly increase the value of the F-
membership of edge ij, then it becomes a CF α-strong edge. So, we
can say that it is very close to a CF α-strong edge. This example
motivates us to define the concept of partial cubic α-strong edge.

Definition 3.7. For a CF edge dw−1dw in a CFG, if one of the
following holds, then dw−1dw is called a partial cubic δ-weak edge.

1. [μ−R(dw−1dw), μ+R(dw−1dw)]≤ [CONN−
R−dw−1dw(dw−1, dw), CONN+

R−dw−1dw
(dw−1, dw)] and μFR(dw−1dw)<CONNF

R−dw−1dw (dw−1, dw)
2. [μ−R(dw−1dw), μ+R(dw−1dw)]< [CONN−

R−dw−1dw(dw−1, dw), CONN+
R−dw−1dw

(dw−1, dw)] and μFR(dw−1dw)≤ CONNF
R−dw−1dw(dw−1, dw)

Definition 3.8. A CFG R is referred to be

• partial α-saturated if at each node of σ*, there are incident n ≥
1 partial α-strong edges to it

• β-saturated if at each node of σ*, there are incident n ≥ 1 β-
strong edges to it

• partial saturated if it is partial α-saturated as well as β-saturated

Definition 3.9. Considering R � (σ, μ) as a CFG, let E = {e1, e2,
. . . , en} be a set of strong edges, where each edge ei can be
categorized as either a partial α-strong or β-strong edge and is
represented as ei = bici for i = 1, 2, . . . , n. Then, E is considered
as a partial cubic fuzzy edge cut (PCFEC) if either R − E
becomes disconnected or at least one of the following
conditions is satisfied for a pair of vertices t and v in σ*, with
the requirement that t or v must differ from both bi and ci.

CONN
−
R t, v( ),CONN

+
R t, v( )[ ]> CONN

−
R−E t, v( ),CONN

+
R−E t, v( )[ ] and

CONN
F

R t, v( )≥CONN
F

R−E t, v( ),
(4)

CONN
−
R t, v( ),CONN

+
R t, v( )[ ]≥ CONN

−
R−E t, v( ),CONN

+
R−E t, v( )[ ] and

CONNF

R t, v( )>CONNF

R−E t, v( ).
(5)

If Eq. (4) holds, then a set of strong edges is referred to as an
IVF edge cut, whereas if Eq. (5) is satisfied, then it is referred to as
an F edge cut. If both Eq. (4) and Eq. (5) are satisfied for the
same pair of vertices, then it is referred to as a strict cubic fuzzy
edge cut. If E contains n edges, then E is referred to as
an n-PCFEC.

Definition 3.10. Let E be a partial cubic fuzzy edge cut in R. The
strong weight of E denoted as S′∞(E) is defined as

S
′∞ E( ) � 〈 ∑

ei∈E
μ− ei( ), ∑

ei∈E
μ+ ei( )⎡⎢⎣ ⎤⎥⎦, ∑

ei∈E
μF ei( )〉.

Definition 3.11. The cubic fuzzy edge connectivity ofR denoted by
κ′∞(R) and κ′∞(R) � 〈[κ′−(R), κ′+(R)], κ′F(R)〉 is defined as

κ′∞ R( )� ∧E S
′∞ E( )( ).

Example 3.12. consider a CFG R � (D,F) given in Figure 3 with

D � i

〈 0.4, 0.8[ ], 0.5〉,
j

〈 0.6, 0.9[ ], 0.7〉,
k

〈 0.3, 0.7[ ], 0.5〉,
l

〈 0.5, 0.9[ ], 0.6〉( ),
F � ij

〈 0.3, 0.5[ ], 0.4〉,
ik

〈 0.3, 0.5[ ], 0.5〉,
kl

〈 0.3, 0.5[ ], 0.4〉,
jl

〈 0.4, 0.6[ ], 0.4〉( ).

Thus, from Table 2, the cubic fuzzy edge connectivity is

κ′∞ R( ) � 〈 0.6, 1[ ], 0.8〉.

Definition 3.13. Let R be a cubic fuzzy connected graph, and
t∞ � 〈[t−, t+], tF〉 ∈ (0,∞),R is called a partial t∞ vertex connected
graph if either

κ− R( ), κ− R( )[ ]> t−, t+[ ], κF R( )≥ tF (6)
or

κ− R( ), κ− R( )[ ]≥ t−, t+[ ], κF R( )> tF. (7)
If Eq. (6) holds, then R is referred to as an IVF t∞ vertex
connected graph, whereas if Eq. (7) is satisfied, then it is
referred to as an F t∞ vertex connected graph. If both (Eq. 6)
and (Eq. 7) are satisfied, then it is referred to as a strict t∞ cubic
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fuzzy vertex connected graph. Similarly, R is called a partial t∞ −
edge connected graph if either

κ′− R( ), κ′− R( )[ ]> t−, t+[ ], κ′F R( )≥ tF (8)
or

κ′− R( ), κ′− R( )[ ]≥ t−, t+[ ], κ′F R( )> tF. (9)

If Eq. (8) holds, thenR is referred to as an IVF t∞ edge connected graph,
whereas if Eq. (9) is satisfied, then it is referred to as an F t∞ edge
connected graph. If both Eq. (8) and Eq. (9) are satisfied, then it is
referred to as a strict t∞ cubic fuzzy edge connected graph.

Definition 3.14. A CFG graph R is referred to as a CF cycle if its
crisp graph R{̂� } is a cycle and R contains no partial
δ-weak edge.

