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Modeling strong shockwaves in fluids remains a persistent challenge in computational
physics. Essential to research efforts in industry and defense, numerousmethods have
been devised to improve the accuracy and efficiency of shock simulations. A novel,
hybrid Finite Volume Method (FVM)-Smoothed Particle Hydrodynamics (SPH)
approach is capable of further improving efficiency and retaining accuracy by
exploiting the favorable characteristics of each respective method. This hybrid
approach is presented for shock capturing in compressible fluids. The Python
framework Pyro2 is employed to simulate a coarse FVM mesh, while the Python
framework PySPH is utilized to model the fluid in regions with high gradients through
SPH particles. The performance of the hybrid FVM-SPH scheme, compared to the
individual FVM and SPH methods, is assessed in 1 kt and 10 kt blast simulations. Our
results indicate that the hybrid approach offers higher computational efficiency than
SPH while preserving its accuracy and characteristics. The hybrid approach had a
relative speedup of 11.3x and 22.3x over the FVM and SPH approaches for the 1 kt
simulation and a relative speedupof 14.7x and20.9xover the FVMandSPHapproaches
for the 10 kt simulation. The hybrid SPH algorithm enables future compressible fluid
simulations with more extensive capabilities than grid-based methods alone,
presenting potential applications in modeling fluid-structure interactions and solid
deformation and fracturing in blast simulations.
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1 Introduction

Accurately modeling the effects of blasts in a variety of environments is critical to threat
response efforts. By predicting the light output of different explosives in varied scenarios, rapid
detection is enabled, granting authorities crucial time to address such incidents [1]. Computational
tools for modeling blasts serve as the primary mechanism for generating data for these purposes.
Modeling strong shock waves in complex environments requires high-resolution simulations that
consume significant computational resources. Despite significant advances in computer hardware,
the modeling of large blast simulations remains prohibitively expensive.

Fluid simulations involve the division of a domain, usually utilizing a certain type of grid, to
make estimates of the governing equations within that grid. Algebraic approximations substitute
differential operators, and algorithms are constructed to advance the simulation in time. Strong
shocks in fluids include abrupt changes in fluid properties as the supersonic shock wave moves.
Capturing the physical traits of the shock, therefore, necessitates the use of a small spatial
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discretization. The stability of the solution hinges on the size of the
discretization due to the CFL condition, necessitating the use of a
proportionately small timestep [2]. Given these spatial and temporal
discretization limitations, shock simulations can be computationally
expensive.

Various computational strategies enhance the efficiency of shock
simulation, with Adaptive Mesh Refinement (AMR) standing out as a
significant example [3]. AMR enables the adjustment of mesh resolution
across a simulation area, facilitating dynamic modification of local
resolution to apply higher resolution only in required places. The use
of AMR can dramatically decrease the count of cells or grid points
required in a simulation. However, it also adds to the computational
complexity during the creation of a simulation code or the design of a
specific problem initialization. Moreover, the smallest mesh in the
multiresolution mesh will continue to constrain the time step, even
though it may be many times smaller than the largest mesh.

A dedicated set of shock-capturing techniques has been
specifically designed to optimize shock simulations. Early
strategies involved shock-fitting methods, setting the
discontinuity as a static feature in the mesh [4]. On the other
hand, shock-capturing approaches account for shocks in the
solution and model them as they navigate the domain. These
varied techniques offer different performance benefits and trade-
offs concerning accuracy, efficiency, and computational complexity.

In previous work, a method coupling the Finite Volume Method
(FVM) and Smoothed Particle Hydrodynamics (SPH) was
developed and applied to one and two dimensional test problems
[5, 6]. The publications introduce the hybrid FVM-SPH scheme and
test it against common analytical and numerical benchmarks for
shock problems in one and two dimensions. Various resolutions,
hybrid coupling parameters, and SPH schemes were investigated. In
the present study, the method is implemented for blast simulations
in air, equivalent to 1 kt and 10 kt of TNT. The hybrid SPH scheme
presents an alternative to the conventional AMR scheme that
employs a mesh-based strategy. In this case, SPH particles are
utilized to represent regions surrounding shockwaves, while a
low-resolution FVM mesh models the bulk of the fluid. This
approach dramatically reduces the number of SPH particles
necessary to model the shock without sacrificing accuracy.

While SPH is typically not as efficient as mesh-based methods
like FVM in modeling bulk fluid flows, merging these methods
makes it possible for the hybrid SPH method to achieve similar
efficiency. This combined method also provides a path for including
SPH features in future shock simulations. SPH makes it easier to
model regions of complex or dynamic geometries, a task that can be
difficult in grid-based methods. Additionally, SPH can be used to
model solids and is often applied in studies of solid deformation,
fracturing, and high-velocity impact simulations [7–9]. Such
capabilities are important in integrated simulations of blasts,
including the effects of the environment on the blast signatures.

