
A generalized isogeometric
boundary element method for the
uncertain analysis of infinite
domain two-dimensional acoustic
problems

Yan Yang1,2, Ruijin Huo3,4*, Xiaohui Yuan3 and Wenbo Wu5

1College of Architectural and Civil Engineering, Huanghuai University, Zhumadian, China, 2Henan
International Joint Laboratory of Structural Mechanics and Computational Simulation, Huanghuai
University, Zhumadian, China, 3College of Architecture and Civil Engineering, Xinyang Normal University,
Xinyang, China, 4Henan Unsaturated Soil and Special Soil Engineering Technology Research Center,
Xinyang Normal University, Xinyang, China, 5School of Mechanical and Electric Engineering, Guangzhou
University, Guangzhou, China

The key aim of this paper is to provide a new nth generalized order perturbed
isogeometric fast multistage technique of boundary elements to compute the
propagation of time harmonics in an infinite region. Structural geometry and
boundary integral equations are constructed by using non-uniform rational
B-splines. The source of system uncertainty is believed to be the incident
plane wave number’s unpredictability. The actual field, depending on the input
random variables, is simulated using the extended nth-order perturbation
method. The field and kernel values for boundary integral formulas are
generated via the nth-order generalized series of Taylor expansions using
perturbation parameters. The fast multipole method (FMM) is utilized to speed
up the process. The effectiveness and correctness of the proposed algorithm are
verified by Monte Carlo simulations (MCs) with numerical examples.
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1 Introduction

Numerous areas are affected practically by wave propagation in an unlimited domain
[1–8]. Although a lot of efforts have been put into modeling this issue, it focuses on
deterministic systems. The parameters obtained from laboratory experiments and
measurements are essentially random. In order to take into account the influence of
these uncertainties on the system response, it is advisable to incorporate some
uncertainty analysis techniques into various theoretical and computational
methodologies, such as Monte Carlo simulation (MCs) [9–11], the stochastic spectrum
methods [12, 13], and the perturbation technique [14–18]. Among them, MCs is the most
common and simplest method, but its accuracy is largely based on the quantity of samples,
resulting in high-level computational costs [19–21]. Therefore, MCs is often used as a
reference solution to validate other probabilistic methods [22–24]. The stochastic spectrum
method is more efficient and takes advantage of generality, but it is still difficult to apply to
large-scale problems. Perturbation is the most effective method, but it is mainly limited to
linear problems.
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Because numerical analysis frequently uses the finite element
method (FEM), stochastic analysis with FEM is extensively
studied. For example, spectral stochastic FEM is investigated by
[12]. The stochastic FEM with the perturbation method is
presented in [14–17]. Kamiński puts forward the generalized
second-order and nth-order stochastic perturbation techniques
[25, 26], which provide results with high computational accuracy.
A smoothed finite element approach based on generalized

perturbation for stochastic analysis is proposed in [22] to
effectively maintain accuracy and withstand mesh distortion,
especially in irregular mesh.

Despite its versatility, the finite element method is not easy to
use when simulating wave scattering in unbounded media. A
significant issue arises because the unbounded domain must be
truncated into a sizable bounded domain enclosed by an artificial
border using the finite element method. In addition, there are

FIGURE 1
Curve of the amplitude of the field function of an infinite cylinder with a wave number k: (A) first-order, (B) second-order, (C) third-order, (D) fourth-
order, (E) fifth-order, and (F) sixth-order derivatives.

TABLE 1 Relative errors εerr in first- and second-order derivatives of the field function of an infinite cylinder.

Wave number First-order derivative Second-order derivative

Δx = 10−2 Δx = 10−3 Δx = 10−4 Δx = 10−2 Δx = 10−3 Δx = 10−4

0.2 0.06243 0.00650 0.00065 0.05555 0.00577 0.00058

0.4 0.03560 0.00367 0.00037 0.03297 0.00339 0.00034

0.6 0.01883 0.00193 0.00019 0.01641 0.00168 0.00017

0.8 0.00906 0.00092 0.00009 0.00632 0.00065 0.00006

1.0 0.00528 0.00053 0.00005 0.00312 0.00031 0.00003

1.2 0.00533 0.00053 0.00005 0.00466 0.00046 0.00005

1.4 0.00587 0.00059 0.00006 0.00620 0.00062 0.00006

1.6 0.00498 0.00050 0.00005 0.00507 0.00051 0.00005

1.8 0.00360 0.00036 0.00004 0.00322 0.00033 0.00003
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specific methods that must be used to estimate the boundary
conditions at infinity. In contrast, known alternatively as the
method of moments (MOM) in electromagnetic fields [27, 28],
the boundary element method (BEM) is preferred for infinite
domain problems [29–34]. Boundary element method has
advantages such as reduced dimensionality calculation, and
boundary element method only discretizes the surface of the
structure and naturally satisfies the boundary conditions at
infinity. The creation of an asymmetrical, thick coefficient matrix,
resulting in higher memory needs and processing complexity, is a
common drawback of the boundary element approach. Some fast-
solving algorithms are proposed, such as the fast direct solution

method [35], adaptive cross approximation method [36], and fast
multipole method (FMM) [37]. Another unavoidable disadvantage
of the boundary element method is the need to precisely calculate
the singular integral. The singularity subtraction technique is
successfully utilized to remove the boundary integrals’
singularity [38].

Isogeometric analysis (IGA), first suggested by Hughes and
others [39], has developed into a key numerical approach in
recent years. In traditional numerical analysis, grids must be
constructed using computer-aided design (CAD), which is time-
consuming and necessitates a sizable amount of human
involvement. The basis functions that have given rise to CAD are

TABLE 2 Relative errors εerr in third- and fourth-order derivatives of the field function of an infinite cylinder.

