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The Thomson influence on semiconductors can be studied by investigating the
connection between the presence of thermoelectric and magnetic fields and
porosity and the photothermal transport mechanism. Elastic waves, voids,
magnetic fields, and thermoelectric effects in plasma are investigated. The
governing equations were analyzed for a uniformly distributed and isotropic
medium under two-dimensional [electronic and elastic (plasmaelastic)]
deformations. The charge density is considered solely dependent on the
induced electric current over time. The Laplace-Fourier transforms method in
two dimensions is employed to obtain solutions for the primary variables. The
recombination process results in the application of electro-mechanical loads and
thermal effects on the free surface of a porous medium. The Laplace-Fourier
transformations inversion operations help obtain comprehensive solutions in this
study. The effects of porosity parameters and silicon (Si) on a semiconductor
porous material are considered, and the resulting physical field distributions are
analyzed and represented graphically.
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Introduction

The absorption of light by a substance and its subsequent conversion to heat, resulting in
thermal expansion or contraction, is known as the photothermal effect. When elastic
qualities like stress or strain alter in response to light or heat, we call that material a
photothermal elastic media. The principles of photothermal effects and elasticity can be used
to explain the behavior of a photothermal elastic media. Photothermal elastic media have
been intensively explored in the realm of photonics, particularly in the construction of
tunable photonic devices. Applications where the properties of the photothermal elastic
media must be regulated include optical switches, filters, sensors, robotics, aerospace, and
biomedical engineering. There are a variety of uses for photothermal elastic media. Materials
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scientists and engineers, for instance, can use these materials to
create structures with malleable mechanical properties. When light
is absorbed by a photothermal elastic media, the energy is
transformed into heat. The mechanical properties of a material,
such as its elasticity parameters Young’s modulus, and Poisson’s
ratio, are affected by thermal expansion as a result of temperature
changes. Applications involving altered stress or strain are possible.
Photothermal stimulation of semiconductor materials has received a
lot of attention in recent years due to the potential impact on those
materials’ thermo-mechanical properties. Engineering, petroleum,
aviation, electronics, and photovoltaics are just a few of the many
fields that benefit greatly from semiconductors. Deformations and
strains in semiconductors, for example, are thought to be strongly
influenced by temperature, according to current physics ideas. This
is especially the case when the semiconductor medium is subjected
to a wide range of temperatures. Photothermal excitation processes
with refined multi-dual phase-lags theory for semiconductor elastic
medium are studied by Khamis et al. [1]. Ailawalia et al. [2]
produced ramp-type heating in a semiconductor medium under
photothermal theory.

The elasticity of a substance is its capacity to stretch and then
recover its original form after being stretched or compressed. The
vibrations and collisions of particles in the internal medium generate
heat, which in turn causes the material to deform. Free electrons and
plasma waves are produced when a laser beam is shone on the
surface of a semiconductor material. In light of this, investigating
how thermal waves, plasma waves, and elastic materials interact is
essential. The mechanical, electric, and thermal properties of
semiconductor materials change with temperature variations.
When a temperature gradient arises in a semiconductor elastic
material due to light absorption, it causes an electric potential
difference between the endpoints. In such cases, the relationship
between heat production and electrical resistance needs to be
examined. Hobiny and Abbas [3] described a GL photo-thermal
theory on new hyperbolic two-temperature in a semiconductor
material. Abbas et al. [4] introduced Photo-thermal interactions
in a semi-conductor material with cylindrical cavities and variable
thermal conductivity. Alshehri and Lotfy [5] produced memory-
dependent derivatives (MDD) for magneto-thermal-plasma
semiconductor medium induced by laser pulses with hyperbolic
two temperature theory. Lotfy and El-Bary [6] studied magnetic-
thermal-elastic waves under the impact of induced laser pulses and
hyperbolic two-temperature theory with memory-dependent
derivatives (MDD). Magneto-photo-thermo-microstretch
semiconductor elastic medium due to the photothermal transport
process is discussed by Lotfy and El-Bary [7]. Aldwoah et al. [8]
produced a novel magneto-photo-elasto-thermodiffusion electrons-
holes model of an excited semiconductor.

