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Gravitational lensing is a general relativistic (GR) phenomenonwhere amassive object
redirects light, deflecting, magnifying, and sometimes multiplying its source. We use
reaction-diffusion (RD) Belousov-Zhabotinsky (BZ) chemistry to study this
astronomical effect in a table-top experiment. We experimentally observe BZ
waves passing through non-planar, quasi-two-dimensional molds and reproduce
the waveforms in computer simulations using planar RD waves propagating with
variable diffusion. We tune the variable diffusion to match the Schwarzschild-
coordinate light speed near a spherical mass so the RD propagation approximates
Einstein’s famous light deflection relation.Wediscuss varying the diffusion or reaction
rates with a gel matrix or with illumination, electric field, or temperature gradients.
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1 Introduction

Studying black holes and other sources of strong gravity is hard because they are
notoriously difficult to make in the lab. Consequently, a need exists for a laboratory analog of
general relativistic phenomena. In this article, we propose a novel analog based on reaction-
diffusion waves propagating in two-dimensional planar surfaces with variable diffusion.

Figure 1 summarizes the article’s structure and results. Section 2 reviews gravitational
lensing, surveys previous general relativistic analogs, and recalls Einstein’s famous weak-field
starlight deflection formula. Section 3 details our experiment passing RD waves over shallow
obstacles. Section 4 simulates the experiment by replacing the obstacles with regions of
variable diffusion. Section 5 varies the diffusion to mimic the light speed in a star’s
Schwarzschild spacetime and thereby approximates the classic Einstein light deflection.
Section 6 concludes by discussing extensions and next steps.

2 General relativity

2.1 Gravitational lensing

Gravitational lensing is an astrophysical general relativity phenomenon that occurs when a
massive object (the “lens”) warps spacetime and deviates the path of the light traveling from a
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distant source to an observer. As a result, the observer may see the
apparent position of the real source in a different position, as two or
more virtual images, or even as a complete ring if the source, lens, and
observer are perfectly aligned. This effect was first described by Albert
Einstein in a scratch notebook in 1912 [1] but only published in 1936 [2].
The first mention of the now called “Einstein ring” was published by
Orest Chwolson, who described it as a “halo effect” in 1924 [3].

This effect was first investigated during the total solar eclipse of
1919 by two British Expeditions. The Einstein prediction of a 1.75-

arcsecond deflection of starlight by the Sun was observed by both
expeditions by comparing the apparent location of known stars [4].
It took another 60 years for the first astronomical observation of the
lens creating this gravitational effect in 1979 byWalsh, Carswell, and
Weymann [5] and another 20 years for the first Einstein ring based
on data from the Hubble Space Telescope [6]. One of the most
beautiful examples is the lensed quasar HE0435-1223 creating four
nearly evenly distributed virtual sources after its light passed the
foreground galaxy, as in Figure 2.

Nowadays, gravitational lensing is used as an astronomical tool to,
for example, search for dark energy and dark matter [7], determining
mass distributions of distant sources [8], or determining the distance
of massive objects such as black holes [9] and quasars [10]. Besides
light, gravitational waves can also be influenced by the strong lensing
effect of galaxies and clusters and have even been proposed to be used
to determine cosmological parameters [11].

2.2 Previous analogs

Because many astronomical phenomena are difficult to imagine,
scientists have always been fascinated by lab-size analogs, either to
provide a scaled-down, accessible setup for visualization or to find
similar phenomena on quite different spatial scales. Johannes Kepler
wrote [12],

“And I cherish more than anything else the Analogies, my most
trustworthy masters. They know all the secrets of Nature, and
they ought to be least neglected in Geometry.”

Many black hole analogs have been created in the past [12, 13].
Gravitational lensing (GL) analogs using scaled-down optical

FIGURE 1
Article summary. (A) General relativity predicts the observed gravitational deflection of light near stars with massM. The deflection angle α depends
on the impact parameter b, the perpendicular distance between the initial ray and the star’s center. (B) Experimental reaction-diffusion (RD) over spherical
cap obstacles vets our (C) simulated RD over a plane with variable diffusion. (D) Planar RDwith variable diffusion canmatch the effective light speed near a
star or black hole and (E) well approximate the famous angle deflection relation α ∝ M/b.