Wave number Third-order derivative Fourth-order derivative

Δx = 10−2 Δx = 10−3 Δx = 10−4 Δx = 10−2 Δx = 10−3 Δx = 10−4

0.2 0.05188 0.00539 0.00054 0.04482 0.00462 0.00046

0.4 0.02973 0.00306 0.00031 0.02651 0.00272 0.00027

0.6 0.01311 0.00135 0.00014 0.00917 0.00096 0.00010

0.8 0.00261 0.00028 0.00003 0.00213 0.00020 0.00002

1.0 0.00015 0.00001 0.00000 0.00393 0.00040 0.00004

1.2 0.00395 0.00039 0.00004 0.00338 0.00032 0.00003

1.4 0.00696 0.00070 0.00007 0.00848 0.00085 0.00008

1.6 0.00526 0.00053 0.00005 0.00553 0.00056 0.00006

1.8 0.00266 0.00027 0.00003 0.00178 0.00018 0.00002

FIGURE 2
Infinite cylindrical field function derivative distribution cloud: (A) first-order, (B) second-order, (C) third-order, (D) fourth-order, (E) fifth-order, and
(F) sixth-order derivatives.
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used by IGA to solve systems of partial differential equations, such as
PHT-splines, which are hierarchy T-meshes over quadratic splines
[40], and non-uniform rational B-splines (NURBS) [41, 42]. IGA
eliminates the need for gridding while maintaining geometric
precision. IGA has been widely employed in numerous domains,
including uncertainty analysis, since its beginnings. A nth-order
generalized perturbation isometric approach that is a steady-state
heat transfer analysis simulation with material uncertainties was
created by Rojas et al. [43]. Ding et al. [24] studied the nth-order
perturbation method based on IGA to simulate the geometric
uncertainty of shell structure. Cao et al. [44] used uncertainty
analysis to solve the equi-geometric bi-reciprocal finite element
for non-Fourier transient heat transfer problems. Chen et al. [45,
46] proposed an effective deep learning method based on IGA

samples for the quantification of multivariable uncertainty issues
with the interplay of vibration and sound. IGA was first put forth in
relation to finite element methods before being expanded to
boundary element method [47]. Boundary units and CAD are
compatible since they both employ boundary notation. The
boundary element also satisfies the boundary criteria at infinity,
making it highly accurate and efficient for modeling the spread of
waves across infinite domains, such as the sound [27] and
electromagnetic field [48].

The generalized nth-order perturbation based on the isogeometric
boundary element method (IGABEM) is proposed to assess the
uncertainty of the propagation of time harmonics in an infinite
region. The fact that the coefficient matrix in the boundary
element system is an asymmetric complete matrix, which raises
computing complexity and storage needs, is a characteristic
drawback of the boundary element system. Therefore, we avoid
directly calculating the coefficient matrix in the equation of
boundary integrals of components of the nth order; instead, we
apply the fast multipole method suggested in [37] to quicken the
computation of multiplication of vectors in matrices. As a result,
uncertainty analysis using isogeometric boundary elements is more
effective. This increases how well uncertainty analysis works based on
isogeometric border elements. Another disadvantage of the boundary
element is the existence of singular integrals in the equation, which
requires careful calculation. In order to address this issue, the
singularity of the boundary integral is generally eliminated using
the singular subtraction approach suggested in [38].

The remainder of this paper is organized as follows: a technique
of extending nth order perturbation is introduced in Section 2 that

TABLE 3 Expectation of the field function of an infinite cylinder with different
coefficients of variation.

Order Coefficient of variation (γ)

0.05 0.07 0.09 0.11 0.13 0.15

2 0.19735 0.22034 0.25100 0.28932 0.33531 0.38897

4 0.19903 0.22681 0.26868 0.32879 0.41229 0.52542

6 0.19911 0.22740 0.27133 0.33759 0.43629 0.58204

8 0.19911 0.22744 0.27163 0.33909 0.44198 0.59991

10 0.19911 0.22744 0.27167 0.33939 0.44358 0.60661

MCSs 0.19911 0.22744 0.27167 0.33939 0.44358 0.60661

FIGURE 3
Curve of the standard deviation of the field function with derivatives for an infinite cylinder: (A) γ = 0.05, (B) γ = 0.07, (C) γ = 0.09, (D) γ = 0.11, (E) γ =
0.13, and (F) γ = 0.15.
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employs equations for boundary integrals using random coefficients
from the Taylor series. The equal geometric boundary element
approach is described in Section 3. Section 4 provides three
numerical instances that might be used to verify the suggested
uncertainty analysis technique, followed by the conclusions in
Section 5.

2 2D acoustic scattering using an
isogeometric BEM based on
perturbation method

Consider a two-dimensional domain enclosed by a boundary Γ.
The symbolΩ represents the limitless domain outside the structural
surface. WithinΩ, the medium is a uniform ideal fluid. So the sound
pressure satisfies the following wave equation:

∇2P m, t( ) − 1
c2f

∂2P m, t( )
∂t2

� 0,∀m ∈ Ω, (1)

where ∇2 represents the Laplacian operator, P(m, t) represents the
sound pressure at point m in the middle of the sound field at time t,
and c2f represents the wave velocity. The sound pressure is
expressed as

P m, t( ) � p m( )e−iωt, (2)
where p(m) represents the sound pressure value independent of
time, i � ���−1√

represents an imaginary number, 2πf represents the
circular frequency, and e−iωt represents the time-dependent terms.
Then, the Helmholtz governing differential equation based on the
sound pressure is obtained as follows:

∇2p m( ) + k2p m( ) � 0,∀m ∈ Ω, (3)

FIGURE 4
The apical shape is a cross-sectional view of the upright and
T-shaped acoustic barriers.