Theorem 3.15. Considering R � (σ, μ) as a CFG with |σ*| = n, if
Q � (σ, ]) is a partial cubic fuzzy subgraph that shares the same
vertex set as R, then

1. [κ′−(Q), κ′+(Q)]≤ [κ′−(R), κ′+(R)] and κ′F(Q)≤ κ′F(R)

Proof. Let S be any partial cubic fuzzy edge cut inQ. IfQ−S becomes
disconnected, then clearly R−S will also become disconnected. Thus, in
this case, each partial cubic fuzzy edge cut of Q is also a partial cubic
fuzzy edge cut of R with S′ ∞Q (S)≤ S′∞R (S). Now, we assume that there
exists a pair of vertices a and b in Q such that

CONN−
Q a, b( ),CONN+

Q t, v( )[ ]> CONN−
Q−S a, b( ),CONN+

Q−S a, b( )[ ] and
CONN

F

R a, b( )≥CONN
F

Q−E a, b( ),
(10)

CONN−
R a, b( ),CONN+

Q a, b( )[ ]≥ CONN−
Q−S a, b( ),CONN+

Q−S a, b( )[ ] and
CONN

F

Q a, b( )>CONN
F

Q−S a, b( ).
(11)

If the pair a, b or any other pair satisfied Eq. (10) and Eq. (11) in R,
then again S′ ∞Q (S)≤ S′∞R (S). Thus, we may consider the case when
the removal of any partial cubic fuzzy edge cut in Q does not affect

the connectivity (IVF-connectivity or F-connectivity) of any pair of
vertices in Q. Clearly, in this case, the strong weight of any partial
cubic fuzzy edge cut in R is greater than the strong weight of any
partial cubic fuzzy edge cut in Q.
RemarkSuppose Q � (σ, ]) is a partial cubic fuzzy subgraph, where
the set of vertices differs from R. In this case, there exists a strong
edge, represented by ij in Q � (σ, ]). Consequently, it becomes
plausible for the edge E = ij to serve as both a PCFEC and to
hold the minimum weight among strong edges. Then,

κ′∞ Q( ) � S
′∞ E( ) � 〈 ]− ij( ), ]+ ij( )[ ], ]F ij( )〉.

Since edge ij is a PCFEC, there is a possibility that

]− ij( ), ]+ ij( )[ ]≥ κ′− R( ), κ′+ R( )[ ], ]F ij( )> κ′F R( ), (12)
]− ij( ), ]+ ij( )[ ]> κ′− R( ), κ′+ R( )[ ], ]F ij( )≥ κ′F R( ). (13)

From Equations 12 and 13, there is a contradiction. Therefore, the
given result is not true in general. This can be explained by the
following example.

Example 3.16. consider a CFG R � (V, B) given in Figure 4 with

V � i

〈 0.6, 0.8[ ], 0.6〉,
j

〈 0.5, 0.9[ ], 0.7〉,
k

〈 0.4, 0.6[ ], 0.5〉,
l

〈 0.2, 0.7[ ], 0.6〉( ),
B � ij

〈 0.5, 0.7[ ], 0.5〉,
ik

〈 0.3, 0.6[ ], 0.5〉,
kl

〈 0.1, 0.5[ ], 0.5〉,
jl

〈 0.2, 0.6[ ], 0.5〉( ).

E = {ij} is a 1-PCFEC because for the pair kl,

〈 CONN
−
R kl( ),CONN

+
R kl( )[ ],CONN

F

R kl( )〉 � 〈 0.2, 0.6[ ], 0.5〉,
〈 CONN

−
R−E kl( ),CONN

+
R−E kl( )[ ],CONN

F

R−E kl( )〉 � 〈 0.1, 0.5[ ], 0.5〉.
(14)

From Equation 14, R − E satisfies the following condition:
[CONN−

R−E(kl),CONN+
R−E(kl)]< [CONN−

R(kl),CONN+
R(kl)] and

CONNF
{R}−E(kl) � CONNF

R(kl) with weight S′∞(E) �
〈[0.5, 0.7], 0.5〉. Similarly, E = {jl} is a 1-PCFEC because for the
pair kl,

〈 CONN−
R kl( ),CONN+

R kl( )[ ],CONNF
R kl( )〉 � 〈 0.2, 0.6[ ], 0.5〉,

〈 CONN
−
R−E kl( ),CONN

+
R−E kl( )[ ],CONN

F

R−E kl( )〉 � 〈 0.1, 0.5[ ], 0.5〉.
(15)

FIGURE 3
R � (D, F).

FIGURE 4
R � (V ,B).
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From Equation 15, R − E satisfies [CONN−
R−E(kl),

CONN+
R−E(kl)]< [CONN−

R(kl),CONN+
R(kl)] andCONNF

R−E(kl) �
CONNF

R(kl) with weight S′∞(E) � 〈[0.2, 0.6], 0.5〉. Now, E = {ik} is
also a 1-PCFEC because for the pair kl,

〈 CONN−
R kl( ),CONN+

R kl( )[ ],CONNF
R kl( )〉 � 〈 0.2, 0.6[ ], 0.5〉,

〈 CONN
−
R−E kl( ), CONN+

R−E kl( )[ ],CONN
F

R−E kl( )〉 � 〈 0.1, 0.5[ ], 0.5〉.
(16)

From Equation 16, R − E satisfies [CONN−
R−E(kl),

CONN+
R−E(kl)]< [CONN−

R(kl),CONN+
R(kl)] and CONNF

R−E(kl)
� CONNF

R(kl) with weight S′∞(E) � 〈[0.3, 0.6], 0.5〉. Thus,
κ′∞ R( ) � 〈 0.2, 0.6[ ], 0.5〉. (17)

Now, we consider S � (D,C), a CF subgraph of R, given in
Figure 5 with

D � i

〈 0.6, 0.8[ ], 0.6〉,
j

〈 0.5, 0.9[ ], 0.7〉( ),
C � ij

〈 0.5, 0.7[ ], 0.5〉( ).
E = {ij} is a unique 1-PCFEC because R − E is disconnected. Its
weight is S′∞(E) � 〈[0.5, 7], 0.5〉. Thus,

κ′∞ S( ) � 〈 0.5, 0.7[ ], 0.5〉. (18)
From Equations 17 and 18, it can be seen that Theorem 3.15 does not
generally hold for every partial cubic fuzzy subgraph.