Porosity is a material feature that characterizes the presence of
internal voids. The ability to absorb or hold liquids or gases is
sometimes indicated by this term. Porosity can occur for many
reasons depending on the material. Dissolved minerals or the
absence of fossils can leave behind voids, which geologists refer
to as porosity. In construction materials, porosity can be deliberate,
such as in lightweight concrete or aerated blocks, or inadvertent due
to poor fabrication procedures or inadequate compaction. Many
facets of human existence depend on porosity. The porosity of rock
formations is crucial, for instance, in the oil and gas business, for

assessing the viability of energy extraction. Porosity is an important
material attribute because it influences the material’s physical,
chemical, and mechanical properties. Benefits in technology,
energy production, building, and healthcare are just some of the
areas that could result from a better understanding of and ability to
manipulate porosity. Raddadi et al. [9] studied a novel model of a
semiconductor porosity medium according to photo-
thermoelasticity excitation with initial stress. Bouslimi et al. [10]
produced a mathematical model of photothermal and voids in a
semiconductor medium in the context of Lord-Shulman theory.
Kilany et al. [11] introduced the photothermal and void effect of a
semiconductor rotational medium based on Lord–Shulman theory.
Bayones et al. [12] discussed a rotational gravitational stress and
voids effect on an electromagnetic photothermal semiconductor
medium under three models of thermoelasticity. Khalil et al. [13]
studied electromagnetic field and initial stress on a photothermal
semiconducting void medium under thermoelasticity theories. Jawa
et al. [14] produced machine learning and statistical methods for
studying voids and photothermal effects of a semiconductor
rotational medium with thermal relaxation time.

The creation of heat or cooling at the junction of two different
conductive materials caused by an electric current passing through
them is referred to as the Thomson effect. Lord Kelvin (then known
as William Thomson) made the discovery. The connection can be
heated by the Thomson effect or cooled by it. The Thomson effect is
strongly linked to the thermalization of semiconducting materials
upon their absorption of electromagnetic radiation in the context of
electromagnetic photo-thermal media. Electromagnetic radiation
(including visible and infrared light) photons can be absorbed by
a semiconductor medium to impart energy to the substance. Then,
the heat is produced from this source of energy. The Thomson effect
in electromagnetic photo-thermal semiconductor mediums involves
the formation of heat or cooling at the junction of two conductive
materials due to the absorption of electromagnetic radiation in
semiconducting materials. Useful in thermoelectric cooling and
other related technologies, the phenomena has been observed in
nature. Lotfy et al. [15] studied electromagnetic and Thomson
effects during the photothermal transport process of a rotator
semiconductor medium under hydrostatic initial stress. Mahdy
et al. [16] described analytical solutions of time-fractional heat
order for a magneto-photothermal semiconductor medium with
Thomson effects and initial stress. Alharbi et al. [17] introduced the
Thomson effect with hyperbolic two-temperature on magneto-
thermo-visco-elasticity. In a photothermal elastic medium, the
porosity influences the flow of heat and therefore affects the
temperature gradient within the material. As porosity increases,
the void spaces act as insulators, hindering the flow of heat through
the material. Consequently, this alters the temperature distribution
and leads to variations in the Thomson effect. The Thomson effect
can cause variations in porosity through electrochemical reactions,
thereby modifying the material’s properties. Understanding this
relationship is crucial for studying the behavior of photothermal
elastic media and designing materials with specific thermal and
electrical properties. On the other hand, Zenkour [18, 19] studied
the properties of thermal activation during photoexcited
semiconductor medium using a refined multi-phase-lag
technique. Zenkour [20] investigated the gravitational impact on
a refined photothermal half-space material. Zenkour and
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Abouelregal [21] used a long semiconductor cylinder to study the
influence of variable harmonic heat in the context of photoexcited
processes.

In the present work, the photothermal theory with the porosity
of an electromagnetic semiconductor elastic medium is being
utilized to examine the Thomson effect. By employing the
photothermal transport process and thermoelasticity equations,
the propagation of waves in an external electromagnetic field is
described. In this particular model, three effects occur: the first is due
to the electromagnetic field, resulting in the appearance of the
Thomson effect; the second effect is due to the impact of photo-
excitation, leading to the appearance of plasma (carrier density); and
finally, the third effect is caused by porosity. To acquire the precise
expressions of certain physical quantities distribution in a two-
dimensional deformation, the Laplace transform method is
employed alongside electro-mechanical, voids, plasma, and
thermal loads. The obtained results are then discussed and
presented graphically for various scenarios, including the
presence or absence of the Peltier coefficient (Thomson
parameter), different porosity parameters (with and without
porosity), and varying values of the induced magnetic field.

Mathematical model and basic equations

This problem investigates the impact of porosity on a two-
dimensional (x, z) linear isotropic generalized photo-thermoelastic
solid semiconductor medium with the use of Laplace transform
method. The semiconductor medium is represented in Cartesian
coordinates (x,y, z), with the -axis pointing vertically down and
the origin at the surface at y� 0. The displacement vector is derived in
2D as �u � (u, o, w), where u � (x, t, z), w � (x, t, z) are two
components representing the displacement distribution and strain
e � ux + wz. The photothermal transport mechanism, also known as
the photo-excitation phenomenon, occurs when the medium is
subjected to a beam of white light. In polymer semiconductors, the
absorbed optical energy causes deformation in electron and particle
vibrations. Important parameters for semiconductors include carrier
densityN (representing plasma dispersion), temperature distribution
T (representing thermal effect), change in volume fraction field ϕ,
mechanical displacement u