FIGURE 5
Curve plot of the amplitude of the rectangular field function oscillations as a function of the wave number k: (A) first-order, (B) second-order, (C)
third-order, (D) fourth-order, (E) fifth-order, and (F) sixth-order derivatives.
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where k � ω
��ϵμ√

denotes the wave number of the medium Ω. The
boundary integral formula of the scalar Helmholtz formula can be
obtained as

c m( )p m; k( ) + ∫
Γ
R m, y; k( )p y; k( )dΓ y( )

� ∫
Γ
G m, y; k( )q y; k( )dΓ y( ) + pinc m; k( ). (4)

If the source point is represented by m and the field point is
represented by y, the coefficient c(m) is determined by the
geometric features at point m. c(m) equals 1/2 when the
boundary is smooth at m. The symbol ∫ in Eq. 4 represents the
integral in the sense of Cauchy principal value. It implies that the
integral does not include the case where m = y. q(y; k) � ∂p(y;k)

∂n(y)
represents the acoustic flux, and pinc(m; k) is the sound pressure
present at location m of the incident wave. The Green functions in
media are defined as G(m, y; k) and are expressed as

G m, y; k( ) � i
4
H 1( )

0 kr( ), (5)

where Hn
(1) is the first kind of the nth-order Hankel function and

r = ‖m − y‖ is the Euclidean distance between the source location
and the field point. R(m, y; k), representing the variations of the
Green’s functions G(m, y; k) with regard to the standard n(y), is
given by

R m, y; k( ) � ∂G m, y; k( )
∂n y( ) � −ik

4
H 1( )

1 kr( ) r[ ] · n̂ y( )
r

. (6)

It is important to note that the non-uniqueness issue arises when
solving outer boundary-value issues using Eq. 4. This issue may be
solved using the Burton–Miller formulation [49, 50]; it is derived by
combining Eq. 4 with its standard derivation while considering the
outside standard at the location specified in Eq. 4. This secondary
formulation is written as

c m( )q m; k( ) + ∫
Γ

∂R m, y; k( )
∂n m( ) p y; k( )dΓ y( )

� ∫
Γ

∂G m, y; k( )
∂n m( ) q y; k( )dΓ y( ) + ∂pinc m; k( )

∂n m( ) , (7)

TABLE 4 Relative errors εerr of the first- and second-order derivatives of the rectangular field function.

Wave number First-order derivative Second-order derivative

Δx = 10−2 Δx = 10−3 Δx = 10−4 Δx = 10−2 Δx = 10−3 Δx = 10−4

0.2 0.06702 0.00649 0.00065 0.02994 0.00282 0.00028

0.4 0.05976 0.00632 0.00064 0.03453 0.00359 0.00036

0.6 0.00376 0.00049 0.00005 0.01789 0.00158 0.00016

0.8 0.03049 0.00324 0.00033 0.31533 0.04217 0.00436

1.0 0.04514 0.00473 0.00048 0.03853 0.00407 0.00041

1.2 0.00351 0.00043 0.00004 0.01186 0.00107 0.00011

1.4 0.02602 0.00251 0.00025 0.05911 0.00569 0.00057

1.6 0.07236 0.00691 0.00069 0.04941 0.00476 0.00047

1.8 0.04845 0.00512 0.00052 0.07659 0.00809 0.00081

TABLE 5 Relative errors εerr of the third- and fourth-order derivatives of the rectangular field function.

Wave number Third-order derivative Fourth-order derivative

Δx = 10−2 Δx = 10−3 Δx = 10−4 Δx = 10−2 Δx = 10−3 Δx = 10−4

0.2 0.05134 0.00527 0.00053 0.04413 0.00460 0.00046

0.4 0.02880 0.00297 0.00030 0.04405 0.00444 0.00044

0.6 0.01015 0.00104 0.00010 0.04222 0.00436 0.00044

0.8 0.03797 0.00377 0.00038 0.01865 0.00192 0.00019

1.0 0.02573 0.00269 0.00027 0.00963 0.00097 0.00010

1.2 0.01860 0.00173 0.00017 0.00983 0.00098 0.00010

1.4 0.05031 0.00503 0.00050 0.00214 0.00014 0.00001

1.6 0.01398 0.00132 0.00013 0.04818 0.00464 0.00046

1.8 0.05969 0.00585 0.00058 0.01217 0.00092 0.00009
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where

∂G m, y; k( )
∂n m( ) � −ik

4
H 1( )

1 kr( ) r[ ] · n̂ m( )
r

,

∂R m, y; k( )
∂n m( ) � ik

4r
H 1( )

1 kr( ) n̂ m( ) · n̂ y( )[ ]−
ik2

4
H 1( )

2 kr( ) r · n̂ m( )[ ] r · n̂ y( )[ ]
r2

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(8)

The linear mixture formulas of Eqs 4, 7 are generated as

c m( ) p m; k( ) + αq m; k( )( )
+ ∫

Γ
R m, y; k( ) + α

∂R m, y; k( )
∂n m( )[ ]p y; k( )dΓ y( )

� ∫
Γ
G m, y; k( ) + α

∂G m, y; k( )
∂n m( )[ ]q y; k( )dΓ y( ) + qinc m; k( ),

(9)
where qinc(m; k) � pinc(m; k) + α ∂pinc(m;k)

∂n(m) . Its coupling coefficient
α = i/k for kP1, and α = i for k < 1.

2.1 nth-order generalized perturbation

In thiswork, thewave number k is used as a random input parameter.
Given the unpredictability of this input parameter k, every variable and
functions of state are extended using a Taylor series to approximate to
their expected values. This is done by expanding the Taylor series
around the point k0, which serves as the expected value of k. The
expansion of p, q, G, and R functions with Δk = k − k0 can be written as

p k( ) � p k0( ) + εp 1( ) k0( )Δk + 1
2
ε2p 2( ) k0( ) Δk[ ]2 +/ + 1

n!
εnp n( ) k0( ) Δk[ ]n,

q k( ) � q k0( ) + εq 1( ) k0( )Δk + 1
2
ε2q 2( ) k0( ) Δk[ ]2 +/ + 1

n!
εnq n( ) k0( ) Δk[ ]n,

G k( ) � G k0( ) + εG 1( ) k0( )Δk + 1
2
ε2G 2( ) k0( ) Δk[ ]2 +/ + 1

n!
εnG n( ) k0( ) Δk[ ]n,

R k( ) � R k0( ) + εR 1( ) k0( )Δk + 1
2
ε2R 2( ) k0( ) Δk[ ]2 +/ + 1

n!
εnR n( ) k0( ) Δk[ ]n.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

FIGURE 6
Rectangular field function derivative distribution cloud image: (A) first-order, (B) second-order, (C) third-order, (D) fourth-order, (E) fifth-order, and
(F) sixth-order derivatives.