2 Background

2.1 Finite volume method

In the Finite Volume Method, the spatial domain is divided into
discrete cells for approximating the governing equations. Field values

within each cell are expressed as volume integrals of the field present in
that cell, while derivative operators are expressed as the sum of fluxes
through all edges or faces of a cell. As the flux leaving 1 cell surface equals
the flux entering the adjacent cell surface, the FVM preserves
conservation. The FVM can also use unstructured meshes, which
simplifies the modeling of problems involving intricate geometry.
However, numerical implementation for unstructured meshes,
especially adaptive meshes, is more challenging [10].

While basic finite volume schemes ordinarily achieve second-
order accuracy, higher-order schemes are also accessible. In this
research, a second-order, directionally unsplit piecewise linear
method is used [11]. The conservative aspect of this method is
advantageous for shock problems because it ensures constancy of
total mass, momentum, and energy across the domain. FVM cells
are the control volumes for mass and energy conservation, while
FVM cell pairs (bounding a cell-pair interface) serves as the control
volume for conservation of momentum. Shock-capturing methods
can be integrated into the FVM framework for enhanced
performance in shock simulations.

The fundamental equations used to simulate the shock problems
in this study are the Euler equations for inviscid flow, as described
in [12]:

∂ρ

∂t
+ ∇ · ρu( ) � 0, (1)

∂ ρu( )
∂t

+ ∇ · ρuu( ) + ∇p � 0, (2)
∂ ρE( )
∂t

+ ∇ · ρEu + pu( ) � 0, (3)

In these equations, u � ux̂ + vŷ + wẑ is the velocity vector, ρ is the
fluid density, p is the for pressure, and E is the total energy. In the
context of a 2D planar geometry, the equations become [12]:

∂ρ

∂t
+ ∂ ρu( )

∂x
+ ∂ ρv( )

∂y
� 0 (4)

∂ ρu( )
∂t

+ ∂ ρu2( )
∂x

+ ∂ ρuv + p( )
∂y

� 0 (5)
∂ ρv( )
∂t

+ ∂ ρv2( )
∂y

+ ∂ ρuv + p( )
∂x

� 0 (6)
∂ ρE( )
∂t

+ ∂ ρuE + up( )
∂x

+ ∂ ρvE + vp( )
∂y

� 0 (7)

2.2 Smoothed particle hydrodynamics

Smoothed Particle Hydrodynamics (SPH) utilizes a meshless
method to discretize fluid mass into finite particles [13]. This is done
by dividing the fluid into particles via a kernel functionW(x − x′, h).
Here, x − x′ represents the distance from the center of a particle x′,
while h signifies the smoothing length which determines the
particle’s volume. The kernel approximation is used to
approximate functions f(x) as shown by [13]:

<f x( )> � ∫
Ω
f x′( )W x − x′, h( )dx′, (8)

In this equation, Ω is the space volume within a particle’s range, hk,
such that W(x − x′, h) = 0 when |x − x′| > hk. Given a particle at xi
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with N particles within a distance hk, the field at its center is
computed as a weighted average of the neighboring particles
using the equation [13]:

<f xi( )> � ∑N
j�1

mj

ρj
f xj( )Wij, (9)

Here, xj is the location of each neighboring particle, mj is particle
mass, ρj is particles density, and Wij is the scalar weight between
particles i and j, which is calculated using the smoothing function.

Derivative operators of fluid equations can be achieved
similarly [13]:

<∇ · f x( )> � −∫
Ω
f x′( ) · ∇W x − x′, h( )dx′, (10)

With a finite count of particles, the equation transforms to [13]:

<∇ · f xi( )> � −∑N
j�1

mj

ρj
f xj( ) · ∇iWij, (11)

In this context, ∇iWij is derived as follows [13]:

∇iWij � xi − xj

rij

∂Wij

∂rij
, (12)

In the Smoothed Particle Hydrodynamics formulation, the Euler
equations result in the following conservation equations for mass,
momentum [14]:

ρi � ∑
j

mjWij, (13)

dui

dt
� −∑

j

mj
pi

ρ2i
+ pj

ρ2j
( )∇iWij, (14)

dei
dt

� 1
2
∑
j

mj
pi

ρ2i
+ pj

ρ2j
( ) · ∇iWij. (15)

In the above equations, u � ux̂ + vŷ is the velocity vector for
particle i.

A critical feature of the Smoothed Particle Hydrodynamics
method is the smoothing function W(x − x′, h), which
determines the particle shape and significantly impacts key
performance factors, including accuracy, stability, and
efficiency. Any mathematical function can serve as a
smoothing function, provided they fulfill certain criteria like
normalization, compactness, positivity, and smoothness, among
others [15]. Frequently utilized smoothing functions encompass
bell-shaped functions, polynomials, splines, and Gaussian
functions. Gaussian functions are more precise and contribute
to enhanced stability [16]. However, they lack the computational
efficiency of spline functions.