Theorem 3.17. consider a cubic fuzzy cycle R � (σ, μ) with |σ*|≥ 3.
If R is β-saturated, then

κ′∞ R( ) � 2〈 μ− tv( ), μ+ tv( )[ ], μF tv( )〉,

where tv is the β-strong edge of R.
Proof. SupposeR � (σ, μ) represents a cubic fuzzy cycle that is

β-saturated, where |σ*|≥ 3 and no vertex is incident with more
than two edges. In such a scenario, it can be concluded that each
vertex of the cubic fuzzy cycle is connected to at least one edge
that is β-strong. We consider R\{s1s2}. If s1s2 is a β-strong
edge, then it does not have any impact on the connectivity
among any pair of vertices in R. Thus, we may suppose
that s1s2 is not beta-strong. Since R is a β-saturated cycle, it
is adjacent to a unique beta-strong edge, say s2s3. This
implies that

< CONN
−
R\s2s3

s2, s3( ),CONN
−
R\s2s3

s2, s3( )[ ],CONN
F

R\s2s3
s2, s3( )>

� < μ− s2s3( ), μ+ s2s3( )[ ], μF s2s3( )> .

Since R is a cycle, s1s2 lies on the unique path between s2 and s3 in
R\s2s3; therefore,

< CONN−
R\s2s3

s2, s3( ),CONN−
R\s2s3

s2, s3( )[ ],CONNF

R\s2s3
s2, s3( )>

≤ < μ− s1s2( ), μ+ s1s2( )[ ], μF s1s2( )> .

This implies that

< μ− s2s3( ), μ+ s2s3( )[ ], μF s2s3( )> ≤ μ− s1s2( ), μ+ s1s2( )[ ], μF s1s2( )> .

This shows that s1s2 is either IVF α-strong or F α-strong. This, along
with the fact that R does not contain any partial δ-weak edges,
further implies that any edge other than beta-strong is either IVF α-
strong or F α-strong in a cubic fuzzy cycleR. When removing an IVF
α-strong edge from the cubic fuzzy cycle R, it affects only the IVF-
connectivity of its end vertices, while the F-connectivity remains
unchanged. Similarly, removing an F α-strong edge affects only the
F-connectivity of its end vertices, while the IVF-connectivity
remains unchanged.

Thus, removing a single edge within R does not disrupt the
edge connectivity between any pair of vertices other than the end
vertices of that edge. Therefore, κ′∞(R)≥ 2. However, removing
any two edges from R will result in the graph becoming
disconnected. Now, as R is β-saturated with |σ*| > 2, it
contains at least two β-strong edges. The set of these two
beta-strong edges with the same membership is required for a
partial cubic fuzzy cut set.

κ′∞ R( ) � 2〈 μ− tv( ), μ+ tv( )[ ], μF tv( )〉.

Example 3.18. consider a CFG R � (D, F) given in Figure 6 with

FIGURE 5
S � (D,C).

FIGURE 6
R � (D, F).

TABLE 3 PCFEC of R � (D, F).

PCFEC E S′∞(E)

(ij, jl) 〈[0.7, 1.1], 0.8〉

(ij, kl) 〈[0.6, 1], 0.8〉

(ij, ik) 〈[0.6, 1], 0.9〉

(jl, kl) 〈[0.7, 1.1], 0.8〉

(jl, ik) 〈[0.7, 1.1], 0.9〉

(kl, ik) 〈[0.6, 1], 0.9〉
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D � i

〈 0.4, 0.8[ ], 0.5〉,
j

〈 0.6, 0.9[ ], 0.7〉,
k

〈 0.3, 0.7[ ], 0.6〉,
l

〈 0.5, 0.9[ ], 0.5〉( ),
F � ij

〈 0.3, 0.5[ ], 0.4〉,
ik

〈 0.3, 0.5[ ], 0.5〉,
kl

〈 0.3, 0.5[ ], 0.4〉,
jl

〈 0.4, 0.6[ ], 0.4〉( ).

Thus, from Table 3, we have

κ′∞ R( ) � 〈 0.6, 1[ ], 0.8〉. (19)
ij and kl are both the same weakest edge in a given graphR � (D, F),
and they also satisfy the condition of Theorem 3.17 because from
Equation 19, we have

κ′∞ R( ) � 2〈 μ− ij( ), μ+ ij( )[ ], μF ij( )〉.

Theorem 3.19. consider R � (σ, μ) as an even partial saturated
cubic fuzzy cycle, where |σ*| > 3. Then,

κ′∞ R( ) � 2〈 μ− bc( ), μ+ bc( )[ ], μF bc( )〉,
where bc is the β-strong edge in R.

Proof. We consider R � (σ, μ) as an even partial saturated cubic
fuzzy cycle with |σ*| > 3. In such a case, it can be stated that each
vertex within R is adjacent to at least one β-strong edge as well as at
least one partial α-strong edge. When removing an IVF α-strong
edge from the cubic fuzzy cycle R, it affects only the IVF-
connectivity of its end vertices, while the F-connectivity remains
unchanged. Similarly, removing an F α-strong edge affects only the
F-connectivity of its end vertices, while the IVF-connectivity
remains unchanged. On the other hand, if a β-strong edge is
removed from R, it does not have any impact on the
connectivity among any pair of vertices in R. Therefore,
removing a single edge within R does not disrupt the edge
connectivity between any pair of vertices. However, any
collection of two edges in R will form a minimal PCFEC.
Among all possible PCFECs, the one with the minimum weights
forms a minimum PCFEC. Hence,

κ′∞ R( ) � 2〈 μ− bc( ), μ+ bc( )[ ], μF bc( )〉.