TABLE 6 Expectation of the rectangular field function with different
coefficients of variation.

Order Coefficient of variation (γ)

0.05 0.07 0.09 0.11 0.13 0.15

2 2.51572 2.72498 3.00399 3.35274 3.77126 3.89473

4 2.61297 3.09856 4.02484 5.63080 5.85923 5.87458

6 2.64064 3.30692 4.96601 5.92546 6.43758 6.58376

8 2.64658 3.31456 4.96826 5.92549 6.48424 6.58479

10 2.66128 3.31625 3.31625 5.92634 6.51458 6.58342

MCs 2.66128 3.31625 3.31625 5.92634 6.51458 6.58342
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The derivation of the boundary integral in Eq. 9 involves a nth-
order expansion, which is written as

c m( ) p n( ) m( ) + αq̂ n( ) m( )[ ]
� ∑n

s�0

n

s
( )∫

Γ
G s( ) m, y( )q̂ n−s( ) y( ) − R s( ) m, y( )p n−s( ) y( )[ ]dΓ y( )

+ α∑n
s�0

n

s
( )∫

Γ

∂G s( ) m, y( )
∂n m( ) q̂ n−s( ) y( ) − ∂R s( ) m, y( )

∂n m( ) p n−s( ) y( )[ ]dΓ y( )
+ p̂ n( )

inc m( ).
(11)

To obtain a clear and simple expression corresponding to the
sth-order derivative of the kernel function, as given in Eq. 11, we
must first compute the product of the Hankel function. The Hankel
function exhibits the following recursive feature:

dH 1( )
n z( )
dz

� n

z
H 1( )

n z( ) −H 1( )
n+1 z( ). (12)

The Hankel function’s formula corresponding to the sth-
order derivatives can be derived by repeatedly differentiating the
aforementioned equation with respect to the variable z, as
follows:

H 1( )
n z( )[ ] s( ) � ∑s

ℓ�1
H 1( )

n z( )[ ] s−ℓ( ) −1( )ℓ+1 s − 1( )!
zℓ s − ℓ( )! − H 1( )

n+1 z( )[ ] s−1( )
.

(13)
Additionally, the functions zH(1)

1 (z) and z2H(1)
2 (z) that define

the kernel’s sth-order derivative are obtained as

zH 1( )
1 z( )[ ] s( ) � s H 1( )

1 z( )[ ] s−1( ) +z H 1( )
1 z( )[ ] s( )

,

z2H 1( )
2 z( )[ ] s( ) � s s−1( ) H 1( )

2 z( )[ ] s−2( ) +2sz H 1( )
2 z( )[ ] s−1( ) +z2 H 1( )

2 z( )[ ] s( )
, s>1

2z H 1( )
2 z( )[ ] s−1( ) +z2 H 1( )

2 z( )[ ] s( )
, s� 1.

⎧⎪⎨⎪⎩
(14)

Assuming z = k‖m − y‖ and z0 = k0‖m − y‖, the kernel operations
for the sth-order derivative in Eq. 11 are deduced using Eqs 13, 14.

G s( ) m, y; k0( ) � irs

4
H 1( )

0 z0( )[ ] s( )
,

R s( ) m, y; k0( ) � −ir
s−1( )

4
∂r

∂n y( ) z0H
1( )

1 z0( )[ ] s( )
,

∂G s( ) m, y; k0( )
∂n m( ) � −ir

s−1( )

4
∂r

∂n m( ) z0H
1( )

1 z0( )[ ] s( )
,

∂R s( ) m, y; k0( )
∂n m( ) � ir s−2( )

4
n̂ m( ) · n̂ y( )[ ] z0H

1( )
1 z( )[ ] s( )

︸���������������︷︷���������������︸
R s( )
1

− ir s−2( )

4
∂r

∂n m( )
∂r

∂n y( ) z20H
1( )
2 z( )[ ] s( )

︸���������������︷︷���������������︸
R s( )
2

,

(15)

where r = ‖m − y‖, ∂r
∂n(m) � [m−y]·n̂(m)

‖m−y‖ , and ∂r
∂n(y) � [m−y]·n̂(y)

‖m−y‖ .

3 BEM with isogeometric fast multipole

3.1 Irrational B-splines which is not uniform

In isogeometric analysis, geometric and physical fields are
approximated using NURBS basis functions. A knot vector,

FIGURE 7
Plot of amplitude and standard deviation of the rectangular field function with different derivatives: (A) γ= 0.05, (B) γ = 0.07, (C) γ = 0.09, (D) γ= 0.11,
(E) γ = 0.13, and (F) γ = 0.15.
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which is a collection of non-decreasing real values, generates a
non-uniform rational B-splines (NURBS) curve as follows: Ξ = [ξ0,
ξ1, . . . , ξn+p+1]with ξa ∈ R, where p is the rank of the polynomial, n
is the basic function or control point count, and a is the node index.
The recursive formulation of the B-spline basis function Na,p is
written as

Na,0 ξ( ) � 1 if ξa ≤ ξ < ξa+1,
0 otherwise,

{ (16)

and for p = 1, 2, 3, . . .,

Na,p ξ( ) � ξ − ξa
ξa+p − ξa

Na,p−1 ξ( ) + ξa+p+1 − ξ

ξa+p+1 − ξa+1
Na+1,p−1 ξ( ). (17)

FIGURE 8
Plot of the amplitude of the T-shaped field function as a function of the wave number k: (A) first-order, (B) second-order, (C) third-order, (D) fourth-
order, (E) fifth-order, and (F) sixth-order derivatives.