The basic Smoothed Particle Hydrodynamics formulation often
has poor convergence for problems involving shocks or
discontinuities. Consequently, SPH schemes have been
introduced to modify SPH to improve shock-capturing
characteristics [17]. Notable SPH schemes used for shock
capturing in gases include the Adaptive Kernel Density
Estimation method (ADKE) [18], the Monaghan Price and
Morris Scheme (MPM) [19], and the Godunov Smoothed
Particle Hydrodynamics formulation (GSPH) [20]. Due to its

accuracy and compatibility in coupling with the FVM method,
the GSPH scheme was chosen for the hybrid algorithm.

The GSPH formulation used in this investigation was put forth
by Inutsuka and incorporated into PySPH by Puri and
Ramachandran [20, 21]. The GSPH formulation ensures
conservation of mass, momentum, and energy. The density
summation, given in Equation 13, can be constructed into a
symmetrized with a smoothing function to avert non-physical
forces [22]:

ρi � ∑
j

mjWij
~hij( ), (16)

Here, ~hij symbolizes the symmetrized smoothing length between
particles i and j. The momentum and energy equations of SPH are
formulated by substituting their integral forms with an interpolation
across the path that connects two neighboring particles [21]:

dui

dt
� −∑

j

mjpij* Vij
2 hi( )∇Wij



2

√
hi( ) + Vij

2 hj( )∇Wij



2

√
hj( )[ ]
(17)

dei
dt

� −∑
j

mjpij* uij* − _xi[ ]
· Vij

2 hi( )∇Wij



2

√
hi( ) + Vij

2 hj( )∇Wij



2

√
hj( )[ ] (18)

The intermediate states are represented by starred variables and are
dictated by the solution to the Riemann problem. The initial states
are set to the values of particle i and j for each field variable. The
variable smoothing length in the GSPH scheme is computed using a
two-step algorithm. The preliminary step involves computing a pilot
density for each particle [21]:

ρ̂i � ∑
j

mj
~Wij Csmooth, hi( ) (19)

CSmooth is a predetermined numerical smoothing parameter set at
the start of the simulation. In this study, a value of 2.5 was used,
following other similar investigations [21]. The pilot density ρ̂i is
then utilized to update the smoothing length, which is subsequently
used to calculate the final density via Equation 16 [21]:

hi � η
mi

ρ̂i
( )

1
d

(20)

d is the dimension of the simulation and η is a numerical parameter
that depends on the smoothing function used. For this study, a value
of 1.5 was used, based on comparable investigations [21].

Puri and Ramachandran noted that the numerical dissipation of
the GSPH scheme was inadequate for accurate modeling of
problems with strong shocks. To increase thermal conduction,
they incorporated numerical dissipation terms into the energy
equation from the ADKE scheme [21]:

Hi � g1hici + g2hi
2 | ∇ · ui( ) | − ∇ · ui( )[ ] (21)

The numerical parameters g1 and g2 are determined for each
particular problem, and ci represents the sound speed. The
conduction term becomes zero for ∇ ·vi ≥ 0 when particle
velocity is diverging. Although the thermal conduction term is
numerically artificial, it is essential to remember that heat
dissipation in shocks physically exists, only it occurs on a
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microscopic level significantly smaller than the spatial scale of most
simulations [23].

2.3 Hybrid smoothed particle
hydrodynamics

The utilization of Smoothed Particle Hydrodynamics (SPH) in
hybrid methods provides beneficial features stemming from the
particle-based technique. SPH has shown efficacy in fluid-structure
interactions (FSI) problems due to its Lagrangian nature facilitating
seamless interaction with deformable bodies. Past studies have
combined SPH with the Finite Element Method for deforming
solids modeling and complementary SPH schemes for FSI
simulations, including free surface flows [24, 25], dam breaking
problems with elastic gates [26], and tire hydroplaning [27], and
multiphase heat transfer modeling [28]. Its meshless structure
affords SPH flexibility not seen in grid-based methods for
addressing FSI-related geometric issues.

Additionally, hybrid SPH techniques have been explored for
fluid-fluid simulations, often coupling SPH with grid-based solvers
for free-surface flows [29–31], or interfacial flows [32]. This
combination utilizes SPH particles for surface and boundary fluid
regions, while the bulk fluid is modeled using Finite VolumeMethod
(FVM) cells. Prior research has examined the use of hybrid
smoothed particle hydrodynamics (SPH) in modeling
compressible fluids for different uses, such as gas fractures and
fragmentation [7, 8, 33]. The current study expands upon this by
applying hybrid SPH to shock wave simulations, incorporating a
new gradient identification method and a Finite Volume Method-
SPH coupling technique. SPH particles are consistently placed near
shock areas and remain stable through multiple computational
steps. Additionally, particles are added or removed as needed
when shock waves move within the domain. Despite the lack of
extensive research on hybrid SPH schemes for compressible
hydrodynamics problems, the potential advantages for science
and industry applications are numerous. The area remains ripe
for exploration, specifically for compressible shock problems,
considering the continued evolution of this numerical method [34].