Example 3.20. consider a CFG R � (Z, Y) given in Figure 7 with

Z � i

〈 0.5, 0.7[ ], 0.6〉,
j

〈 0.4, 0.8[ ], 0.4〉,
k

〈 0.3, 0.5[ ], 0.5〉,
l

〈 0.2, 0.6[ ], 0.5〉( ),
Y � ij

〈 0.4, 0.6[ ], 0.4〉,
ik

〈 0.2, 0.5[ ], 0.4〉,
kl

〈 0.2, 0.5[ ], 0.5〉,
jl

〈 0.2, 0.5[ ], 0.4〉( ).

Thus, from Table 4, we have

κ′∞ R( ) � 〈 0.4, 1[ ], 0.8〉. (20)
ik and jl are both strong edges with the same minimum
cubic membership in a given graph R � (Z, Y), and they also
satisfy the condition of Theorem 3.19 because from Equation 20,
we have

κ′∞ R( ) � 2〈 μ− ij( ), μ+ ij( )[ ], μF ij( )〉.

4 Generalized cubic fuzzy vertex and
edge connectivity

The concepts of cubic fuzzy cut node and cubic fuzzy edge cut
are generalized in this section. It is evident that not only strong edges
but also non-strong edges play a significant role in maintaining the
connectivity of cubic fuzzy graphs. Additionally, the requirement
that both t and v should differ from the endpoints of edges in E
renders a cubic fuzzy edge cut invalid, as it extends beyond the
conventional set of edges. Consequently, the definitions of cubic
fuzzy vertex connectivity and cubic edge connectivity have been
revised, as indicated in Definition 4.1 and Definition 4.4,
respectively.

Definition 4.1. Let X be a partial cubic fuzzy cut node in R. The
generalized strong weight of X denoted as W∞

f (X) is defined as

W∞
f X( ) � 〈 ∑

t∈X
μ− t, z( ),∑

t∈X
μ+ t, z( )⎡⎣ ⎤⎦,∑

t∈X
μF t, z( )〉,

where μ−(t, z), μ+(t, z) and μF(t, z) is the minimum weight of edges
incident at t. Then, the generalized cubic fuzzy vertex connectivity of
R denoted by κ∞f (R) and κ∞f (R) � 〈[κ−f(R), κ+f(R)], κFf(R)〉 is
defined as

κ∞f R( ) � ∧X W∞
f X( )( ).

Definition 4.2. Let R � (σ, μ) be a CFG. A set of edges E = {e1, e2,
. . . , en} with ei = bici i = 1, 2, . . . , n is said to be a generalized partial

FIGURE 7
R � (Z, Y).

TABLE 4 PCFEC of R � (D, F).

PCFEC E S′∞(E)
(ij, jl) 〈[0.6, 1.1], 0.8〉

(ij, kl) 〈[0.6, 1.1], 0.9〉

(ij, ik) 〈[0.6, 1.1], 0.8〉

(jl, kl) 〈[0.4, 1], 0.9〉

(jl, ik) 〈[0.4, 1], 0.8〉

(kl, ik) 〈[0.4, 1], 0.9〉
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cubic fuzzy edge cut (GPCFEC) if either R − E is disconnected or
one of the following holds for some pair of vertices t, v ∈ σ*:

CONN
−
R t, v( ),CONN

+
R t, v( )[ ]> CONN

−
R−E t, v( ),CONN

+
R−E t, v( )[ ] and

CONN
F

R t, v( )≥CONN
F

R−E t, v( ),
(21)

CONN
−
R t, v( ),CONN

+
R t, v( )[ ]≥ CONN

−
R−E t, v( ),CONN

+
R−E t, v( )[ ] and

CONNF
R t, v( )>CONNF

R−E t, v( ).
(22)

If Eq. (21) holds, then a set of edges is referred to as an IVF edge
cut, whereas if Eq. (22) is satisfied, then it is referred to as an F
edge cut. If both Eq. (21) and Eq. (22) are satisfied for the same
pair of vertices, then it is referred to as a strict generalized cubic
fuzzy edge cut (GCFEC). If there are n edges in E, then E is called
an n-GPCFEC.

Definition 4.3. Let E be a generalized partial cubic fuzzy edge cut in
R. The strong weight of E denoted as W′∞

f (E) is defined as

W′∞
f E( ) � 〈 ∑

ei∈E
μ− ei( ), ∑

ei∈E
μ+ ei( )⎡⎢⎣ ⎤⎥⎦, ∑

ei∈E
μF ei( )〉.

Definition 4.4. The generalized cubic fuzzy edge connectivity of R
denoted by κ′∞f (R) and κ′∞f (R) � 〈[κ′ −f (R), κ′ +f (R)], κ′ Ff (R)〉 is
defined as

κ′∞f R( )� ∧X W′∞
f E( )( ).

Example 4.5. consider a CFG R � (D,F) given in Figure 8 with

D � i

〈 0.4, 0.8[ ], 0.5〉,
j

〈 0.6, 0.9[ ], 0.7〉,
k

〈 0.3, 0.7[ ], 0.5〉,
l

〈 0.5, 0.9[ ], 0.6〉( ),
F � ij

〈 0.3, 0.5[ ], 0.4〉,
ik

〈 0.3, 0.5[ ], 0.5〉,
kl

〈 0.3, 0.5[ ], 0.4〉,
jl

〈 0.4, 0.6[ ], 0.4〉( ).