.
, and induced magnetic field h. Initially,

the medium is subjected to a homogeneous external magnetic field
along the y-axis ( �H � (0,H0, 0)). In addition to the induced
electricity, the initial magnetic field �H causes the generation of an
inducedmagnetic field �h in the medium. The induced electricity effect
�E � (Ex, 0,Ez) must be considered in the governing equations.
Assuming a homogeneous, isotropic medium, the linear equations
of the electromagnetic field with porosity and Thomson effect are
applied. The focus is on the influence of the electromagnetic field on
the heat conductivity equation. The linear equations of
electromagnetics and Ohm’s law describe the influence of
electromagnet-thermal fields on the medium [22].:

�J � curl �h − εo
∂ �E

∂t
� σo( �E + μo( _u

.
× �H)), (1)

curl �E� −μo
_
H
. � −μo

∂h
∂t

( )ĵ, (2)

�E � μo( �H× _u
.), (3)

div �h� 0, (4)
div D

. � ρq, D
. � ε0E

.
(5)

The medium has magnetic permeability and electric
permeability that determine its ability to conduct magnetic and
electric fields respectively μ0 and ε0. _�u refers to the speed at which a
particle moves through a medium, while the dot represents the rate
of change of any variables concerning time t. In addition, the impact
of photo-excitation is also given consideration. Suppose a
semiconductor elastic medium is subjected to external beams of
light on its surface, the excited free electrons will produce a density
of carrier-free charges with energy equal to the gap between them Eg

(E>Eg) (carrier density (plasma waves)). The absorption of optical
energy leads to changes in the electronic structure and results in the
occurrence of elastic vibrations. The heat conductivity equation in
this scenario is influenced by thermal-elastic-plasma waves and the
presence of an electromagnetic field. The generalized form of the
Fourier law for semiconductor materials, considering both the
Thomson effect and plasma effect, can be expressed as follows [23].:

qi + τ0 _qi� −kT,i−∫−Eg

τ
Ndxi+ΠJi (6)

Differentiating the above equation for xi, give:

qi,i + τ0 _qi,i� −kT,ii− Eg

τ
N+ΠJi,i (7)

qi,i � ρCe
_T + γT0 _e (8)

Substituting from Equation 5 in Equation 1, yields

∇ ·D.� −∇· J.� −Ji,i � _ρq (9)

Using Eqs 7–9, the general form of paraphrasing the heat
conductive equation for a semiconductor elastic medium is as
follows:

kT,ii � ρCe
_T + τ0 €T( ) + γT0 _e + τ0€e( ) − Eg

τ
N + γTo

∂φ
∂t

−Π _ρq (10)

Where, the term Eg

τ N expresses the effect of photo-excitation but
the term Π _ρq represents the Thomson effect.

The expression of the equation of continuity for charges in the
presence of an electromagnetic field can be stated as follows:

∂ρq
∂t

+∇· ρqvi( )� 0 (11)

Where vi express the velocity of charges.
Assume that the charge density ρq depends on the time

only, i.e., ρq � ρq(t)
Therefore, the equation of continuity (11) takes the form:

∂ρq
∂t

� −ρq∇·vi (12)

Consider the velocity vi of the charges is proportional to the
particle velocity _ui, so the relation between them can be rewritten as:

vi � ζ _ui0∇·vi � ζ∇· _ui � ζ _e (13)

Frontiers in Physics frontiersin.org03

Alhejaili et al. 10.3389/fphy.2023.1309912

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1309912


Where ζ is a small dimensionless constant.
Eq. 12 can be rewritten in the following form

∂ρq
∂t

� −ρqζ _e0∫ dρq
ρq

� −ζ ∫ de (14)

Integrating Equation 14 and using series expand, we have

ρq � ρ0q exp −ζe( )0ρq ≈ ρ0q 1 − ζe( ) (15)

Where ρ0q (is the original charge density) determined when the
strain is eliminated. From Equation 15, we obtain (neglected the very
small ζ2 values)

_ρq� −ρ0qζ _e exp −ζe( )0 _ρq≈−ρ0qζ _e 1 − ζe( )≈−ρ0qζ _e (16)

Then the heat Equation 10 takes the form:

kT,ii � ρCe
_T + τ0 €T( ) + γT0 _e + τ0€e( ) − Eg

τ
N + γTo

∂ϕ
∂t

+Πρ0qζ _e
(17)

The Lorentz force, which arises due to the influence of
electromagnetic fields, can be formulated as [24]:

�F � μo �J× �H( ) (18)

The components of Lorentz force take the form [25]:

Fx� −μoσoHo Ez + μoHo _u( ), (19)
Fz � μoσoHo Ex + μoHo _v( ). (20)

By using Eqs. 1–3, we get:

∂h
∂z

� σo μoHo _v − Ex( ) − εo
∂Ex

∂t
, (21)

∂h
∂x

� σo Ez + μoHo _u( ) + εo
∂Ez

∂t
, (22)

∂Ez

∂x
− ∂Ex

∂z
� μo

∂h
∂t
, (23)

∂Ez

∂z
+ ∂Ex

∂x
� −μoHo

∂ _u
∂z

+ μoHo
∂ _w

∂x
. (24)

In addition, the following are presented: equations that describe
the electromagnetic field, the impact of porosity on the system, and
the influence of the Thomson effect on the photo-induced process in
a semiconductor medium.