FIGURE 2
Gravitational lensing effect of light from the quasar HE0435-1223
after passing a galaxy. (Credit: ESA/Hubble, NASA, Suyu et al. released
under the Creative Commons Attribution 4.0 International license.).
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experiments date back as far as 1969 [14]. Since then, various setups
have been used to recreate the deformed spacetime around massive
objects that bend the path of light rays to visualize the astronomical
lensing effect. Those systems include using milled Plexiglas lenses
[15–18], transparent photopolymer resin lenses using a
stereolithography 3D printer [19], a broken off wine glass base
[20, 21], or even a full wine glass [22]. In 2021, Selmke used small
disks placed in water for their optical GL analog. The surface tension
of the water-air interface raised the menisci around the small discs,
creating the necessary curvature for the light to bend [23].

In 2022, Catheline et al. published the first non-optical GL
analog which featured surface tension waves moving across a fabric
membrane [24]. Their work inspired this project. In their
experiment, they stretched different types of fabric over a drum
pad and pulled the fabric downwards at one spot to create a warped
depression, which is analogous to the gravity well caused by the
warping of spacetime around a massive object. Using a ruler and a
drumstick, they initiated a planar mechanical surface wave and
recorded its propagation with a high-speed camera.

2.3 Weak-field light deflection

Gravitational lensing results from the deflection of light’s path
caused by large mass concentrations. As described by Einstein’s
general theory of relativity, massive objects distort spacetime around
them, changing the trajectory of light.

The nature of light has been questioned by scientists throughout
history [25], including a big debate over its composition in the 18th
century. In 1704, Isaac Newton argued that light was no exception to
his laws of classical mechanics [26]. He proposed that light was
composed of particles that experience gravitational pulls from other
bodies. This theory contradicted the theory championed by
Christiaan Huygens a century earlier, which stated that light
propagated as a wave through a physical medium called the
“ether” [27]. Many scientists were more inclined towards
Huygens’ theory because of the experiments conducted by
Augustin-Jean Fresnel on light interference and diffraction in 1819.

But already in 1783, John Michell predicted the existence of
“dark stars” (or black holes) by treating light as particles, and in a
1784 letter to Henry Cavendish he hypothesized that one could
estimate a star’s mass by measuring how the speed of its light would
slow due to its gravitational pull [28]. Likely inspired by this letter,
Cavendish used purely classical mechanics to estimate a light ray’s
angle of deflection α0 from a mass M depending on the distance of
closest approach d as

α0 � 2GM
c2d

, (1)

with G as the gravitational constant and c as the speed of light. The
light ray from the original light source passes an object at a distance
d and experiences a deflection of angle α0, so from the observer’s
perspective, the light ray appears to have come from a different
direction, creating an apparent source position. The true deflection
angle α = 2α0 is shown in Figure 1A.

Because the wave-nature of light was established in favor of the
ether theory, the idea that gravity could affect light was not
considered to be accurate throughout the 19th century. It was

not until Albert Einstein formulated his “Principle of
Equivalence” that the debate was open again. He stated that
gravitational mass and inertial mass were indistinguishable from
each other. It follows that light, though being massless, had to
experience the effects of gravity as well and would change its
trajectory when passing a massive object, due to its gravitational
effect.

Einstein published his calculation of the deflection angle α0 in
1911 [29] based on his “Theory of Special Relativity” and the
calculations agreed with Cavendish’s Eq. 1 result. In November
1915, Einstein submitted four papers to the Prussian Academy of
Sciences about aspects of the “Theory of General Relativity” in which
he explained that Newtonian mechanics was not a perfect
description of how bodies behaved on a bigger scale. His
revolutionary gravitational theory proposed that matter curves
spacetime and other particles move along the corresponding
spacetime geodesics. A cumulative 54-page article was published
1 year later [30] (see also the review article [31]). Einstein
recalculated the correct weak-field deflection angle to be

α � 4GM
c2b

� 2Rs

b
� 2
b/Rs

, (2)

where R s = 2GM/c2 is the deflector’s Schwarzschild radius, and b is
the light ray’s impact parameter, the perpendicular distance between
the initial ray and the gravitational source. This is surprisingly
similar to Eq. 1, just off by a factor of 2 (although by
dimensional analysis, it must be similar). Indeed, half the
deflection is due to special relativistic “slow time,” and half is
due to general relativistic “space warp.”