3 Methods

3.1 Finite volume method solver

The Finite Volume Method was modeled utilizing the Python-
based Pyro2 framework [35]. Pyro2 is an open-source program
featuring an explicit, two-dimensional FVM scheme with a variety of
solvers, such as a piecewise linear solver, a fourth order Runge-Kutta
solver, and a method-of-lines solver. Among these, the piecewise
linear solver is utilized in the examined problems, functioning as a
coarse grid solver that encapsulates the smaller SPH-modeled
sectors within the hybrid approach. Pyro2 operates on a
standard, rectangular grid, with variables including density,
internal energy, and momentum components in x and y. It
supports periodic, reflecting, and outflow boundaries, and
employs ghost cells along the mesh perimeter for calculations

near the boundary. Pyro2 incorporates the Numba Python
package to expedite mesh calculations [36].

Given that Pyro2 is written in Python, its performance is
lackluster relative to FVM solvers written in compiled languages.
Nonetheless, this study is primarily designed as a preliminary
analysis of a hybrid FVM-SPH model for blast simulations,
focusing on the application of the numerical method to a larger
problem for the first time. The goal is to gauge the performance of
this hybrid approach relative to standalone FVM and SPH methods.
Evaluation of the hybrid SPH method in compiled programming
languages is left to future research.

3.2 Smoothed particle hydrodynamics solver

The scheme of Smoothed Particle Hydrodynamics was
modeled using the open-source Python framework PySPH [37].
PySPH has a diverse range of SPH formulations for modeling
gases, liquids, and solids and also includes mechanisms for
modifying existing schemes or crafting new ones. The PySPH
framework leverages the NumPy and Cython packages to expedite
simulation computations [38]. It also offers compatibility with the
Zoltan and PyOpenCL packages, enabling parallelization and
support for GPU [39]. In this study, PySPH is executed serially
to allow an appropriate performance assessment against the FVM
and hybrid methodologies.

In light of the extreme gradients present at the beginning of
the simulated problems, a Gaussian smoothing function was
identified as capable of delivering accurate results. The
Gaussian kernel is frequently used for shock problems, along
with the cubic B-spline kernel [40]. The Gaussian kernel was
selected as it was found to have marginally better performance in
earlier benchmarking tests. The kernel function for two
dimensions is defined as follows [16]:

W x − x′, h( ) � e
|x−x′|

h( )2
h




π

√ if | x − x′ | < 3

0 if | x − x′ | ≥ 3

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (22)

Despite being less computationally efficient than other smoothing
functions, alternative methods either necessitated a significantly
higher resolution or became entirely unstable when applied to
the 1 kt and 10 kt blast simulations.

3.3 Reference simulation

The reference simulations were performed using the shock
physics code CTH developed at Sandia National Laboratories
[41]. CTH enables the simulation of diverse materials and can
model multi-phase, elastic, and explosive systems, among others.
It supports rectangular meshes in one-, two-, and three dimensions,
cylindrical meshes in one- or two dimensions, and spherical meshes
in one dimension. CTH is implemented in FORTRAN and C and
incorporates adaptive mesh refinement capability, utilizing second-
order accurate solvers. During testing, CTH has been parallelized
across more than 1 million cores.
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3.4 Computational resources

The reference simulations were executed serially on the High-
Performance Computing (HPC) cluster managed by the College of
Engineering at Oregon State University. Testing and development of
the FVM, SPH, and hybrid codes were also conducted on this
cluster. However, for the largest of the tested problem domains,
we encountered memory issues that prevented the simulations from
reaching the target size. Given that the codes were run serially, a
2021MacBook Pro equipped with an Apple M1 CPU was selected to
model the problems. The Apple M1 chip features eight cores
running at 3.2 GHz, with 32 GB of RAM available. Before any
jobs were executed, a Conda virtual environment containing the
necessary dependencies was activated. Output data, including
simulation runtimes, field values, and SPH particle positions,
were recorded for evaluation at selected times to the local storage.

4 Hybrid coupling algorithm

The rationale behind leveraging a hybrid FVM-SPH
simulation is to compound the merits of each method,
thereby mitigating their individual drawbacks. Given the
substantial number of interactions between particle pairs in
SPH, we expect the FVM to have a performance advantage
over SPH to attain the same level of accuracy. In a standard

two-dimensional grid, a singular SPH particle must interact with
21 distinct particles, contrasting with an FVM grid where only
nine grid values are required for a second-order scheme [13]. By
combining SPH with an FVM grid, the total count of SPH
particles can be decreased, with particles only modeled near
discontinuities. A coarse FVM grid is capable of modeling the
majority of the fluid and managing areas outside shocks without
reducing the accuracy of the overall simulation.

FIGURE 1
Depiction of the hybrid coupling algorithm’s simulation procedure. The green segment represents the FVM cycle, while the orange segment
illustrates the SPH sub-cycle. Figure originally from [6].