The coupling between plasma waves and thermal waves [26–30]:

∂N
∂t

� DE∇
2N − N

τ
+ κT. (25)

Motion equation (29 and 30):

ρ€�u � k + μ( )∇2 �u + λ + μ( )∇ ∇ · �u( ) − γ 1 + vo
∂
∂t

( )∇T − δn∇N

+ λo∇ϕ + μo �J× �H( ).
(26)

The porous (voids) equation can be given as [31]:

α∇2ϕ − λoe − ς1ϕ − ωo
_ϕ +mT � ρψ€ϕ (27)

The constitutive relations for the generalized photo-
thermoelastic theory in tensor form can be paraphrased as
follows [32]:

σ iI � λur,rδiI + k + μ( )uIi + μuiI+

λoφδiI − pδiI − γ̂ 1 + vo
∂
∂t

( )TδiI + 3λ+2μ( )dnNδiI

⎫⎪⎪⎬⎪⎪⎭ (28)

In the above equations, the parameter κ � ∂N0
∂T

T
τ denotes the

thermal activation coupling parameter and N0 expresses the carrier
concentration in the equilibrium case (generally the parameter κ is
non-zero at temperature T) [33–35].

Mathematical formulations

The modified linear semiconductor thermoelasticity in the
presence of carrier density and an initial external magnetic field,
without considering internal heat sources, can be expressed as
follows:

ρutt � λ + μ( ) ∂e
∂x

+ k + μ( ) uxx + uzz( ) − γ 1 + vo
∂
∂t

( ) ∂T
∂x

−

δn
∂N
∂x

+ λo
∂ϕ
∂x

− μoσoHo Ez + μoHo _u( )

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(29)

ρwtt � λ + μ( ) ∂e
∂z

+ k + μ( ) wxx + wzz( ) − γ 1 + vo
∂
∂t

( ) ∂T
∂z

−

δn
∂N
∂z

+ λo
∂ϕ
∂z

+ μoσoHo Ex − μoHo _w( )

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(30)

K
∂2T
∂x2 +

∂2T
∂z2

[ ] � ρCE n1 + τo
∂
∂t

( ) ∂T
∂t

+ γTo n1 + noτo
∂
∂t

( ) ∂e
∂t
−

Eg

τK
N + γTo

∂ϕ
∂t

+Πρ0qζ _e

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(31)

α∇2 − ρψ
∂2

∂t2
− ωo

∂
∂t

− ς1( )φ − λoe + γT� 0 (32)

σxx � 2μ + λ + k( ) ∂u
∂x

+ λ
∂w
∂z

+ 3λ+2μ( )dnN + λoϕ − γ 1 + ]0
∂
∂t

( )T,
(33)

σzz � 2μ + λ + k( ) ∂w
∂z

+ λ
∂u
∂x

+ 3λ+2μ( )dnN++λoϕ

− γ 1 + ]0
∂
∂t

( )T, (34)

σyy � λ
∂u
∂x

+ ∂v
∂y

( ) − 3λ+2μ( ) αTT + dnN( ) (35)

σxz � k + μ( ) ∂w
∂x

+ μ
∂u
∂z

. (36)

The dimensionless form can be obtained by using non-
dimension variables to represent the main fields.

x′, z′, u′, w′( ) � x, z, u, w( )
CTt*

, t′, υ0′( ) � t, υ0( )
t*

, T′ � γT

2μ + λ
,

h′ � ρcEh

μoHoσok
, σ ij

′ � σ ij
μ
, N′ � δnN

2μ + λ
, E′

i �
ρcEEi

μ2oHoσokcT
,

t* � k

ρcEc2T
,φ′ � ψω*2

C2
2

φ, c2T � 2μ + λ

ρ
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

(37)
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Eq. 37, when utilized as the key governing equation,
paraphrasing leads to the following outcomes:

∇2 − q1 − q2
∂
∂t

( )N + ε3T� 0 (38)

utt � a1
∂e
∂x

+ a2∇
2u − a3

∂T
∂x

− a4
∂N
∂x

+ b2
∂φ
∂x

− a5 a6Ez + a7 _u( ) (39)

wtt � a1
∂e
∂z

+ a2∇
2w − a3

∂T
∂z

− a4
∂N
∂z

+ b2
∂φ
∂z

+ a5 a6Ex − a7 _w( )
(40)

