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Editorial on the Research Topic
Heterogeneous computing in physics-based models

Since Nvidia’s general-purpose graphics processing units (GPUs) were adopted by
technical computing at the beginning of this century, the term heterogeneous computing for a
long while has been synonymous with GPU computing. Such a simplistic characterization of
heterogeneous computing is certainly no longer correct. This Research Topic thus aims to
provide a glimpse of some new developments in three aspects of this subject: hardware,
software, as well as heterogeneity in computational methodology. To limit the scope, we
restrict our attention to heterogeneous computing used in large-scale simulations of systems
governed by the laws of physics. Arguably, physics-based simulations are no longer fueling
hardware innovation; that role is replaced by the growing data deluge and the advances in
data analytics, machine learning (ML), and artificial intelligence (AI). We believe, however,
that physics-based simulations are still at the core of scientific and technological advances,
thus deserving innovative research effort that can deliver the full potential of heterogeneous
computing and also benefit other research domains.

Hardware heterogeneity has historically received most of the attention. GPUs, based on a
different architectural design principle than conventional CPUs, have helped to postpone the
end of Moore’s law. Lately, the demand for more computing power and higher energy
efficiency has led to a renaissance of more exotic hardware architectures, as observed in [1,2].
Many of the new architectures can be categorized as domain-specific accelerators, with the
wafer-scale engine (WSE) of [3], the intelligence processing unit (IPU) of [4], and the Gaudi
processor of [5] as the best known ML accelerators. Another fundamentally different
hardware strategy has led to the rise of quantum hardware, most notably the quantum
processor developments from [6,7], respectively. Although these ML accelerators and
quantum processors are not designed to solve differential equations, we present here two
examples of re-purposing such domain-specific hardware for physics-based simulations. In
particular, Burchard et al. use Graphcore IPUs to solve the monodomain model of cardiac
electrophysiology that is mathematically described by a non-linear reaction-diffusion
system, whereas Markidis adopts a simulated quantum processor in physics-informed
neural networks to speed up solving the Poisson problems with quadratic and sinusoidal
sources. Hardware diversity is also reflected in the other two papers of this Research Topic.
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Specifically, Brodtkorb and Sætra use multiple GPUs to solve the
Euler equations, whereas Nordhagen et al. use CPU clusters for
simulating interacting particles by variational Monte Carlomethods.

Software heterogeneity accompanies hardware heterogeneity,
because new hardware architectures typically require completely
new programming strategies. For GPU computing, although CUDA
is a mature programming model, the low-level programming that is
required is still too demanding for many domain scientists. Lifting
the level of GPU programming is thus desirable. Brodtkorb and
Sætra present a high-level programming framework for
implementing a Euler equation solver in the Python
programming language. Except for the core numerical
computation that is implemented in CUDA C++ (and compiled
just-in-time), the entire code is written compactly in Python.
Specifically, new Python classes are developed for managing the
subgrids and individual MPI processes (each controlling a GPU).
Moreover, the existing Python modules PyCUDA and mpi4py
further alleviate the programming challenges associated with
parallelization. In the same spirit, Markidis uses high-level
programming interfaces, in particular, TensorFlow Quantum [8]
and Strawberry Fields [9], to abstract the specifics of quantum
hardware, thus avoiding explicit management of data movement
or offloading of the quantum circuit execution. At the other end of
the programming spectrum, Burchard et al. are forced to use the
low-level Poplar C++ library that is specific for Graphcore IPUs. In
general, new research is needed to overcome the programming
hurdles that are often associated with heterogeneous computing.

Heterogeneity has also found its way into computational
methodology, where we are referring to the use of ML to
improve physics-based simulations. As illustrated by the papers
of Markidis and Nordhagen et al., it is possible to adopt neural
networks to speed up such simulations. Specifically, Markidis uses a
(simulated) quantum processor to run a surrogate neural network as
part of a physics-informed ML framework; Nordhagen et al. use the
Gaussian-binary restricted Boltzmann machine, which is a shallow
neural network, to replace the trial wave function of a quantum
mechanics system. There are good reasons to expect more
combinations of ML and physics-based simulation in future.

Although the number of papers included in this Research Topic
is small, they nevertheless showcase some of the ongoing research

work on various aspects of the now vibrant subject of heterogeneous
computing.We expect that continued research effort in this content-
rich subject will enable further developments in physics-based
simulations, through a combined use of hybrid computing
strategies (physics-based and ML-assisted), hybrid software (high-
level and low-level), and hybrid hardware (general-purpose,
reconfigurable, and domain-specific).
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