Thus, from Table 5, the cubic fuzzy edge connectivity is given in
Eq. (23)

κ′∞ R( ) � 〈 0.6, 1[ ], 0.8〉. (23)

Thus, from Table 6, the generalized cubic fuzzy edge
connectivity is given in Eq. (24)

κ′∞f R( ) � 〈 0.3, 0.5[ ], 0.4〉. (24)

Definition 4.6. A connected CFG R � (σ, μ) is a cubic fuzzy tree if
R has a cubic spanning fuzzy subgraph Q � (σ, ]), which is a tree
such that for tv ∈ R but tv ∉ Q, one of the following holds:

1. [μ−(tv), μ+(tv)]< [CONN−
Q(t, v), CONN+

Q(t, v)] and
μF(tv) ≤CONNF

Q(t, v)
2. [μ−(tv), μ+(tv)]≤ [CONN−

Q(t, v),CONN+
Q(t, v)] and

μF(tv) <CONNF
Q(t, v)

Theorem 4.7. For a cubic fuzzy tree R � (σ, μ),

κ′∞f R( ) � ∧ 〈 μ+ b, c( ), μ− b, c( )[ ], μF b, c( )〉{ }, (25)

where bc in Eq. (25) is a strong edge (partial α-strong or β-strong
edge) in R.

Proof. We consider a cubic fuzzy tree R � (σ, μ). Then, R
contains a cycle denoted as C. Within this cycle, there exists an
edge xy, which can be identified as the weakest edge and is
categorized as a partial δ-weak edge. All other edges (e1, e2, . . . ,
en) where ei = bici for i = 1, 2, . . . , n in C are considered strong. Thus,
removing any edge from C, except for xy, satisfies one of the
following conditions:

1. [CONN−
R−ei(x, y),CONN+

R−ei(x, y)]< [CONN−
R(x, y),CONN+

R

(x, y)] and CONNF
R−ei(x, y) ≤CONNF

R(x, y)

FIGURE 8
R � (D, F).

TABLE 5 PCFEC of R � (D, F).

PCFEC E S′∞(E)

(ij, jl) 〈[0.7, 1.1], 0.8〉

(ij, kl) 〈[0.6, 1], 0.8〉

(ij, ik) 〈[0.6, 1], 0.9〉

(jl, kl) 〈[0.7, 1.1], 0.8〉

(jl, ik) 〈[0.7, 1.1], 0.9〉

(kl, ik) 〈[0.6, 1], 0.9〉

TABLE 6 PCFEC of R � (D, F).

GPCFEC E W′∞
f (E)

(i, k) 〈[0.3, 0.5], 0.5〉

(j, l) 〈[0.4, 0.6], 0.4〉

(ij, jl) 〈[0.7, 1.1], 0.8〉

(ij, kl) 〈[0.6, 1], 0.8〉

(ij, ik) 〈[0.6, 1], 0.9〉

(jl, kl) 〈[0.7, 1.1], 0.8〉

(jl, ik) 〈[0.7, 1.1], 0.9〉

(kl, ik) 〈[0.6, 1], 0.9〉
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2. [CONN−
R−ei(x, y), CONN+

R−ei(x, y)]≤ [CONN−
R(x, y),

CONN+
R(x, y)] and CONNF

R−ei(x, y)<CONNF
R(x, y)

A non-cyclic edge in R, which is not a part of any cycle in R, is
referred to as a bridge and is considered a GPCFEC. Consequently,
we can deduce that κ′∞f (R) is equivalent to the minimum
membership value among the strong edges present in R.

Example 4.8. consider a cubic fuzzy tree R � (L, Q) given in
Figure 9 with

L � m

〈 0.1, 0.6[ ], 0.6〉,
n

〈 0.4, 0.6[ ], 0.5〉,
o

〈 0.3, 0.7[ ], 0.4〉,
p

〈 0.5, 0.7[ ], 0.6〉,
q

〈 0.3, 0.8[ ], 0.5〉( ),
Q � mn

〈 0.1, 0.5[ ], 0.4〉,
no

〈 0.3, 0.4[ ], 0.3〉,
np

〈 0.4, 0.5[ ], 0.4〉,
op

〈 0.1, 0.3[ ], 0.3〉,
pq

〈 0.3, 0.4[ ], 0.3〉( ).

Thus, from Table 7, the generalized cubic fuzzy edge connectivity is
given in Eq. (26)

κ′∞f R( ) � 〈 0.1, 0.4[ ], 0.3〉. (26)

Theorem 4.9. Let R � (σ, μ) be a cubic fuzzy cycle. Then,

κ′∞f R( ) � ∧ m, 2〈 μ+ b, c( ), μ− b, c( )[ ], μF b, c( )〉{ }, (27)

where bc in Eq. (27) is a β-strong edge in R and m is the minimum
membership value of partial α-strong edges in R.

Proof. We considerR � (σ, μ) as a cubic fuzzy cycle. In this case,
every edge withinR is categorized as strong, which means it is either

partially α-strong or β-strong. It is clear that a set containing a single
partial α-strong or two β-strong edges forms the GPCFEC. Let m
denote the minimum membership value among the partial α-strong
edges in R, and let bc be an edge that has the lowest values of μ+, μ−,
and μF. It should be noted that any β-strong edge within R will
possess a membership value denoted by
〈[μ+(b, c), μ−(b, c)], μF(b, c)〉. Moreover, if a GPCFEC consists of
two β-strong edges, its strength will be equal to
2〈[μ+(b, c), μ−(b, c)], μF(b, c)〉. Then, the generalized cubic fuzzy
edge connectivity is given in Eq. (28)

κ′∞f R( ) � ∧ m, 2〈 μ+ b, c( ), μ− b, c( )[ ], μF b, c( )〉{ }. (28)

Theorem 4.10. Let R � (σ, μ) be a β-saturated cubic fuzzy cycle.
Then, κ′∞f (R − b) � κ′∞f (R − bc) � k ∀b ∈ σ*, bc ∈ μ*, where k is the
membership value of the β-strong edge in R.