∇2T − a8
∂T
∂t

− a9
∂e
∂t

+ a10N − b5
∂ϕ
∂t

� 0 (41)
∇2 − b6( )ϕ − b7e + b8T� 0 (42)

∂h
∂z

� σo a15 _w − a16Ex( ) − b1
∂Ex

∂t
, (43)

∂h
∂x

� σo a16Ez + a15 _u( ) + b1
∂Ez

∂t
, (44)

∂Ez

∂x
− ∂Ex

∂z
� ∂h
∂t

(45)

σxx � a11
∂u
∂x

+ λ
∂w
∂z

− a12T + a13ϕ + a14N, (46)

σzz � a11
∂w
∂z

+ λ
∂u
∂x

− a12T + a13ϕ + a14N, (47)
σyy � λe − a12T + a13ϕ + a14N. (48)

The main coefficients of the equations (38)-(48) can be obtained
in the (Appendix A1). Assume that the normal stress is σ which it
takes the following dimensionless form:

σ � σxx + σyy + σzz � a11e−3 a12T + a13ϕ + a14N( ) (49)

Solving the problem.
Laplace transform for function∏ (x, z, t) with s (parameter) is

expressed as:

L ∏ x, z, t( )[ ] � ∫
∞

0

∏ x, z, t( )e−stdt � �∏ x, z, s( ) (50)

The formula for the exponential Fourier transforms with
parameter q is:

�̂f x, q, s( ) � 1���
2π

√ ∫
∞

−∞
f x, z, s( )e−iqzdz (51)

Applying Laplace-Fourier double transform into Equations
38–45, yields:

(D2 − α3 �̂N) + ε3 �̂T� 0 (52)

D2 − a26( )�̂e − D2 − q2( )(a19 �̂T + a20 �̂N − a21 �̂ϕ) − a27 �̂h� 0 (53)

D2 − a31( ) �̂T − a32�̂e + a10 �̂N − a33 �̂ϕ� 0 (54)
D2 − a34( ) �̂ϕ − b7�̂e + b8 �̂T� 0 (55)

D2 − q2( )�̂h + a30 �̂e� 0 (56)
Where, d2

dx2 � D2, d
dx � D Eliminating �̂N(x, q, s), �̂T(x, q, s),

�̂e(x, q, s), �̂h(x, q, s) and �̂ϕ(x, q, s) between Equations 52–56, the

following tenth-order ordinary differential equations (ODE) are
satisfied by �̂N, �̂T, �̂e, �̂h and �̂ϕ are obtained as:

D10 − A 1[ ]D8 + A 2[ ]D6 − A 3[ ]D4 + A 4[ ]D2 − A 5[ ]( )
× { �̂N, �̂T, �̂e, �̂h, �̂ϕ} x, q, s( )� 0 (57)

The main coefficients of the equation (57) can be obtained in the
(Appendix A1). The primary 10th ordinary differential Equation 57
were solved using the factorization technique as follows:

D2 − k21( ) D2 − k22( ) D2 − k23( ) D2 − k24( ) D2 − k25( )
× { �̂N, �̂T, �̂e, �̂h, �̂ϕ} x, q, s( )� 0 (58)

Where k2n(n� 1, 2, 3, 4, 5) are the roots, that they may be taken as
real-positive when x → ∞. The solution to Equation 57 is expressed as
follows:

�̂T x, q, s( ) � ∑5
n�1

Mn q, s( )e−knx (59)

�̂N x, q, s( ) � ∑5
n�1

M′
n q, s( )e−knx � ∑5

n�1
a*nMn q, s( )e−knx (60)

�̂e x, q, s( ) � ∑5
n�1

M″
n q, s( )e−knx � ∑5

n�1
b*nMn q, s( )e−knx (61)

�̂ϕ x, q, s( ) � ∑5
n�1

M‴
n q, s( )e−knx � ∑5

n�1
c*nMn q, s( )e−knx (62)

�̂h x, q, s( ) � ∑5
n�1

M
′′′′
n q, s( )e−knx � ∑5

n�1
d*
nMn q, s( )e−knx (63)

Where, Mn and M′
n,M

″
n,M

‴
n ,M

′′′′
n are unknown parameters

depending on the parameters q, s can be determined from boundary
conditions. To find the solution of Laplace’s main variable
transformations in terms of the unknown parameters q and s, we
need to determine the domain-wide solution. These parameters can
be obtained by applying the given boundary conditions.

Boundary conditions

Consider the elastic semiconductor medium is initially in a state
of rest at the vertical plane (free surface) x� 0. The system is
thermally isolated. The Laplace and Fourier transform are
applied for the following limit conditions.