In 1919, Arthur Eddington considered Einstein’s prediction and
helped organize an experiment to confirm it by recording the
positions of stars that appeared closest to the Sun during an
eclipse (when they could be seen in daylight) compared to the
same stars in the nighttime sky without the Sun [32]. The stars
appeared to shift position by angles consistent with the 1.75 arc
seconds predicted by Eq. 2 and not by Eq. 1.

3 Physical obstacle experiment

3.1 Reaction-diffusion system

Reaction-diffusion (RD) systems are responsible for many self-
organizing phenomena in nature [33, 34] and the chemical
Belousov-Zhabotinsky reaction [35, 36] has been used since the
1970s to explore the behavior of temporarily oscillating systems,
spatially frozen Turing patterns, and propagating spatio-temporal
excitation waves.

In a quasi-two-dimensional, excitable Belousov-Zhabotinsky
(BZ) system, waves propagate due to spatio-temporal
concentration changes of their chemical components and the
resulting diffusion effects. The oxidation and reduction of the
catalyst, which also acts as a color indicator, creates visible
oxidation waves in the reduced background solution.

The reaction-diffusion system chosen to model the gravitational
lensing effect was BZ waves because of the color contrast between
the wavefronts and the rest of the reaction. The visibility of their
waves makes the study of BZ wave propagation easy to conduct.
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Their chemical composition has been perfected throughout the years
to produce a wavefront propagating system that can be easily
visualized by the human eye and therefore measured accurately.

The experimental setup consisted of a monochrome charge-
coupled-device (CCD) camera (Basler acA2000-50 gm,
2048 pixel × 1088 pixel) and a frosted glass pane, to make the
light from the backlight below as homogeneous as possible, and
to hold the acrylic mold with the BZ system. We placed a blue
filter between the mold and the camera to increase the contrast in
the absorption spectra between the oxidized, blue waves and the
reduced, red background. Images were saved every second with a
self-designed LabVIEW program which controls the frame
grabber card (National Instruments PCIe-8236) and saved on
a computer for further processing using the open-source NIH
sponsored software Fiji [37].

3.2 Acrylic glass mold

We used an acrylic glass mold with various obstacles, creating a
hollow, quasi-two-dimensional system with a constant thickness of
0.5 mm in the normal direction, as in Figure 3. The mold contained
thirteen obstacles: two hemispherical shells, which were not used
in our experiment, and eleven spherical cap shells with radii R
between 3.00mm and 13.00 mm and heights h = 2.00 mm. The
BZ solution was poured into the negatively curved dips in the
mold bottom, on the right of Figure 3A, before the mold top, on the
left of Figure 3A, was placed onto it to create the quasi-two-
dimensional system. Figure 3B is a side image of a filled system
with clearly visible obstacles. The filled planar part of the system is
not visible.

To understand the effect of each obstacle on a propagating wave,
one needs to determine the path length difference between the
planar path dp (just passing the obstacle) and the curved path dc
across the center line of the obstacle. Figure 4 is a side view sketch of

a spherical cap shell. The quasi-two-dimensional BZ solution is
placed in the 0.50 mm gap between the twomold sides. All values are
based on the center line of the gap. For each obstacle, radius R and
cap height h create a spherical cap with base radius r. From the
geometry, the cap’s base radius r � ��������

h(2R − h)√
, and the contact

angle (between the normal to the sphere at the cap bottom and the
base plane) α = arcsin[(R − h)/R]. The planar path length dp = 2r,
and the curved path length

dc � Rθ � R π − 2α( ) � R π − 2 arcsin
R − h

h
[ ]( ). (3)

This path length difference between the outside and the obstacle is
the reason for the deformation of the initially straight wavefront.
The front sectionmoving over the obstacle experiences a longer path
length, resulting in a delayed exit compared to the planar front
sections on either side. This delay is largest for the front section

FIGURE 3
(A) Oblique view of pieces of the acrylic glass mold with various spherical cuts within a planar region. (B) Nearly side view of closed mold with BZ
solution, creating a hollow space with constant thickness. The inside area is (75 × 75) mm2 (from [38]).