TABLE 7 Relative errors εerr of the third- and fourth-order derivatives of the T-shaped field function.

Wave number First-order derivative Second-order derivative

Δx = 10−2 Δx = 10−3 Δx = 10−4 Δx = 10−2 Δx = 10−3 Δx = 10−4

2.0 0.007834 0.000783 0.000078 0.001723 0.000232 0.000024

2.2 0.007082 0.000717 0.000072 0.002750 0.000295 0.000030

2.4 0.003411 0.000347 0.000035 0.004442 0.000450 0.000045

2.6 0.006644 0.000647 0.000065 0.016573 0.001619 0.000161

2.8 0.011907 0.001199 0.000120 0.019420 0.001978 0.000198

3.0 0.005590 0.000582 0.000059 0.011636 0.001184 0.000119

3.2 0.006634 0.000628 0.000062 0.004184 0.000443 0.000045

3.4 0.024425 0.002377 0.000237 0.008932 0.000865 0.000086

3.6 0.005213 0.000675 0.000068 0.001565 0.000209 0.000021

3.8 0.021712 0.002208 0.000221 0.011006 0.001105 0.000111
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The basis functions for B-splines exhibit some advantageous
characteristics, including locality, point non-negativeness, linear
independence, and simplicity of numerical analysis. NURBS is
created using a B-spline and control point weights:

Ba,p ξ( ) � Na,p ξ( )wa

W ξ( ) , (18)

with

W ξ( ) � ∑n
a�0

waNa,p ξ( ), (19)

where wa stands for a weight connected to each control point and
Ba,p(ξ) stands for NURBS basis functions. Consequently, the NURBS
curve point x(ξ) is calculated as

x ξ( ) � ∑n
a�0

Ba,p ξ( )Pa, (20)

TABLE 8 Relative errors εerr of first- and second-order derivatives of the T-shaped field function.

Wave number Third-order derivative Fourth-order derivative

Δx = 10−2 Δx = 10−3 Δx = 10−4 Δx = 10−2 Δx = 10−3 Δx = 10−4

2.0 0.046993 0.004742 0.000475 0.074230 0.007397 0.000740

2.2 0.015218 0.001519 0.000152 0.028162 0.002809 0.000281

2.4 0.016825 0.001702 0.000170 0.019696 0.001991 0.000199

2.6 0.024099 0.002391 0.000239 0.005452 0.000510 0.000051

2.8 0.020400 0.002077 0.000208 0.015680 0.001545 0.000154

3.0 0.019244 0.001935 0.000194 0.032066 0.003234 0.000324

3.2 0.015844 0.001623 0.000162 0.027878 0.002859 0.000287

3.4 0.002134 0.000170 0.000016 0.004899 0.000550 0.000056

3.6 0.006509 0.000677 0.000068 0.011701 0.001157 0.000116

3.8 0.004120 0.000407 0.000041 0.006975 0.000710 0.000071

FIGURE 9
Distribution of T-shaped field functions under different derivatives: (A) first-order, (B) second-order, (C) third-order, (D) fourth-order, (E) fifth-order,
and (F) sixth-order derivatives.
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where Pa refers to the ath command point.

3.2 Discretizations

The coefficients of the derivative of the pressure of sound and
flux fields on the boundary, as given in Eq. 11, have been
interpolated applying NURBS basis functions utilizing the IGA
technique, as follows:

p n( ) ξ( ) � ∑nf
a�0

Ba,pf ξ( )p n( )
a , q n( ) ξ( ) � ∑nf

a�0
Ba,pf ξ( )q n( )

a , (21)

where nf indicates the amount of integration points, pf denotes the
order of the polynomial, and p(n)

a and q(n)a represent the worldwide

derivative sound pressure and flow characteristics associated with
the ath control point, respectively.

Because the Kronecker delta condition is not satisfied with
NURBS basis functions, p(n)

a and q(n)a do not represent a field
and flux within the boundary’s derivative values. As a result,
the collocation points must be rebuilt. In this study, the Greville
abscissa method is utilized, and collocation points are created
in the parameter space, as demonstrated in the following
equation:

ξ̂a �
ξfa+1 + ξfa+2 +/ + ξfa+pf

pf
, a � 0, 1, . . . , nf. (22)

The discretized versions of isogeometric BEM are obtained by
substituting Eq. 21 into Eq. 11.

c x ξ̂a( )( )∑nf
κ�0

Bκ ξ̂a( ) p n( )
κ + αq n( )

κ( )
� ∑n

s�0

n!

s! n − s( )! ∑
Ne

e�1
∑nf
κ�0

∫ξe+1

ξe

G s( )Bκ ξ( )J ξ( )dξ[ ]q n−s( )
κ

−∑n
s�0

n!

s! n − s( )! ∑
Ne

e�1
∑nf
κ�0

∫ξe+1

ξe

R s( )Bκ ξ( )J ξ( )dξ[ ]p n−s( )
κ

+ α∑n
s�0

n!

s! n − s( )! ∑
Ne

e�1
∑nf
κ�0

∫ξe+1

ξe

∂G s( )

∂n x( )Bκ ξ( )J ξ( )dξ[ ]q n−s( )
κ

− α∑n
s�0

n!

s! n − s( )! ∑
Ne

e�1
∑nf
κ�0

∫ξe+1

ξe

∂R s( )

∂n x( )Bκ ξ( )J ξ( )dξ[ ]p n−s( )
κ

+ q n( )
inc x ξ̂a( )( ), (23)

TABLE 9 Expectation of the T-shaped field function with different coefficients
of variation.