(I) The plasma boundary condition when the Laplace transform is
used at the free surface to transport and photo-generate the
carrier density diffusion during the recombination processes
with speed ~s, the plasma boundary condition may be
reformulated as follows:

�̂N 0, q, s( ) � λ~s

De

�̂R s( ) (64)

Therefore,

a*n∑5
n�1

Mn � λ

De

�̂R s( ) (65)
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(II) At the free surface, the isothermal boundary condition sensitive
to thermal shock is defined as:

�̂T 0, q, s( ) � T0 �̂g s( ) (66)
Therefore,

∑5
n�1

Mn � T0 �̂g s( ) (67)

(III) The mechanical boundary condition: the surface has zero
strain at the bounding x� 0, so that

�̂e 0, q, s( )� 0 (68)
So,

b*n∑5
n�1

Mn� 0 (69)

(IV) The boundary condition of the change in the volume fraction
field at the free surface (φ is constant in z- direction), yields:

∂ �̂ϕ
∂z

� 0 (70)

So

e1C
*
n∑5
n�1

Mn� 0 (71)

(V) Conditions of induced magnetism at the free surface x� 0,
assuming that the initially established magnetic field, which will
change over time, is constant

�̂h 0, q, s( ) � h0 �̂g s( ) (72)
So,

d*
n∑5
n�1

Mn � h0 �̂g s( ) (73)

The quantities g(s)� 1 and R(s)� 1 are the Heaviside unit step
function where ƛ is a free chosen constant.

Inversion of the fourier-laplace transforms

To achieve comprehensive solutions of non-dimensional
physical field variable distributions in 2D, it is important to
reverse the previous main expressions in the physical domain.
The numerical inversion technique for Laplace transform,
specifically the Riemann-sum approximation method, is utilized
to accomplish this [36].

In the Fourier domain, the inverse of any function f(x, z, t) can
be obtained as:

�f x, z, s( ) � 1
2π

∫∞

−∞
�̂f x, q, s( )eiqzdz (74)

In the Laplace domain, any function’s inverse f(x, z, t) can be
obtained as [37]:

f x, z, t( ) � 1
2πi

∫n+i∞

n−i ∞
�f x, z, s( )estdt (75)

Using the Fourier series expand for the functionf(x, z, t′) in the
closed interval [0, 2t′], to get the next relationship [34]:

f x, z, t′( ) � ent′

t′
1
2
�f x, z, n( ) + Re∑N

k�1
�f x, z, n + ikπ

t′( ) −1( )n⎡⎣ ⎤⎦ (76)

Where the imaginary unit is i � ���−1√
and Re is the real part. The

sufficientN can be chosen free as a large integer but can be selected
in the notation nt′≈ 4.7 [38].

Numerical results and discussions

To be used in numerical simulation with the Mathematica
program, silicon (Si) is an elastic semiconductor material. Its
physical constants are utilized in the computational analysis and
investigation of fundamental quantity fields, which have diverse
applications in modern industries and plasma physics technologies.
The mentioned physical constants for Si material, specifically for the
n-type, are as follows [39–43]: are taken in SI units:

λ� 3.64x1010N/m2, μ� 5.46 ×1010N/m2, ρ� 2330kg/m3,

T0� 800K, τ� 5x10−5s, dn� −9x10−31m3,

DE� 2.5 ×10−3m2/s, Eg� 1.11eV, s� 2m/s, αt� 4.14x10−6K−1,

K� 150Wm−1K−1, Ce� 695J/ kgK( ), j� 0.2 ×10−19m2,

γ� 0.779 ×10−9N, k � 1010Nm−2,t � 0.008s,

z � 1, b� 0.9,τ0� 0.00005s, ]0� 0.0005s, n0 � 1020 m−3,

Ho � 105col/cm.sec , μo� 4π × 10−7H/m,

σo� 9.36 ×105col2/cal.cm.sec , εo� 8.85 ×10−12F/m,

ζ� 0.9 rad/sec , ko� 386 N/K. sec , λo� 1.13849 ×1010,

α� 3.688 ×10−5,ψ� 1.753 ×10−15, ωo� 0.0787 ×10−3,

ς1� 1.475 ×1010.

During the phase of the numerical approach that was described
earlier, the real components of the elastic wave (u), temperature (T),
normal stress (σ), strain (dilation) (e) the change in volume fraction
field (ϕ), induced magnetic field (h) and photo-electronic or plasma
(carrier density) (N) are the primary areas of concentration for us.
In theMathematica program for numerical simulation, silicon (Si) is
considered an elastic semiconductor material. Its physical constants
play a significant role in computational analysis and exploration of
various fundamental quantity fields [40, 41]. These fields find
extensive applications in modern industries and plasma physics
technologies. Specifically for the n-type, the physical constants
associated with Si material are as follows:

Figure 1 presents the relationship between different levels of an
externally induced magnetic field and the propagation of photo-
thermal-elastic-electric waves over a distance. This was the first
category explored in the study. Every computation was checked
using a short amount of time, t� 0.008 while the influence of
porosity was being considered and the effect of the Peltier coefficient
Π0� 10. The different magnitudes of the magnetic field H0� 100000,
H0� 1000 and H0� 0 (without magnetic field) are represented by
different curves. Within the range 0≤ x≤ 6, the temperature
distribution, strain, and normal stress display a curve that gradually
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rises to a certain point and then gradually declines until it becomes zero.
The amount of temperature distributions is directly linked to the
strength of the magnetic field. The carrier density distribution
represents the electric wave, and the change in the volume fraction
field starts at its highest positive point, gradually decreases as the
distance increases, and eventually becomes zero.