FIGURE 2
Illustration of the time stepping strategy for the Hybrid FVM-SPH
simulation. The FVM time stepmaintains a constant size, while the SPH
time step can vary and is generally smaller. The last SPH time step in
the SPH sub-loop is adjusted to align with the FVM time. Figure
originally from [6].
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The simulation steps are shown in Figure 1. The FVM scheme
serves as the global simulation, while SPH operates as a form of sub-
grid modeling. High gradient regions are modeled using active SPH
particles, which are enclosed by SPH boundary particles. These
boundary particles derive their values from the FVM mesh at every
time step. The FVM cells near the SPH regions draw their values,
including density, x- and y-velocities, pressure, and energy, from the
active SPH particles at the end of each time step. Given the difference
in resolutions, the FVM time step is considerably larger than the
SPH time step, leading to the adoption of a varied time step
approach as depicted in Figure 2.

The hybrid simulation starts with the FVM and SPH simulations
being initialized to a starting state. The fluid values and numerical
parameters are loaded, and the domain and boundaries for both
schemes are established. An SPH injection map is created based on
the FVM mesh so that injected particles will be introduced in a
regular pattern to prevent instabilities and oscillations in new
particles. Hybrid simulation parameters are also set, including the
size of SPH active and boundary regions around discontinuities.

The main loop begins with the FVM simulation moving forward
one time step. The time step used is substantially larger than what is
typically needed to resolve the shock since the SPH simulation is
relied upon in these regions. The limiting factor is instead
determined by the advancement in the shock in the SPH scheme.
The FVM simulation must evolve fast enough such that SPH does
not reach its boundary region before the FVM updates. A time step
of around 1e-5 was used in both simulated problems. Once the FVM
time step is completed, the gradients of the resulting field are
calculated across the FVM cells, and those found to be higher
than a predetermined threshold are marked for SPH modeling. A
buffer region around the flagged cells is included in the SPH cells to
account for the movement of the shocks, and a boundary region is
established around all of these cells. Any cells that changed from
unflagged to SPH active or boundary regions require new SPH
particles, which are injected at locations determined by the injection
map. Figure 3 provides a visual representation of these steps.

Once new particles are injected, all particles are flagged based on
whether they are in active SPH cells, boundary cells, or inactive cells.
Any particles not marked as active or boundary cells are removed.
The FVM values are interpolated to boundary SPH particles through

a linear interpolation technique inspired by the Particle-in-Cell
simulation method in plasma physics [42]:

f xi, yi( ) � wafa + wbfb + wcfc + wdfd

� xd − xi( ) yi − yd( )fa + xi − xc( ) yi − yc( )fb

+ xb − xi( ) yb − yi( )fc + xi − xa( ) yd − yi( )fd

(23)

A representation of the interpolation scheme is shown in Figure 4.
In Equation 23, f corresponds to a chosen field value. The coupled
fields include density, x- and y-velocities, and pressure, and energy.
The i subscripts indicate the SPHparticle x and y coordinates, whereas
the a, b, c, and d subscripts represent the nearest four FVM cell centers
as demonstrated in Figure 4. After interpolation, the field values of

FIGURE 3
Illustration of the FVM flagging process: (A) Field values in FVM. (B)Cells with gradients surpassing a predefined threshold are identified. (C) Identified
cells are designated as active SPH regions (in red), and the neighboring cells become boundary SPH regions (in white). (D) SPH injection map identifies
zones (in red) for the addition of new SPH particles. Figure originally from [6].

FIGURE 4
Illustration of the FVM-SPH interpolation method. The field value
f is determined through 2D linear interpolation, in which the weights
wa, wb, wc, and wd are applied to the respective fields at cells a, b, c,
and d. Figure originally from [6].
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SPH boundary particles are stored so that values can be reverted after
each SPH time step. This approach to SPH boundaries, fixing the
particle positions and values for particles at the SPH domain’s edge,
was significantly more efficient than using the built-in boundary
approaches. Additionally, the simplicity and robustness of the
approach allow for easy integration into the hybrid scheme, where
complicated boundary configurations may form.

The SPH simulation then moves forward one step in time. In
previous work, the SPH time step was calculated using the CFL
condition, where the time step chosen was proportional to the time it
takes a particle to travel one particle smoothing length h. The
smallest of these values, determined from each particle
smoothing length and sound speed, was selected. This approach
was not chosen as it added significant computational expense at each
step because of the size of the problem and often did not produce
accurate results. Instead, an empirical, parabolic time step relation

was derived from the time steps used in the CTH reference
simulations until 18 μs. After that, a fixed time step was used
proportional to the discretization size.

After the SPH simulation time reaches the FVM time, active
SPH particles’ values are interpolated to the FVM cells. Each
particle’s field value is divided into the nearest four FVM cell
centers, inversely proportional to the distance from each cell
center, shown in Figure 4. Once all the particles’ values have
been distributed, the value in each cell is weighted by the
number of particles and their respective weight [6]:

fa � ∑N
i�1fiwi∑N
i�1wi

(24)

For the N particles distributed to a given FVM cell a.
The SPH variables interpolated to the FVM mesh are in

primitive form, so the conservative form variables are then
calculated for the FVM mesh. The FVM boundaries at the edges
of the domain are updated, and the simulation is prepared to begin
the next step of the main simulation loop. The loop is repeated until
the final simulation time is reached. All data is then stored, including
FVM cell data, SPH particle data, and general simulation
parameters, including runtime and initialization data.