Proof. We considerR � (σ, μ) as a β-saturated cubic fuzzy cycle.
In this case, it can be concluded that every vertex in R is adjacent to
at least one β-strong edge. It is evident that removing a vertex from
R leads to the formation of a tree. Since R is β-saturated, the graph
R − b obtained by removing a vertex b must have at least one edge
denoted as bc. This edge bc satisfies the condition
〈[μ−(bc), μ+(bc)], μF(bc)〉 � k, where k represents the minimum
membership value among the weakest strong edges (partial α-strong
or β-strong) present in R. In the graphs R − b or R − bc, every edge
becomes a bridge and, consequently, a GPCFEC. Therefore, it can be
concluded that κ′∞f (R − b) or κ′∞f (R − bc) is equal to the minimum
membership value among the strong edges (partial α-strong or β-
strong) present in R. Hence, the generalized cubic fuzzy edge
connectivity after removal of edge bc is given in Eq. (29)

κ′∞f R − b( ) � κ′∞f R − bc( ) � k. (29)

5 Application

Street crimes stem from various underlying causes, including
socioeconomic disparities, unemployment, drug addiction, and
inadequate law enforcement. These crimes, such as mugging,
theft, and drug dealing, create an environment of insecurity and
instability, which hampers trade relations between different regions.
The occurrence of street crimes can lead to decreased investment,
hinder economic growth, and result in a trade deficit between
regions. Business operating in areas with high crime rates may
experience decreased sales and increased costs due to theft, property
damage, and heightened security measures. This can result in a
decline in exports and an increase in imports, further widening the

FIGURE 9
R � (L,Q).

TABLE 7 GPCFEC of R � (L,Q).

GPCFEC E W′∞
f (E)

(m, n) 〈[0.1, 0.5], 0.4〉

(n, o) 〈[0.3, 0.4], 0.3〉

(n, p) 〈[0.4, 0.5], 0.4〉

(p, q) 〈[0.3, 0.4], 0.3〉
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trade deficit. To improve trade flow, it is crucial to address the root
causes of street crimes. This can be achieved through socioeconomic
development initiatives, job creation, rehabilitation programs for
offenders, and strengthening law enforcement. Furthermore,
fostering community engagement, enhancing public safety
measures, and promoting awareness campaigns can help to
create a secure environment that encourages trade and fosters
economic cooperation between regions.

5.1 Trade deficit model

This article presents the development of an application that
specifically addresses the trade deficit resulting from street
crimes. It explores the factors contributing to trade congestion
and delves into the causes of street crimes. Furthermore, it
proposes several strategies to prevent crimes and enhance
trade flow. To achieve this, this study identifies regions that

are particularly susceptible to trade congestion. Here, we analyze
the impact of street crimes on these specific regions by using the
GPCFEC. By using the CFG methodology, a trade deficit model is
constructed to examine the impact of street crimes. The model
assigns vertices to different regions, with lower IVF-membership
values indicating past trade deficits caused by street crimes and
upper IVF-membership values, suggesting the potential for
future trade deficits. The F-membership value represents the
current trade deficit situation resulting from street crimes.
Edges in the model signify potential trade deficit zones,
indicating the possibility of trade imbalances between adjacent
vertices. The strength of connectedness among various regions
can be used to categorize trade deficit zones. These zones can be
classified as GPCFEC zones and secure zones. A secure zone
indicates an area where the occurrence of a trade deficit due to
street crimes is negligible; on the other hand, a GPCFEC zone
represents an area where the possibility of a trade deficit resulting
from street crimes exists.

TABLE 8 Algorithm.

Algorithm: Identification of the affected regions due to trade deficit

Input

Step 1. A cubic fuzzy trade network consisting of regions r1, r2, . . . , rn is considered

Step 2. The set of regions, Y = r1, r2, . . . , rn, is represented as the vertex set of the CFG

Step 3. Let K be the set of relations among the vertices in the cubic fuzzy trade network

Step 4. The value of membership of each edge in a CFG is inserted

Step 5. The strength of connectivity for every pair of vertices is evaluated by using the formula

CONN∞
R (dw−1 , dw) � 〈[CONN−

R(dw−1 , dw),CONN+
R(dw−1 , dw)],CONNF

R(dw−1 , dw)〉

where

CONN+
R(dw−1 , dw) � ∨ L+(P): P is a path between dw−1 and dw}

CONN−
R(dw−1 , dw) � ∨ L−(P): P is a path between dw−1 and dw}

CONNF
R(dw−1 , dw) � ∨ LF(P): P is a path between dw−1 and dw}

Output

Step 6. The generalized partial cubic fuzzy edge cut and secure zones are identified based on the

specified criteria

(i) There will be a generalized partial cubic fuzzy edge cut zone if for any edge E, either R − E is

disconnected to the graph R or the strength of connectivity for any pair of vertices ri−1, ri ∈ σ* satisfies

one of the following conditions:

[CONN−
R(ri−1 , ri),CONN+

R(ri−1 , ri)]> [CONN−
R−E(ri−1 , ri),CONN+

R−E(ri−1 , ri)]

and CONNF
R(ri−1 , ri)≥CONNF

R−E(ri−1 , ri)

OR

[CONN−
R(ri−1 , ri),CONN+

R(ri−1 , ri)]≥ [CONN−
R−E(ri−1 , ri),CONN+

R−E(ri−1 , ri)]

and CONNF
R(ri−1 , ri)>CONNF

R−E(ri−1 , ri)