Figure 2 illustrates how different values of the Peltier
coefficient affected the distribution of the physical field in the
photo-thermo-elastic model with porosity when time t� 0.008
and H0� 100000 . It is important to highlight that all field
distributions demonstrate the same behavior, as shown in
Figure 1.

FIGURE 1
Variation of the main physical distributions with respect to the distance for different values of Induced magnetic field.
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Figure 3 presents the impact of different values of porosity
parameters (both with and without porosity) on the physical field
distribution in the photo-thermo-elastic model when time t� 0.008
andH0� 100000 an assumed constant of the magnetic field and the
effect of the Peltier coefficient Π0� 10 are used. The substitution of
the volume fraction field with the distribution of the induced
magnetic field (electromagnetic waves) is observed. It is
important to mention that all field distributions demonstrate
identical patterns, as illustrated in Figure 1.

Conclusion

In this study, we look into how a magnetic field affects a
porous, generalized photo-thermo-elastic solid medium. The
impact of the Thomson effect on some physical parameters is
also investigated. The findings demonstrate that the magnetic
field has a positive effect on all physical fields, with the carrier
density displaying a distinct oscillating structure. Figure 1 also
illustrates numerical computations showing the variation in field

FIGURE 2
Variation of the main physical distributions against the distance for different values of Peltier coefficient.
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and stress distributions with horizontal distance for various values of
the initial uniform magnetic field. The fluctuation of dimensionless
physical variables as a function of distance is shown in Figure 2 for a
range of Peltier coefficients, porosities, and magnetic fields. Figure 3

similarly illustrates how porosity parameters affect the scatter in
these metrics. When a magnetic field and the Peltier coefficient are
taken into account, it is clear that the primary fields are enhanced.
The principal fields are profoundly impacted by the porosity

FIGURE 3
Variation of the main physical distributions verses the distance with porosity and without porosity.
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characteristics. It is shown that the distribution of all physical fields
in the photo-thermo-elastic model is greatly impacted by the
porosity parameters, the initial magnetic field, and the Peltier
coefficient. The results of this study can be used to improve the
performance and longevity of electronic devices, energy harvesting
systems, sensors, structural health monitoring materials, and
infrastructure in a variety of environments, including those with
varying magnetic field strengths, air gaps, Peltier coefficient effects,
and temperatures.
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Appendix

Equations 38–48 have the primary variables which can be
represented as:

q1 � kt*
ρcEDE

, q2 � k

ρcEDE
, ε3 � κKδnt*

γρcEDE
, a1 � μ + λ

ρc2T
, a2 � k + μ

ρc2T
,

a3 � 2μ + λ

ρc2T
1 + voω( ), a4 � 2μ + λ

ρc2T
, a5 � μ0σ0H0, a6 � μ20σ0H0kt*

ρ2cE
,

a7 � μ0H0t*
ρ

, a8 � ρcEc2Tt*
K

n1 + τos( ), a9 � γ2T0t*c
2
T

2μ + λ( )K n1 + noτos( ) + Π0,

Π0 �
Πρ0qζγT0t*c2T
2μ + λ( )K , a10 � Egγt*

2
c2T

τδnK
, a11 � 2μ + λ

μ
, a12 � λ

μ
,

a13 � 2μ + λ

μ
1 + voω( ),

a14 � dn 2μ + λ( )
μδn

2μ+3λ( ), a15 � ρcE0t*c
2
T

σ0k
, a16 � μ0t*c

2
T, b1 � μ0ε0c

2
T,

b2 � λo

ψρt*
2 , b4 � b2

a1 + a2
, b5 � γ2T0c

4
T

2μ + λ( )Kt*ψ
, b8 � 2μ + λ( )λoψt*4

α
,

b6 � ρψ2t*
2

α
ω2 + ωoψt

*3

α
ω − ς1ψt

*4

α
, b7 � λoψt

*4

α
, b9 � λoc2T

μψt*2
,

b10 � 1+ μ + k

μ
, b11 � μ + k

μ
, b12 � b5ω, a24 � 1

a1 + a2
, a19 � a3

a1 + a2
,

a20 � a4
a1 + a2

, a21 � b2
a1 + a2

, a22 � a5a6
a1 + a2

, a23 � a5a7
a1 + a2

, a22 � ρ

μ
,

a25 � q2 − a18s + a17s
2, a26 � q2 + a23s + a24s

2, a27 � a22s,

a28 � σ0 a15 − a16μ0H0( ), a29 � a17μ0H0, a30� −a28s + a29s
2,

a31 � q2 + a8s, a32 � a9s, a33 � b5s, a34 � q2 + b6, α3 � q1 + q2s + q2.