Order Coefficient of variation (γ)

0.05 0.07 0.09 0.11 0.13 0.15

2 1.56901 1.79665 2.10017 2.47957 2.93485 3.46601

4 1.58434 1.85556 2.26115 2.83879 3.63561 4.70813

6 1.58523 1.86226 2.29143 2.93976 3.91071 5.35732

8 1.58588 1.87181 2.30270 2.94463 3.92112 5.36010

10 1.58599 1.87181 2.30270 2.94463 3.92112 5.36010

MCs 1.58599 1.87181 2.30270 2.94463 3.92112 5.36010

FIGURE 10
The curvewhere the standard deviation of a T-shaped field function changeswith the derivative: (A) γ=0.05, (B) γ=0.07, (C) γ=0.09, (D) γ=0.11, (E)
γ = 0.13, and (F) γ = 0.15.
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where a = 0, 1, . . . , nf. The period of time between two non-
repeating intersections is represented by the NURBS element [ξe,
ξe+1], Ne indicates the number of NURBS elements, and J(ξ)
indicates the Jacobian.

The matrix representation of the discretization of the boundary
value integral equations using the nth-order derivative is as
follows:

∑n
s�0

n!

s! n − s( )!
�R s( )p n−s( ) − �G

s( )q n−s( )[ ] � q n( )
inc . (24)

By rearranging each term and applying the boundary conditions,
the equations can be solved as follows:

Ax � B. (25)
Taking the incident wave into consideration, x = p(n) is an

unknown quantity on the boundary of the matrix. A � �R0, which is
an asymmetrical dense matrix. B is a known vector obtained by the
matrix multiplication of vector operations.

B � ∑n
s�0

n!

s! n − s( )!
�G

s( )q n−s( ) −∑n
s�1

n!

s! n − s( )! �R
s( )p n−s( ) + q n( )

inc . (26)

Eq. 25 can be solved with n = 0 to obtain the field vector p0 result.
Next, the field’s initial derivative value concerning the random
number is determined by substituting p0 into Eq. 25 with n = 1.
By analogy, it is possible to determine the value of a field derivative
for any order. Finally, the following two equations can be used to
determine the expectation and variance of the field at these border
points:

E u k( )( ) � ∫+∞

−∞
u k( )ρ k( ) dk (27)

and

V u k( )( ) � ∫+∞

−∞
u k( ) − E u k( )( )[ ]2ρ k( ) dk. (28)

Where ρ(k) represents the probability density function, and the
field variable of is represented by u of p, q, G or R, and u(k)
represents the k-fold density of probability function.

It is crucial to remember that the kernel functions’
derivatives of the boundary integral, as given in Eq. 11, are
singular. Singular integrals of this nature require special
treatment. Such integrals may be explicitly and directly
derived utilizing the Hadamard finite-part integral and
Cauchy principal value methods.

The singularity of Eq. 24 is up to the second order. Therefore, a
numerical instance of spline order 2 can thus be accepted.

3.3 Accelerating using the fast multipole
method

Applying the FMM will accelerate the matrix–vector product of
isogeometric finite elements in Eq. 11. The key core of FMM is to
form a tree structure and delineate the boundary integrals. The
original boundary integral is divided into a near-field part and a far-

field part, and the near-field part is generally calculated using
conventional BEM, while the far-field part is calculated using
accelerated FMM-based BEM. In the stochastic analysis involved
in this work, the presence of higher-order derivatives of the Green’s
function can make the fast algorithm more complex and difficult to
implement. The detailed calculation procedure is as follows:

G x, y( ) � i
4

∑+∞
~m�−∞

O ~m ycx
��→( )I− ~m ycy

��→( ), (29)

where yc is the unfolding point around y and the functions O ~m and
I ~m are defined as

O ~m z( ) � i ~mH 1( )
~m

kr( )ei ~mθ ,

I ~m z( ) � −i( ) ~mJ ~m kr( )ei ~mθ ,
(30)

where J ~m denotes a Bessel function of order ~m and (r, θ) is the
polar coordinate of the vector z. The random input variable is
repeatedly used to distinguish Eq. 29 from the following
equation.

G s( ) x, y( ) � i
4
∑s
ℓ�0

s!

ℓ! s − ℓ( )! ∑+∞
~m�−∞

O ℓ( )
~m

ycx
��→( )I s−ℓ( )

− ~m
ycy
��→( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦. (31)

Substituting Eq. 31 into Eq. 11, the integral equation can be
expressed as follows:

∫Γfar
G s( ) x, y( )Φ n−s( ) y( ) − R s( ) x, y( )ψ n−s( ) y( )[ ]dΓ y( )

� ∑s
ℓ�0

s!

ℓ! s − ℓ( )! ∑+∞
~m�−∞

O ℓ( )
~m

ycx
��→( )M ~m,s−ℓ yc( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

∫Γfar

∂G s( ) x, y( )
∂n x( ) Φ n−s( ) y( ) − ∂R s( ) x, y( )

∂n x( ) ψ n−s( ) y( )[ ]dΓ y( )
� ∑s

ℓ�0

s!

ℓ! s − ℓ( )! ∑+∞
~m�−∞

∂O ℓ( )
~m

ycx
��→( )

∂n x( ) M ~m,s−ℓ yc( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(32)

where Γfar stands for a subsection of the structural boundary located
away from the source point x and M ~m,j−ℓ(yc) is the multipole
moment of (j − ℓ) at the expansion point yc, which is denoted as
follows:

M ~m,s−ℓ yc( )� i
4
∫

Γfar
I s−ℓ( )
− ~m

ycy
��→( )Φ n−s( ) y( )− ∂I s−ℓ( )

− ~m
ycy
��→( )

∂n y( ) ψ n−s( ) y( )⎡⎢⎣ ⎤⎥⎦dΓ y( ).
(33)

Substituting Eq. 21 into Eq. 33, the discrete formula for the
multipole moment is expressed as follows:

M ~m,s−ℓ yc( ) � i
4
∑Ne

e�1
∑nf
κ�0

∫ξe+1

ξe

I s−ℓ( )
− ~m

Bκ ξ( )J ξ( )dξΦ n−s( )
κ[

−∫ξe+1

ξe

∂I s−ℓ( )
− ~m

∂n y ξ( )( )Bκ ξ( )J ξ( )dξψ n−s( )
κ

⎤⎥⎦. (34)

The calculation of the residual coefficients and translations, such
as local-to-local, multipole-to-local, and multipole-to-multipole
translations, is independent of the geometric representation and
approximation of the field variables. So we can refer to [51] to
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establish the continuum formulation of FMM for BEM, and the far-
field integral equation could be written as

∫Γfar
G s( ) x, y( )Φ n−s( ) y( ) − R s( ) x, y( )ψ n−s( ) y( )[ ]dΓ y( )

� ∑s
ℓ�0

s!