(ii) A secure zone will exist if the strength of connectivity fails to meet the conditions specified

by the generalized partial cubic fuzzy edge cut
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A fuzzy graph is a model that visually represents the
relationships among elements and their degrees of membership
using vertices and edges in a two-dimensional space. However,
dealing with ambiguous data using fuzzy graph theory can often
be challenging. On the other hand, a CFG is an extension of the FG
concept. While the memberships of vertices and edges in fuzzy
graphs range from 0 to 1, a CFG holds greater significance as it
assigns both lower and upper IVF-membership and F-membership
values to its vertices and edges. Each membership value can be any
real number within the range of [0,1], making the CFG more
versatile and flexible compared to the FG. A CFG proves to be a
valuable instrument for handling partial knowledge relationships
among regions and effectively managing knowledge loss within a
given system. In this regard, an algorithm has been devised
specifically for identifying the regions impacted by trade deficits.
The algorithm is provided in Table 8.

Let us consider the group of regions denoted as Y = (r1, r2, r3, r4, r5,
r6), where street crimes occur. These regions can potentially be affected

by trade deficits. A CFG denoted asR � (M,K), depicted in Figure 10,
is developed to model the trade deficit scenario. The IVF-membership
and F-membership values of the vertices and edges in R � (M,K) are
provided in Table 9 and Table 10, respectively.

Table 11 provides a list of all possible paths between r2 and r4 in
the CFG, along with the strengths and strength of connections
among them. Specifically, the edge (r2, r4) in the CFG is
represented as the GPCFEC. It is recommended to explore the
nature of other edges among regions as well. Analyzing the
characteristics of each edge in the CFG will further highlight
the importance and effectiveness of our research. By referring
to Figure 10 and using conventional computations, the
connectivity between vertices in R � (M,K) can be determined
as in (Table 12).

The GPCFEC zones are determined based on specific edge
conditions. In this system, the zones (r2, r4), (r2, r3), (r3, r5), and
(r4, r5) satisfy the criteria for GPCFEC zones, and these zones are
characterized by meeting the conditions set for the generalized
partial cubic fuzzy edge cut. On the other hand, the remaining
edges (r1, r2), (r1, r3), (r4, r6), and (r5, r6) do not fulfill the conditions
required for GPCFEC zones and are referred to as secure zones
within this specific CFG system. The categorization of regions
experiencing a trade deficit into various zones can be beneficial
in understanding the trade deficit situation in those regions caused
by street crimes. In regions classified as the GPCFEC zone, where
trade deficits are influenced by street crimes, effective planning is
essential. Emergency response planning should be prioritized to
ensure swift actions in addressing street crimes and their impact
on trade. Additionally, enhancing public safety measures, such as
increasing police presence and improving surveillance systems,
can contribute to reducing criminal incidents. Promoting
awareness among the public about the consequences of street
crimes on trade and encouraging citizen engagement in reporting
suspicious activities are important measures. In secure zones,

FIGURE 10
R � (M,K).

TABLE 9 Membership values of each vertex in CFG R � (M,K).

r1 r2 r3 r4 r5 r6

〈[0.3,
0.6], 0.5〉

〈[0.4,
0.9], 0.5〉

〈[0.4,
0.8], 0.7〉

〈[0.3,
0.7], 0.6〉

〈[0.5,
0.6], 0.5〉

〈[0.2,
0.8], 0.7〉

TABLE 10 Membership values of each edge in CFG R � (M,K).

(r1, r2) 〈[0.2, 0.5], 0.4〉 (r4, r5) 〈[0.2, 0.5], 0.5〉

(r1, r3) 〈[0.2, 0.5], 0.4〉 (r4, r6) 〈[0.2, 0.5], 0.4〉

(r2, r3) 〈[0.4, 0.8], 0.4〉 (r5, r6) 〈[0.2, 0.5], 0.4〉

(r2, r4) 〈[0.3, 0.6], 0.4〉 (r3, r5) 〈[0.2, 0.5], 0.5〉

TABLE 11 All paths from r2 to r4 in R.

In CFG R

P1: r2 → r4 with strength 〈[0.3, 0.6], 0.4〉

P2: r2 → r3 → r5 → r4 with strength 〈[0.2, 0.5], 0.4〉

P3: r2 → r3 → r5 → r6 → r4 with strength 〈[0.2, 0.5], 0.4〉

P4: r2 → r1 → r3 → r5 → r4 with strength 〈[0.2, 0.5], 0.4〉

P5: r2 → r1 → r3 → r5 → r6 → r4 with strength 〈[0.2, 0.5], 0.4〉

CONN∞
R (r2 , r4) � 〈[0.3, 0.6], 0.4〉

CONN∞
R−(r2r4)(r2 , r4) � 〈[0.2, 0.5], 0.4〉
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where regions have no trade deficits, planning efforts should
focus on maintaining favorable conditions and further enhancing
trade flow through streamlined customs procedures, trade
facilitation measures, and fostering a business-friendly
environment. Overall, by planning efforts for each zone, trade
regions can effectively address trade deficits caused by street
crimes, promoting trade flow, economic growth, and sustainable
trade surpluses.

6 Comparative analysis

The generalized partial cubic fuzzy edge cut introduces a novel
extension to the existing concept of generalized fuzzy edge cut in the
context of trade deficit modeling caused by street crimes. In this
comparative analysis, it can be argued that the generalized partial
cubic fuzzy edge cut offers certain advantages over the generalized
fuzzy edge cut.