The FVM and SPH methods used in the hybrid algorithm
conserve mass, momentum, and energy through the simulation.
Ensuring conservation of the coupling algorithm is critical for
the stability and accuracy of the hybrid approach. In linearly
interpolating values directly between particles and FVM cell
centers, the interpolated values are conserved across
interpolation steps. Mass and energy are directly interpolated
between particles and cells, and as a result are strictly conserved.
Momentum is not directly conserved as velocity is interpolated
between particles. Future research may include direct
interpolation of momentum to strictly ensure conservation,
but the current approach was found to be stable and accurate
for the examined problems.

TABLE 1 Initial Conditions and SPH parameters for the SPH and hybrid schemes
in the 1 kt and 10 kt blast simulations. The kernel factor denotes particle size,
g1 and g2 are numerical parameters used in the GSPH scheme implemented in
[21], and γ is the ratio of specific heats. The explosive is initialized as a cylinder
of uniform high pressure and high density air. Regions outside the initial
radius are set to standard atmospheric pressure and density. The pressure and
density of cells that contain regions both inside and out of the initial explosive
radius are weighted by the area that in inside the radius.

Kernel
factor

g1 g2 γ

SPH
parameters

1.5 0.25 0.5 1.4

ρexplosive Pexplosive rexplosive Δx

1 kt Initial
Conditions

1e3 kg/m3 2.11e13Pa 0.288m 0.2m

10 kt Initial Conditions 1e3
kg/m3

1.224e14Pa 0.372m 0.2m

FIGURE 5
FVM results for 1 kt detonation in air at t = 1 ms.
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While linearly interpolating values ensures conservation,
the interpolation can be diffusive for regions with high
gradients. To avoid diffusion, the interpolating boundary
regions between cells and particles is separated from flagged
regions by at minimum two FVM cells. Lower gradient regions
not flagged by the hybrid algorithm can experience some
diffusion, but it was not found to be significant enough in
the examined problems to use an alternative interpolation
approach.

5 Results

To evaluate the hybrid SPHmethodology, the FVM, SPH, and
hybrid approaches were applied to 1 kt and 10 kt blast
simulations modeled in CTH. The problem was initialized as a
2D volume of air at standard atmospheric pressure and density,
specifically 102 kPa and 1.225 kg/m3, respectively. The explosive

was initiated by setting a cylindrical volume to a density of
1,000 kg/m3 and the pressure such that the total energy of the
air inside the cylindrical volume equaled the required energies of
1 kt and 10 kt.

To fairly compare the FVM and SPH approaches with the
hybrid approach, a variable domain size protocol was
implemented that increased the size of each problem only
when needed. Each problem began with a 10-m by 10-m
domain until the shock wave from the explosive approached
the edges. At that point, the data was saved to storage, and the
simulation was re-initialized with a larger domain. The previous
data was then loaded into the larger simulation and advanced
forward in time until it became necessary to repeat the process.
As the number of cells or particles is proportional to the area of
the domain for a fixed discretization size, this technique saved a
significant amount of time for the FVM and SPH simulations in
the early stages, particularly because of the small timesteps
needed at the start of the simulation.

A resolution corresponding to 20 cm was utilized in the FVM,
SPH, and hybrid simulations. Testing with 10 and 5 cm resolutions
led to significantly higher runtimes and memory issues encountered
at earlier simulated times while providing minimal improvements in
blast wave radius relative to the reference simulation. At 20 cm, the
SPH simulation, utilizing a GSPH scheme, was able to
approximately model the propagation of the shock wave found in
the CTH simulation. Although the FVM simulation
underperformed the SPH simulation, even at higher resolutions,
the FVM code was selected to serve as an efficient, coarse model for
the hybrid simulation.

At the start of the simulations, the initial timestep for all
problems was set to 6.25e-11 s and 3.125e-11 s for the 1 kt and
10 kt problems, respectively. The growth in timestep was capped at a
maximum value equal to the square of the number of simulated steps
times the initial timestep until a simulated time of 18 μs:

Δtmax � Δtinitial* step( )2 if < 18μs
ΔtCFL else

{ } (25)

Beyond the prescribed time, the simulation determined the
timestep via the CFL condition, although the calculated
timesteps typically remained below 2 μs and 1 μs after the
early stages once the shockwave had formed. The initial
timestep size and maximum timestep growth were selected to
ensure accuracy and stability at the start of the simulation, where
the adaptive timesteps were found to be too large. The initial
timestep and timestep growth mirrored those seen in the
reference CTH simulation, although the growth in timesteps
was smaller than in the CTH simulation.