ℓ! s − ℓ( )! ∑+∞
~m�−∞

I ℓ( )
− ~m

x1x
��→( )L ~m,s−ℓ x1( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

∫Γfar

∂G s( ) x, y( )
∂n x( ) Φ n−s( ) y( ) − ∂R s( ) x, y( )

∂n x( ) ψ n−s( ) y( )[ ]dΓ y( )
� ∑s

ℓ�0

s!

ℓ! s − ℓ( )! ∑+∞
~m�−∞

∂I ℓ( )
− ~m

x1x
��→( )

∂n x( ) L ~m,s−ℓ x1( )⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦,

(35)

where L ~m,s−ℓ(x1) is the local moment of (s − ℓ) of the unfolding point
x1, as detailed in [51].

It is important to note that the number of terms ~m used in Eq. 31
should be truncated. An increase in the number of expansion terms
usually not only results in higher precision but also consumes more
memory and time. The formula ~M � kd + c · log(kd + π) is provided
in [52], where the parameter ~M is the number of truncations, c is a
constant, and d is the size of the cell. When c = 5, there is a good
balance between precision and performance, and it will be used in the
following calculations [52]. The solution summary of geometric
boundary element methods was studied in detail by [53]. The
results of the study show that the solution time is improved when
a corresponding higher order of convergence is reached in geometric
boundary element methods. Therefore, it is the key parameter of the
fast multipole isogeometric boundary element method.

4 Scattering by an infinite cylinder

Uncertainty analysis is used in this section using an example of
acoustic dispersion from an endless cylinder. The existing direct
uncertainty analysis approaches are first used to compare the
derivative values with arbitrary ordering, and the global finite
difference method (FDM) is established by

ψ′ x( ) � ψ x + Δx( ) − ψ x( )
Δx , (36)

where Δx represents the minor disruption connected to x.
Several scenarios are taken into consideration in order to

research the impact of perturbation Δx on the values of
derivatives of field functions of every order, as illustrated in
Figure 1. The image contrasts the magnitude of the field
function’s sixth-order derivative at various wave numbers k. Even
for high-order derivatives, FDM and direct uncertainty analysis are
trustworthy methods. The derivative value increases under a
particular wave number as the field function’s derivative number
increases. Additionally, this behavior can be observed in real-world
engineering applications.

Their relative errors under various Δx values are given to further
analyze FDM and the accuracy of the initial uncertainty analysis.
The estimated findings are shown in Tables 1, 2, which compare the
relative errors εerr of the direct uncertainty analysis method (DSM)
and FDM.

εerr �
ψ DSM( ) − ψ FDM( )
∣∣∣∣∣ ∣∣∣∣∣

ψ FDM( )
∣∣∣∣∣ ∣∣∣∣∣ , (37)

where ψ(DSM) and ψ(FDM) indicate the direct calculation approach
and the finite difference method of solving the problem,
respectively.

Tables 1, 2 show that, as the disturbance Δx reduces, the relative
inaccuracy gradually diminishes. The relative errors of the various
field function derivatives are typically limited to a relatively low
number, which confirms the algorithm’s accuracy.

Subsequently, the infinite cylinder’s field function sensitivity
distribution, as shown in Figure 2, facilitates a straightforward check
of the algorithm’s accuracy at a wave number k = 1. The fact is that
the distributions resulting from applying DSM and FDM were
substantially consistent, as shown in Figure 2, confirming the
accuracy of the algorithm used in this work once more.

The uncertainty of an infinite cylinder model is then examined
using the perturbation method, where the value of the random
variable k is set to be the wave number with a Gaussian distribution.
The standard deviation is set in the range of σ ∈ [0.05, 0.15], the
corresponding disruption parameter ε is 1, and the wave number k’s
average value μ is 1. The perturbation method with various order
expansion terms is used to compare the first two probability
moments of the field function at a position (10,0) with those of
MCs. Here, the control group for MCs consists of 500 sample points
produced utilizing a random number generator. The responses of
500 sampling points were obtained by repeatedly solving
500 inferior geometric fast multipole BEM equations using the
isogeometric fast multipole BEM group. In actuality, this phase is
time-consuming.

The predicted value of the field function for various γ = σ/μ
coefficients of variation is shown in Table 3. The table shows that as
the order of expansion increases, the perturbation method’s output
approaches that of MCs. The field function’s standard deviation is
shown in Figure 3 along with several coefficients of variation. Similar
to this, the closer the outcome of the perturbation method is to MCs,
the higher the order. We can also discover that this affects the
perturbation method’s computational convergence. The Taylor
expansion’s restriction causes the convergence to decline as the γ

value increases.