Coefficients of Eq. 57:

A 1[ ]� − −q2 − a26 − a31 − a19a32 − a34 + a21b7 − α3( )

A 2[ ] � (q2a26 + a27a30 + q2a31 + a26a31+2q2a19a32 + q2a34

+ a26a34 + a31a34 + a19a32a34−2q2a21b7 − a21a31b7

− a19a33b7 − a21a32b8 + a33b8 + q2α3 + a26α3 + a31α3

+ a19a32α3 + a34α3 − a21b7α3 − a10ϵ3 + a20a32ϵ3)
A 3[ ] � −( − q2a26a31 − a27a30a31 − q4a19a32 − q2a26a34 − a27a30a34

− q2a31a34 − a26a31a34−2q2a19a32a34
+ q4a21b7 + 2q2a21a31b7+2q2a19a33b7+2q2a21a32b8
− q2a33b8 − a26a33b8 − q2a26α3 − a27a30α3 − q2a31α3

− a26a31α3 − 2q2a19a32α3 − q2a34α3 − a26a34α3 − a31a34α3

− a19a32a34α3+2q2a21b7α3 + a21a31b7α3 + a19a33b7α3

+ a21a32b8α3 − a33b8α3 + q2a10ϵ3 + a10a26ϵ3−2q2a20a32ϵ3
+ a10a34ϵ3 − a20a32a34ϵ3 − a10a21b7ϵ3 + a20a33b7ϵ3)

A 4[ ] � (q2a26a31a34 + a27a30a31a34 + q4a19a32a34 − q4a21a31b7
− q4a19a33b7 − q4a21a32b8 + q2a26a33b8 + a27a30a33b8
+ q2a26a31α3 + a27a30a31α3 + q4a19a32α3
+ q2a26a34α3 + a27a30a34α3 + q2a31a34α3
+ a26a31a34α3+2q2a19a32a34α3
− q4a21b7α3−2q2a21a31b7α3−2q2a19a33b7α3
− 2q2a21a32b8α3 + q2a33b8α3 + a26a33b8α3 − q2a10a26ϵ3
− a10a27a30ϵ3 + q4a20a32ϵ3 − q2a10a34ϵ3
− a10a26a34ϵ3+2q2a20a32a34ϵ3+2q2a10a21b7ϵ3
− 2q2a20a33b7ϵ3)

A 5[ ] � −(− q2a26a31a34α3 − a27a30a31a34α3 − q4a19a32a34α3
+ q4a21a31b7α3 + q4a19a33b7α3 + q4a21a32b8α3
− q2a26a33b8α3 − a27a30a33b8α3 + q2a10a26a34ϵ3
− a10a27a30a34ϵ3 − q4a20a32a34ϵ3 − q4a10a21b7ϵ3
− q4a20a33b7ϵ3)

The main parameters in equations (64-73) can be expressed as:

a*n� − ε3
k2n − α3

, b*n �
−k4n − k2n a*na10 − a31 − a34( ) + a*na10a34 − a31a34 − a33b8

k2na32 − a32a34 + a33b7
,

c*n� −−k2nb7 − a*na10b7 + a31b7 + a32b8
k2na32 − a32a34 + a33b7

, d*
n �

a30b*n
−k2n + q2

, e1� −iq.
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Nomenclature

λ,μ Counterparts of Lame’s parameters

δn The difference of deformation potential of conduction and

valence band

T Absolute temperature (thermodynamic temperature)

T0 Temperature of the medium in its natural state assumed to
be |T−T0

T0
|< 1

γ � (3λ+2μ + k)αt The volume thermal expansion

αt The linear thermal expansion coefficient

σij Components of the stress tensor

ρ Density of the medium

e Cubical dilatation

Ce Specific heat at constant strain of the solid plate

k The thermal conductivity of the sample

DE The carrier diffusion coefficient

τ The photogenerated carrier lifetime

Eg The energy gap of the semiconductor

eij Components of strain tensor

mij Couple stress tensor

τ0 , ν0 Thermal relaxation times

α, λo , ς1,ωo ,m,ψ The material constants due to presence of voids

φ The change in volume fraction field

dn The deformation potential difference

K The thermal conductivity in the general case

h The induced magnetic field

Ho The initial uniform magnetic field

E The induced electric field

εo The electric permeability for free space

μo The magnetic permeability for free space

J The current density
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