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Swimming at the microscale typically involves two modes of motion: mechanical
propulsion and propulsion due to field interactions. During mechanical
propulsion, particles swim by reconfiguring their geometry. When propelled by
field interactions, body forces such as phoretic interactions drive mobility. In this
work, we employ slender-body theory to explore how a bent rod actuator propels
due to a mechanical mode of swimming via hinge articulations and due to a
chemical mode of swimming via diffusiophoretic interactions with a solute field.
Although previous theoretical studies have examined mechanical and chemical
modes of swimming in isolation, the simultaneous investigation of both modes
has remained unexplored. For the mechanical mode of swimming, our
calculations, both numerical and analytical, recover Purcell’s scallop theorem
and show that the bent rod actuator experiences zero net displacement during
reciprocal motion. Additionally, we calculate the trajectories traced by a bent rod
actuator under a non-reciprocal hinge articulation, revealing that these
trajectories are influenced by the amplitude of the hinge articulation,
geometric asymmetry, and the angular velocity distribution between the two
arms of the bent rod actuator. We provide intuitive explanations for these effects
using free-body diagrams. Furthermore, we explore the motion induced by
simultaneous hinge articulations and self-diffusiophoresis. We observe that
hinge articulations can modify the effective phoretic forces and torques acting
on the bent rod actuator, either supporting or impeding propulsion. Additionally,
during self-diffusiophoretic propulsion, reciprocal hinge articulations no longer
result in zero net displacement. In summary, our findings chart a new direction for
designing micron-sized objects that harness both mechanical and chemical
modes of propulsion synchronously, offering a mechanism to enact control
over trajectories.
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1 Introduction

Microscale entities orchestrate physical and biological
phenomena. Bacteria play a key role in the spread of infection
[1], macrophages have the capacity to affect tumor malignancy [2],
T cells can infiltrate solid tumors and kill tumor cells [3], and
subsurface microparticles influence contaminant transport in
groundwater [4]. Inspired by these natural systems, efforts have
been made to create artificial micron-sized objects endowed with
programmable actions to influence phenomena at the microscale.
Commonly called microrobots, these micron-sized objects are
capable of treating diseases [5–9], acting as biological sensors [10,
11], and removing microplastics [12], among others. A key factor
that influences the efficacy of microrobots is how capable they are at
swimming in fluid environments. Due to the small length scales,
viscous forces dominate over inertial forces, such that the Reynolds
number (Re) Re � Inertial forces

Viscous forces≪ 1. In the low Re regime, microrobots
must adapt strategies for locomotion that differ when compared to
their macroscopic counterparts [13–15].

The two modes of swimming commonly used to impart motility
at the microscale are, taxonomically, mechanical propulsion and
propulsion due to field interactions. In the mechanical swimming
mode, motility is induced by continuous geometric reconfiguration
[16–20]. In field-driven propulsion, the geometry typically remains
unchanged, but body forces due to interactions with a field induce
motility [21–24]. In this paper, we explore how chemical fields
leading to self-diffusiophoretic propulsion, i.e., a chemical mode of
swimming, can be employed in concert with a mechanical mode of
swimming to alter the motion of a bent rod actuator.

We first focus on the mechanical mode of swimming. In the
seminal paper “Life at low Reynolds number,” Purcell outlined the
scallop theorem and described the mechanical strategies that
microscopic entities use to swim [15]. Purcell argued that any body
with Re ≪ 1 experiences zero net displacement under reciprocal
geometric reconfigurations, i.e., geometry changes that are identical
when viewed forward or backward in time [15, 19]. Purcell illustrated
this through the example of a microscopic scallop, whereupon opening
and closing its shell, the scallop experienced zero net displacement [15].
More detailed mathematical works have confirmed the scallop theorem
[25–27]. A consequence of the scallop theorem is that microscopic
objects, both synthetic and biological, must use non-reciprocal
swimming strokes to achieve non-zero net displacement. The
simplest swimmer that Purcell described is a two-hinge swimmer
that is able to achieve net displacement while still returning to the
original configuration [15, 28]. In fact, microscopic biological
organisms, such as Escherichia coli or spermatozoon, have developed
strategies to swim by either rotating slender helical flagellar filaments or
beating flexible flagella [29–33]. Advances in microfabrication and
external field actuation techniques have enabled many of these
biological swimming techniques to be replicated in synthetic systems
[34–39].