The hybrid simulation required both a coarse FVM simulation
and a fine SPH simulation to model the problem. An important
parameter of the hybrid simulation was the ratio of the SPH to FVM
resolution, previously denoted as β � ΔxSPH

ΔxFVM. Previous investigations
determined an optimal value of β = 4, which was found to be
comparable or faster than β = 2 and β = 8 in most cases, although the
differences between each value were relatively small. Other
important hybrid parameters included the number of active and
boundary cells surrounding the SPH region; a value of one for each
was found to be sufficient.

FIGURE 6
Simulation runtimes for 1 kt blast simulations using FVM, SPH,
and hybrid approaches.

FIGURE 7
Relative simulation runtime speedup over the SPH simulation for
the 1 kt blast simulation.
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5.1 1 kt detonation

The 1 kt detonation was modeled using FVM, SPH, and the
hybrid approach until 1ms. Initial conditions and parameters used
in the SPH and hybrid schemes for both the 1 kt and 10 kt blast
simulations are shown in Table 1. Open boundary conditions are
used at the edges of the domain. In the FVM and SPH simulations,
the initial domain length was set to 10 m and increased by 5 m when
the shockwave approached the boundaries until a size of 50 m. The
domain then expanded by 10 m until a total length of 100 m, beyond
which the simulation expanded by 25 m each time. As an aid for
interpreting the 1D data, a 2D visualization of the results is shown in
Figure 5. The hybrid simulation was initialized to 100 m from the

beginning but with a coarse FVM mesh and a limited number of
SPH particles only around the central explosive.

The simulation runtimes for the FVM, SPH, and hybrid
simulations are displayed in Figure 6. The hybrid approach is
more efficient than the FVM or SPH approaches after early time
and is approximately an order of magnitude faster than both near
the end of the simulation. The steep rise in runtime seen in the FVM
and SPH simulations is largely due to the increasing domain size as
the shockwave propagates, necessitating additional cells and
particles. At early times, the hybrid method does not have any
advantage since the domains are small in all cases, and the majority
of the runtime is due to the number of timesteps rather than the
number of cells or particles.

FIGURE 8
Simulations results for center-line density for a 1 kt blast simulation at t = 1 ms for the CTH reference simulation and using FVM, SPH, and hybrid
approaches.

FIGURE 9
Peak shockwave density and radius for a 1 kt blast simulation at t = 1 ms for the CTH reference simulation and using FVM, SPH, and hybrid
approaches.
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Simulation runtime speedup over the SPH simulation is shown
in Figure 7. The speedup is found by dividing each runtime at every
simulation time output by the SPH runtime and inverting the result.
At early times, the hybrid result is comparable to the FVM result but
continues to rise to 22.3x over the course of the simulation. The
FVM simulation is faster than the SPH simulation at all output
times, but the FVM speedup reduces as the simulation progresses.

One-dimensional lineouts of density at select times through the
center of the domain are shown in Figure 8. Times were selected to
show the formation and propagation of the shockwave in each
approach. At 18 μs, FVM significantly overestimates peak density,
while SPH and hybrid approaches underestimate density relative to
the CTH simulation. As time progresses, the FVM density falls
closer to the reference simulation value but propagates faster. The
SPH and hybrid simulation shockwaves initially lag behind the

reference simulation shockwave and underestimate density, but they
converge at a later time.

The peak density and shockwave radius for each approach and
the reference simulation are displayed in Figure 9. Given that the
SPH and hybrid simulations are essentially the same but with a
smaller domain in the hybrid simulation, the results overlap for most
of the recorded times but exhibit some slight variation for peak
density. The SPH and hybrid peak densities are initially below the
reference simulation before converging and then diverging below
again around 1ms. The FVM simulation overestimates peak density
until the end of the simulation, at which point it falls below the
reference simulation. The SPH and hybrid simulation closely follow
the reference blast radius initially before overshooting, while the
FVM simulation overestimates the blast radius at all simulation
times.

FIGURE 10
FVM results for 10 kt detonation in air at t = 1 ms.

FIGURE 11
Simulation runtimes for 10 kt blast simulations using FVM, SPH,
and hybrid approaches.

FIGURE 12
Relative simulation runtime speedup over the SPH simulation for
the 10 kt blast simulation.
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5.2 10 kt detonation

The 1 kt detonation was modeled using each approach until
1ms. The initial conditions for the 10 kt problem are given in
Table 1. Open boundary conditions are used at the edges of the
domain. In the FVM and SPH simulations, the initial domain length
was set to 10 m and was increased the same amount as in the 1 kt
simulation. However, the shockwave propagated faster in the 10 kt
simulation, resulting in a larger and more rapidly expanding
domain. As an aid for interpreting the 1D data, a 2D
visualization of the results is shown in Figure 10. The hybrid
simulation was initialized to 100 m from the beginning, featuring

a coarse FVM mesh and SPH particles in the center, similar to the
1 kt setup.

The simulation runtimes for the FVM, SPH, and hybrid
simulations are displayed in Figure 11. The hybrid approach is
more efficient than the FVM or SPH approaches. Similar
performance behaviors over simulated runtime are observed
across each approach but with a longer overall runtime. The
hybrid approach remains approximately an order of magnitude
more efficient than the FVM or SPH approaches, while the FVM
approach has performance approaching that of the SPH approach
at 631 μs and 1 ms as it overestimates the propagation of the
shockwave and requires a larger domain.