FIGURE 4
Side view drawing of a spherical cap shell with its defining
parameters radius R and cut height h. The cap’s base circle r, the total
obstacle angle θ, and the contact angle α are necessary to derive the
path length across an obstacle.
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moving exactly across the top of the spherical cap (passing through
the point at cap height h in Figure 4) and decreases to zero when
reaching the planar region around the obstacle.

3.3 Belousov-Zhabotinsky reaction

The Belousov-Zhabotinsky (BZ) reaction is complicated with
many intermediate steps [39], but the overall ferroin-catalyzed
malonic acid BZ reaction can be summarized as

malonic acid + bromate											→ferroin

sulfuric acid

bromine + carbon dioxide + water. (4)
We used initial concentrations of 0.04 M for malonic acid and for
sodium bromate. The 1.2 mM sodium dodecyl sulfate (SDS) addition
decreased the BZ solution’s surface tension to suppress the creation of
larger carbon dioxide bubbles that might otherwise interfere with the
propagating wavefronts. The stock solutions of malonic acid (Alfa
Aesar), sodium bromate (Fluka), and SDS (Amresco) were prepared
in nanopure water of resistivity 18.2 MΩm (Barnstead D11931).
4.0 mM ferroin from a ThermoScientific 25 mM stock solution
catalyzed the reaction and acted as a redox color indicator. 0.20 M
sulfuric acid from a Ricca Chemical Company 1 M stock solution
provided protons for the intermediate reactions.

3.4 Experimental results

Two exemplary passing of waves across the obstacles with R =
6 mm and R = 12 mm are shown in Figure 5. Obstacles gently deflect
the wavefronts.

4 Diffusive obstacles simulation

4.1 Implementing the Barkley model

To proceed further, we used computer simulations. RD waves in
two-dimensional BZ reactions have been modeled successfully for
many decades using a variety of computational models. We used the
Barkley Model [40] because it was designed to efficiently simulate
waves in excitable media.

The Barkley Model is a two-variable reaction-diffusion system
where the local kinetics of the reaction are described by

∂u

∂t
� f u, v( ) +D ∇2u, (5a)

∂v

∂t
� g u, v( ), (5b)

where f(u, v) and g(u, v) express the local kinetics of the activator u
and the inhibitor v respectively. The parameter D represents the
activator diffusion. As there is no diffusion component for the
inhibitor, the model assumes an immobilized inhibitor, for
example, with BZ solution embedded in a gel matrix [41].

Both the activator and the inhibitor parameters are determined
for each point in space within the simulation space. The model sets
the functions f(u, v) and g(u, v) to be

f u, v( ) � u 1 − u( )
a1

u − v + a2
a3

( ), (6a)

g u, v( ) � u − v, (6b)
where the chemical parameters a1 = 0.005, a2 = 0.01, and a3 = 0.3.
These two equations define the nonlinear dynamics of the chemical
reaction in the absence of diffusion.

FIGURE 5
Top view of time-series of wavesmoving across two different Figure 3 spherical caps. (A)Cap has radius R= 6 mmand image has area (14 × 14)mm2.
(B) Cap has radius R = 12 mm and image has area (16 × 16) mm2. Time between images in each series is Δt = 100 s.
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Later, for the gravitational analog, we will need variable diffusion
D(x, y), so we modify Eq. 5 by replacing the Laplacian term D ∇2u
with

∇ · Ju � ∇ · D ∇u( ) � D ∇2u + ∇D · ∇u (7)
according to Fick’s laws of diffusion, where the extra term is small
because our diffusion will vary slowly. We will not need the curved-
space Laplace-Beltrami operator [42] when we compare
experimental RD wavefronts passing over a spherical cap with
simulated RD wavefronts passing through a planar variable-
diffusion disk.

The activator diffusion represented by the Laplacian ∇2u at any
point (x, y) can be computationally approximated on a square grid
using the activator variables of neighboring grid points. We first
tried a five-point finite-difference Laplacian stencil consisting of the
point and its four nearest neighbors. In practice, we found that the
five-point formula did not reproduce accurate wavefront curvatures
when propagating over our length scales, as shown in Figure 6. So,
we upgraded to a skewed nine-point finite-difference stencil
consisting of the point and its eight nearest neighbors, including
the four nearest diagonal neighbors. The Laplacian approximation
became

∇2ui,j � ui+1,j+1 + ui−1,j+1 + ui+1,j−1 + ui−1,j−1
+4ui+1,j + 4ui−1,j + 4ui,j+1 + 4ui,j−1
−20ui,j .