4.1 Sound barrier structure

This section presents the noise distribution in the sound shadow
area under two simple top shapes. The top shape is an upright
rectangle, where the height of the linear sound source from the
ground is 1 m, the distance from the sound barrier is 10.5 m, the
width of the bottom of the sound barrier is 0.2 m, and the vibration
frequency of the sound barrier is 100 Hz, as shown in Figure 4. All
surfaces are assumed to be rigid surfaces, so the amount of
attenuation of the diffracted sound waves determines the sound
barrier’s ability to reduce noise. Due to the total reflection of the
ground, this analysis is used to solve a two-dimensional semi-space
sound field problem. In the study of the sound barrier structure, the
boundary element method only needs to be discretized by a grid
instead of discretizing the infinite ground, which shows that the
boundary element method has great advantages in calculating the
sound field problem in an infinite domain. The vertical sound
barrier boundary is discretized into 100 constant boundary units.
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4.1.1 Rectangular model
We regard the input parameter as random—the wave number

that adheres to the Gaussian distribution. Figure 5 studies the first,
second, and third and fourth, fifth, and sixth variations of the field
function with respect to random parameters at the position (10, 0).
The derivative amplitude of the field function is calculated using
FDM DSM. The steps of FDM are set at Δk = 10−2k, Δk = 10−3k,
Δk = 10−4k, and Δk = 10−5k. The results of FDM and the direct
uncertainty analysis approach are comparable, as shown in
Figure 5.

Their relative errors under various Δx values are given to further
investigate the accuracy of FDM and the explicit uncertainty analysis
technique. The relative error εerr values of the direct uncertainty
analysis approach and FDM are provided in Tables 4, 5. They show
that when the disruptions Δx increase, the relative error steadily
reduces. The fact that the relative errors of the various field function
derivatives are maintained at a relatively low level confirms the
algorithm’s accuracy.

We look at the sensitivity field function’s distribution
around the infinite cylinder when the wave number k = 1 to
more easily ascertain the algorithm’s accuracy, as shown in
Figure 6. It shows that the distribution generated by the direct
technique for uncertainty analysis is essentially consistent with
that obtained by FDM, further demonstrating the algorithm’s
accuracy.

Then, using a rectangular model with the number of waves k
considered to be a Gaussian-distributed random quantity, we
analyzed uncertainty using the perturbation method. The relevant
interference parameter ε is set to 1, the mean value of the number of
waves k is set to 1, and the normal deviation is set in the range of
σ ∈ [0.05, 0.15]. Comparisons are made between the probability
moments acquired by MCs and the first two probability moments
of the field function at a position (10, 0) generated by the perturbation
method with extensions of various orders. The predicted value of the
field function for various coefficients of variation γ = σ/μ is shown in
Table 6. It shows that as the order of expansion increases, the
perturbation method’s results approach those of the MCs. The
predicted value and standard deviation of the field function for the
extension are displayed in Figure 7.

The predicted value and standard deviation of the field function
for the extension are displayed in Figure 7. The figure illustrates that,
as the expansion term lengthens, the results of the two probability
moments calculated using this approach closely approximate to
those of MCs. In addition, poor convergence results from an
increase in the coefficient of variation γ.

4.1.2 T-shaped model
Similar to the aforementioned rectangular model in this paper,

we consider the input parameters to be random parameters and treat
the computation of the derivative amplitudes of the treated field
functions in the same way. That is, the following figure shows the
variation in the first- to sixth-order derivative random parameters of
the field function for the position point (10, 0), and the comparison
of the results of FDM and the direct deterministic analysis method is
shown in Figure 8. Then, the accuracy of FDM and direct
uncertainty analysis techniques is further analyzed by their
relative errors at different Δx. The relative errors, as shown in
Tables 7, 8, indicate a decreasing trend with increasing Δx.

We also investigate the distribution of the sensitivity field
function around the infinite cylinder when the wave number is 1,
as shown in Figure 9. This result further demonstrates the accuracy
of the algorithm. Using a T-shaped model with a Gaussian-
distributed random quantity with a wave number k, the
uncertainty is analyzed using the perturbation method, the
relevant disturbance parameter ε is set to 1, the mean value μ is
also set to 1, and the normal deviation is set in the range of
σ ∈ [0.05, 0.15]. By comparing the probability moments obtained
under the perturbation method with those obtained by MCs, the
predicted values of the field function under different coefficients of
variation γ = σ/μ are shown in Table 9, and the predicted values and
standard deviations of the extended field function are shown in
Figure 10.

By analyzing these two numerical examples, Figures 7, 10
illustrate that as the expansion term lengthens, the results of the
two probability moments calculated using this approach closely
approximate to those of MCs. In addition, poor convergence results
from an increase in the coefficient of variation γ.

5 Conclusion

The generalized nth-order perturbation approach is used in this
study to analyze the uncertainty around sound wave propagation in
an infinite domain. IGABEM enhances the precision and
effectiveness of the stochastic perturbation method through the
seamless integration of CAD and numerical analysis.
Furthermore, it mainly uses NURBS to construct structural
geometry and discretize the boundary integral equation. We
discover that the isogeometric BEM simulation, which uses an
exact geometric representation compared to a traditional
Lagrange-based BEM simulation, is often more accurate. The
investigation of the immediate uncertainty approach and finite
difference method proves accurate for larger derivatives, which
confirms the validity of the suggested algorithm. In addition, we
compare this method with other derivatives generated by the global
finite difference method. Under a specific wave number, the
derivative value increases as the field function’s derivative order
increases. Additionally, this phenomenon can be utilized in real-
world engineering applications. The result of uncertainty
qualification shows that with the increase in the extended order
term, the predicted value of field functions based on this technique is
comparable to the anticipated value of MCSs, demonstrating the
accuracy of the suggested methodology. The existing strategy has
some drawbacks. When the unpredictability of the input random
variable is high, capturing its statistical characteristics adequately
can be challenging. While improving computation accuracy by
modifying the order of the Taylor expansion, it also increases the
cost of the calculation. In the future, we can extend the perturbation
method to deal with three-dimensional acoustic scattering problems
as well as target objects with more complex geometries, which will
not only increase the complexity of the problem but also expand its
range of applications. Uncertainty analysis of acoustic scattering
problems at different frequencies can also be investigated to gain a
more comprehensive understanding of the properties of acoustic
wave propagation. This is essential for solving multi-frequency
acoustic scattering problems and for practical applications.
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