FIGURE 13
Simulations results for center-line density for a 10 kt blast simulation at t = 1 ms for the CTH reference simulation and using FVM, SPH, and hybrid
approaches.

FIGURE 14
Peak shockwave density and radius for a 10 kt blast simulation at t = 1 ms for the CTH reference simulation and using FVM, SPH, and hybrid
approaches.
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Simulation runtime speedup over the SPH simulation is shown in
Figure 12. At early times, the hybrid result is comparable to the FVM
result but quickly rises to a 11.8x speedup over the SPH simulation. The
rate of speedup decreasesmoderately but the speedup continues to rise to
20.9x by the end of the simulation. The FVM simulation moderately
faster than the SPH simulation at early times but the speedup reduces to
be relatively close to SPH by the end of the simulation.

One-dimensional lineouts of density at select times through the
center of the domain are shown in Figure 13. The FVM approach
again overestimates the speed of the shockwave. However, the
magnitude of the peak density remains below the reference
simulation at all output times. The SPH and hybrid approaches
similarly underestimate density but are more accurate in
determining the location of the shockwave.

The peak density and shockwave radius for each approach and the
reference simulation are displayed in Figure 14. The reference simulation
predicts a higher peak density than each approach. Interestingly, the
reference simulation predicts an increase in peak density that occurs
between 225 and 631 μs, which is not seen in the FVM, SPH, or hybrid
approaches. The SPH and hybrid approaches overestimate the
shockwave radius, while the FVM radius diverges from the reference
simulation more rapidly than in the 1 kt problem.

6 Discussion and future work

The hybrid SPH method discussed here offers a distinct approach
to blast simulations, presenting potential applications beyond
conventional mesh-based simulations. The merits of the Lagrangian
method, such as modeling various materials affected by a blast and
tracking deformation and fracturing, can be achieved without the usual
inefficiency of meshless methods. By confining the spread of SPH
particles to the areas surrounding shockwaves, we have improved the
performance tenfold while preserving the characteristics of a shockwave
as modeled by SPH. This presents a promising avenue for enhancing
the performance of SPH-based blast investigations in scenarios where
vast regions exhibit no significant gradients.

Given that we used Python frameworks to evaluate each individual
approach and construct the hybrid approach, there are certain
limitations to the evaluation undertaken here. Python is not typically
chosen for its efficiency, and numerous optimizations can be applied to
each of the frameworks used in this study. Many faster versions of FVM
and SPH, available in compiled languages, can offer a more accurate
assessment of the true speed of these methods; however, these
investigations are left to future researchers. Nonetheless, the
development and testing of the hybrid SPH method for
compressible blast simulations, which, according to the literature
surveyed, has only been recently explored [33], carries intrinsic value.

The hybrid SPHmethod provides an alternative approach to AMR
for grid-based simulations with new applications. Of particular interest
in blast simulations is the interaction of shockwaves with structures and
the surrounding environment. As seen in previous hybrid-SPH
simulations of water and incompressible fluids, hybrid-SPH
simulations for compressible fluids can facilitate the streamlined
modeling of several phenomena in a given problem, which typically
involves varying characteristics and often different physics. Moreover,
the straightforward interaction between SPH-modeled fluids and SPH-
modeled solids enables easy fluid-structure modeling, making it more

accessible to a wider range of researchers. In addition to fluid structure
interaction problems, future work includes extending and testing the
hybrid approach in three dimensions and implementing and evaluating
parallel hybrid SPH simulations. Such extensions require switching to
an alternative FVM solver, as Pyro2 does not include parallelization
capability.

7 Conclusion

In conclusion, this work has introduced and demonstrated the
effectiveness of a hybrid FVM-SPH scheme for capturing shocks in
compressible fluids. The method was successfully applied to 1 kt and
10 kt blast simulations. The proposed hybrid approach places SPH
particles in areas with high gradients, interpolating field values between
FVM and SPH through boundary particles and cells. This method was
tested for accuracy and computational efficiency against traditional SPH
methods and FVM methods without adaptive mesh refinement
capability. Notably, it demonstrated a tenfold increase in
performance over traditional methods while retaining the accuracy
and character of an SPH simulation.

This innovative strategy could improve the way researchers
approach blast simulations, as it combines the advantages of both
FVM and SPH methods. The hybrid approach, by selectively utilizing
SPH particles only in regions of high gradients, avoids the general
inefficiencies associated with meshless methods. As a result, the
flexibility and diverse application potential of the Lagrangian
method can be harnessed without the corresponding performance
drawbacks. Furthermore, the dramatic performance enhancement
without sacrificing accuracy opens up new avenues for complex
blast simulations, especially in scenarios involving large regions
without significant gradients. Therefore, this work contributes a
novel perspective to the existing body of research, potentially aiding
further explorations in the realm of computational blast simulations.
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