(8)

Similarly, we use a central difference approximation for the
gradients, including

∇ui,j � ui+1,j − ui−1,j
2

,
ui,j+1 − ui,j−1

2
( ). (9)

We created a Python simulation, where a N × N grid simulates a
reaction of sizeN, evaluating Eq. 5 for each point of the grid for every
time step. The Barkley model [40] has a simple setup with an
efficient algorithm to simulate reaction-diffusion waves. Its
evolution steps are simple and accurately model BZ reactions.
Modifications to this model can be made in multiple different

aspects, such as changing the coefficient of diffusion, adding
inhibitor diffusion, or adding obstacles.

4.2 Creating obstacles via diffusion

Diffusion is the way the activator propagates through the
reaction resembling a wavefront [43, 44]. The diffusion
parameter D, which is constant in time but possibly variable in
space, determines how fast the reaction propagates. Just as the fluid
drag on a falling object can vary as different powers of its speed,
depending on the experiment, so too can the diffusion. In our
computer simulations, we find the wave speed increases like the
square root of the diffusion parameter, in agreement with other
work [45, 46]. This square root relationship was first described by
Luther in 1906 for the propagation front of a permanganate/oxalate
reaction [47]. Hence, we assume the proportionality

v∝
��
D

√
, (10)

which established the equality

v

c
�

���
D

Du

√
, (11)

where c is the maximum speed, and Du is the maximum diffusion.
We denote the maximum diffusion by Du since it is the initial
diffusion chosen for the activator u (and recall that the Barkley
inhibitor v does not have a diffusion coefficient since the inhibitor
does not propagate).

The diffusion used in the simulation reaction-diffusion space
will depend on the obstacles to be modeled, with 0 ≤ D ≤ Du. With
no obstacles, the diffusion is constant across the simulated space.
Once the obstacles are defined as speed functions, Eq. 11 yields the
equivalent diffusion function.

To simulate Section 3 physical obstacles, the evaluation had to
take into account the difference in path lengths within the obstacle
regions. Because the simulation is two-dimensional, as if the
obstacles were viewed from above, the obstacle regions are

FIGURE 6
Snapshot of a Barkley model simulation of a BZ reaction wave starting from a centered point source using a numerical (A) five-point stencil and a (B)
nine-point stencil. Only the latter reproduces the expected circular symmetry. Brighter colors indicate a higher activator concentration.
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circular. In these areas, the wave should slow as if the path lengths
increased according to the geometry of the simulated obstacles.

When encountering diffusion obstacles, the activator reduces its
propagation speed, which delays its wavefront. If the inhibitor could
also diffuse, the inhibitor from the “tail” of the wavemight propagate
faster than the activator in the wavefront and thereby suppress the
wave. This is one reason why no diffusion term was added to the
inhibitor rate Eq. 5b. Another reason is that we know of no natural
light phenomena resembling a wave inhibitor overrunning its
wavefront. Thus, we model light by reaction-diffusion wavefronts
with a diffusive activator and a fixed inhibitor.

This model is an approximation but reproduces the behavior
observed in the acrylic mold. Converting physical obstacles to
diffusion obstacles allows us to extend our reaction-diffusion
work from experimentation to simulation.

4.3 Simulation versus experiment

Based on the geometry of Figure 4, we created a diffusion
obstacle by systematically decreasing the diffusion parameter
where the obstacles would have caused the wavefront to travel
vertically, thereby slowing its horizontal motion. Figure 7
compares simulation and experiment. The magenta-to-blue
palette codes the diffusion parameter D from higher to lower.
The agreement is excellent as the spatially variable diffusion
nicely mimics the physical obstacles.