From Table 13, it can be seen that when applying the concept of
generalized partial cubic fuzzy edge cut to the trade deficit model given
in Figure 10, specific zones can be identified with precision. The
generalized partial cubic fuzzy edge cut zones, such as (r2, r4), (r2,
r3), (r3, r5), and (r4, r5), are determined based on the satisfaction of the
generalized partial cubic fuzzy edge cut condition by the corresponding
edges, and the remaining edges (r1, r2), (r1, r3), (r4, r6), and (r5, r6) do not
satisfy this condition and are considered secure zones. On the other
hand, generalized fuzzy edge cut zones such as (r3, r5) and (r4, r5) are
identified through the generalized fuzzy edge cut condition, and the
remaining edges (r1, r2), (r1, r3), (r2, r3), (r2, r4), (r4, r6), and (r5, r6) do not
satisfy this condition and are referred to as secure zones. The
generalized partial cubic fuzzy edge cut allows for a more
comprehensive analysis of trade conditions. In the concept of
generalized fuzzy edge cuts, only the F-membership of edges is
considered. This concept assesses trade deficit conditions, taking into
account either the past, present, or future. However, when discussing
generalized partial cubic fuzzy edge cuts, additional factors come into
play, including upper IVF-membership, lower IVF-membership, and
F-membership for edges. Consequently, when we use the generalized

partial cubic fuzzy edge cut concept to solve our model, we consider all
these membership values concurrently, encompassing trade deficit
conditions for the past, present, and future, and provide insights
into trade deficit zones and secure zones. Generalized partial cubic
fuzzy edge cuts surpass these limitations by encompassing all three time
periods, allowing for a more comprehensive understanding of trade
deficit conditions from a comparative point of view; the concept of
generalized partial cubic fuzzy edge cuts offers distinct advantages over
generalized fuzzy edge cuts in terms of precise zone identification and a
comprehensive analysis of trade conditions in past, present, and
future scenarios.

7 Conclusion

The CFG is a vital model that adeptly addresses vagueness and
ambiguity in dealing with incomplete information. By incorporating
lower and upper memberships, the CFG excels beyond both the fuzzy
model and the interval-valued model in terms of compatibility,
precision, and flexibility. This model finds extensive applications in
various fields, including social circuits, machine intelligence, traffic
networks, and decision-making problems. The assessment of
connectivity or the strength of connectivity remains a fundamental
aspect of network theory, and the CFG provides valuable insights in this
regard. This paper introduces the notions of vertex and edge
connectivity within cubic fuzzy graphs, accompanied by discussions
on partial cubic fuzzy cut nodes and partial cubic fuzzy edge cuts.
Several associated results are presented, supported by illustrative
examples to facilitate comprehension. Furthermore, this research
article delves into the concept of partial cubic α-strong and partial
cubic δ-weak edges. An example is also presented to elucidate the
rationale behind partial cubic α-strong edges. In situations where we
possess information regarding the past, future, and current states of a
model or problem, we can depict the past condition as a lower interval-
valued fuzzy membership, the future condition as an upper interval-
valued fuzzy membership, and the present condition as a fuzzy
membership value. Our goal is to examine the problem by deriving
lower interval-valued fuzzy connectivity, upper interval-valued fuzzy
connectivity, and fuzzy connectivity. Additionally, we aspire to
formulate new predictions based on this analytical approach.
Moreover, it delves into the introduction of generalized vertex and
edge connectivity in cubic fuzzy graphs, along with generalized partial
cubic fuzzy cut nodes and generalized partial cubic fuzzy edge cuts.
Relevant results pertaining to these concepts are also discussed.
Furthermore, this article introduces an application that employs
generalized partial cubic fuzzy edge cuts to examine the impacts
of trade congestion on different regions and address vagueness
and uncertainty in business-related contexts. Throughout this
paper, we considered simple connected CFGs. In the realm of
future research, a promising avenue for exploration lies in the
amalgamation of graph theory with recent advancements in fuzzy
set models. This integration could encompass the assimilation of
concepts and methodologies from various fuzzy set models,
including (i) (2,1)-fuzzy sets, emphasizing their properties,
weighted aggregated operators, and applications in multi-
criteria decision-making methods; (ii) generalized frame for
orthopair fuzzy sets, investigating (m,n)-fuzzy sets and their
relevance in multi-criteria decision making; and (iii) SR-fuzzy

TABLE 12 Generalized partial cubic fuzzy edge cut of R.

GPCFEC (E) CONN∞
R (E) CONN∞

R−(E)(E) S′∞(E)
(r2, r4) 〈[0.3, 0.6], 0.4〉 〈[0.2, 0.5], 0.4〉 〈[0.3, 0.6], 0.4〉

(r2, r3) 〈[0.4, 0.8], 0.4〉 〈[0.2, 0.5], 0.4〉 〈[0.4, 0.8], 0.4〉

(r3, r5) 〈[0.2, 0.5], 0.5〉 〈[0.2, 0.5], 0.4〉 〈[0.2, 0.5], 0.5〉

(r4, r5) 〈[0.2, 0.5], 0.5〉 〈[0.2, 0.5], 0.4〉 〈[0.2, 0.5], 0.5〉

TABLE 13 Trade deficit zones and secure zones.

Contributions Trade deficit
zones

Secure zones

Sebastian et al. [46] (r3, c5), (r4, r5) (r1, r2), (r1, r3), (r2, r3), (r2, r4),
(r4, r6), (r5, r6)

The purposed work (r2, r4), (r2, r3), (r3, r5),
(r4, r5)

(r1, r2), (r1, r3), (r4, r6), (r5, r6)
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sets and their potential in weighted aggregated operators for
decision making. This interdisciplinary approach holds
substantial potential for advancing both graph theory and
fuzzy set theory, paving the way for novel solutions to
complex problems and the optimization of decision-making
processes. Looking forward, this study aims to delve deeper
into vertex connectivity and edge connectivity in cubic
intuitionistic fuzzy graphs (CIFGs) as an expansion of the
research scope.
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