5 Mimicking light deflection

5.1 Effective light speed

To mimic light deflection by a star of mass M with variable
diffusion chemistry, we need to determine the effective speed of light
in the corresponding spacetime. The pseudo-Euclidean Minkowski
line element

ds2 � −c2dt2 + dx2 + dy2 + dz2 � − c dt( )2 + dr2 (12)
determines the invariant interval between nearby events in flat
spacetime. The perturbed line element

ds2 ≈ − 1 − Rs

r
( ) c dt( )2 + 1 + Rs

r
( )dr2 (13)

can incorporate the weak gravity of a massM, where R s = 2GM/c2 ≪ r
is the corresponding Schwarzschild radius [48]. Since light travels along
null geodesics, the spacetime interval ds2 = 0, and the effective speed

v

c
� dr

c dt

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ ≈ 1 − Rs/r
1 + Rs/r( )1/2

~ 1 − 2Rs

r
( )1/2

~ 1 − Rs

r
< 1 . (14)

(The rate of change of the r coordinate with respect to the t
coordinate is less than c, but the rate of change of proper
distance with respect to proper time remains c for all observers.)
The corresponding effective refractive index [49, 50] is

n � c

v
≈

1 + Rs/r
1 − Rs/r( )1/2

~ 1 + Rs

r
> 1 . (15)

Combining Eqs 11, 14, the gives diffusion

D ~ 1 − 2Rs

r
( )Du . (16)

Nearby and in the wake of an obstacle, reaction-diffusion wavefronts
behave very differently than light-ray wavefronts deflected by a star,
as in Figure 8, but with Eq. 16 variable diffusion, they can elsewhere
approximate gravitational light deflection to first order in Rs/r [50].

5.2 Light deflection results

Using the resulting diffusion obstacle, we numerically evolve the
RD wavefronts forward in time and measure the deflections of the
corresponding orthogonal rays. Figure 1D highlights the geometry,
including the relation among impact parameter b, deflection angle α,
and mass M ∝ Rs.

FIGURE 7
(A) Experimental wave propagation through physical obstacles (R = 4 mm, h = 2 mm) and (B) simulated wave propagation with variable diffusion
obstacles.
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Figure 8A shows our Python-simulation variable-diffusion
wavefronts bending toward the source center. Using
Mathematica, we find that translated and scaled hyperbolas y =
δy + s/(x − δx), asymptotically approaching horizontal far from the
center, well fit the wavefronts, and we use them to construct the
normal rays (green curves). The starts of the rays give the impact
parameters b and the slopes of the ends of the rays give the deflection
angles α. Figure 8B shows that a plot of α versus b (blue dots) is a
good approximation both to the weak-field deflection Eq. 2 (red
dashed curve) and numerical general relativity (solid black curve),
even this close to the source. For comparison, the Sun’s radius is
about 240,000 Rs, which is why Eddington and colleagues had to
work so hard to first measure gravitational light deflection.

The underlying reaction-diffusion is simulated on an N × N grid
as described above, making the simulation run in Θ(N3) time,
meaning typical run times are proportional to N3. Each of the N2

grid points is updated in each evolution step that propagates the
wave forward. The number of steps it takes to propagate the wave to
the end of the reaction space is proportional to N. In other words,
100 trials of sizeN = 100 take approximately 10 min, whereas it takes
over 80 h to do the same experiment using N = 1000. Computation
time decreases dramatically when running multiple simulations in
parallel. Indeed, multiple concurrent simulations of variable-
diffusion reaction-diffusion waves with these numerical methods
enable us to reproduce the relativistic behavior of gravitational
lensing.

6 Discussion

We have proposed a novel analog for general relativistic light
deflection, where chemistry elucidates astronomy, and
demonstrated its efficacy in a computer simulation vetted by a

physical experiment. Remarkably, weak-field gravitational lensing
can be described by a variable index of refraction, which defines a
variable effective wave speed, which can be engineered into reaction-
diffusion waves in systems of variable reaction or diffusion.

The technique of using chemical physics to visualize diverse
dynamical systems is very flexible and might have wide applications.
Future work is to realize gel-enabled variable diffusion [51, 52] in
this and other experiments to mimic a broad range of phenomena.
An alternative to gel would be the use of light-sensitive BZ systems
[53], whose reaction rate can be controlled with external
illumination. Other alternatives could be the use of an electric
field [54] to manipulate the diffusion of the inhibitor species or a
temperature gradient [55], which can vary both the chemical
reaction rate and the diffusion simultaneously. A simple
alternative would be to use solid obstacles, which the RD waves
would need to propagate around [56, 57]. What other general
relativistic phenomena can this technique approximate?
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