In the field-driven mode of swimming, phoretic mechanisms, e.g.,
diffusiophoresis (the focus of this work) [40–52], thermophoresis
[53–55], electrophoresis [56–64], and electrodiffusiophoresis [65, 66],
are used to achieve directed motion at the microscale. Diffusiophoresis,
the movement of particles in chemical gradients [67–80], has been a
particularly rich area of research due to similarities with cell chemotaxis
[81, 82]. Active diffusiophoretic particles use reactive patches on the

particle surface, enabling the particle to generate local concentration
gradients and achieve locomotion [40, 51, 83]. One key factor that
influences self-diffusiophoretic particle motion is particle geometry
[84–90]. Recently, Ganguly and Gupta have explored the effect of
geometry on the diffusiophoretic motion of bent rod microparticles
[42]. They found that bent rod particles with uniform or nonuniform
surface activity, when constrained to move in two dimensions, have
trajectories that are always circular, consistent with experimental
reports [40, 55].

The aforementioned studies focus only on onemode of swimming.
To the best of our knowledge, no study has explored low Re swimming
due to a combination of a field-driven motion and mechanical
reconfiguration. To this end, we extend the results from Ganguly
and Gupta [42] by allowing the hinge connecting the self-propelling
bent rod to articulate (Figure 1). We distinguish the articulating bent
rod from the non-reconfigurable version by calling it a bent rod
actuator. Here, hinge articulations facilitate the mechanical
swimming mode, enabling the actuator to alter its geometry,
whereas the surface reaction provides the field-driven mode via self-
diffusiophoresis, herein called chemical swimming. The bent rod
geometry is particularly useful because its configuration can be fully
characterized by two dimensionless parameters, the length ratio of the
two arms and the angle between the arms. In our framework, the
mechanical mode is characterized by a normal surface velocity, whereas
the chemical mode introduces a tangential surface velocity, see Figure 1,
providing a convenient means to analyze the motion of the bent rod
actuator.

First, in Section 2, we expand the theoretical framework developed
by Roggeveen and Stone [91] and Ganguly and Gupta [42] to compute
the motion of the actuator due to both self-diffusiophoresis as well as
hinge articulations. In Section 3.1 and Section 3.2, we calculate the
trajectories of the actuator moving due to reciprocal hinge articulations
(Figure 4) and non-reciprocal hinge articulations (Figure 5).We present
an intuitive understanding of the trajectories by considering free-body
diagrams (Figure 6). Lastly, we study the motion due to self-
diffusiophoresis with hinge articulations to determine particle
trajectories that combine mechanical and chemical modes of
swimming (Section 3.3; Figures 7, 8).

2 Methods

2.1 Problem setup

We adapt the hydrodynamic calculations outlined by Roggeveen
and Stone [91] and Ganguly and Gupta [42] to study the motion of a
bent rod actuator, Figure 1. We employ the non-dimensional
particle geometry as described by Ganguly and Gupta [42].
The bent rod actuator is composed of two arms connected
with a hinge that articulates, allowing for the angle θ between
the two arms to be varied in time. The two arms have a combined
length ℓ, with each arm having a length of (12 + q)ℓ and (12 − q)ℓ,
where q is a length asymmetry parameter. We consider the arms
to have equal radius a and a small aspect ratio, i.e., ϵ � a

ℓ
≪ 1. A

non-dimensional schematic diagram of the particle geometry can
be seen in Figure 1.

The position along the center-line of the bent rod actuator is
described by the non-dimensional arc-length s (scaled by ℓ), where
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s ∈ [q − 1
2, q + 1

2]. s = 0 describes the location of the hinge connecting
the two actuator arms that is allowed to articulate. We call the arm with
s < 0 the negative arm and the arm with s ≥ 0 the positive arm. When
q = 0, both arms have the same length; when q < 0, the negative arm is
longer; and when q > 0, the positive arm is longer. We define a
coordinate system with unit basis vectors e1 − e2 in the particle
frame of reference and assume the bent rod actuator propels in
the e1 − e2 plane and rotates about the e1 × e2 axis. We also define
local normal er and tangential et unit vectors to the surface of the
bent rod actuator. In terms of e1 − e2, et − er are defined as

et � −cos θ( )e1 − sin θ( )e2 s< 0
e1 s≥ 0{ , (1a)

er � sin θ( )e1 − cos θ( )e2 s< 0
e2 s≥ 0{ . (1b)

We extend the results of Ganguly and Gupta [42] to determine the
dimensionless velocity U (scaled by Uref � kbTaJref λ

2

μDℓ
) and angular

velocity Ω (scaled by Uref
ℓ
) in response to both self-diffusiophoresis

[42, 90, 92–94] and hinge articulations. In our non-dimensionalization,
kb is the Boltzmann constant, T is the ambient fluid temperature, Jref is
the reference solute surface flux, λ is the phoretic interaction length
scale, D is the solute diffusivity, and μ is the fluid viscosity. The self-
diffusiophoretic motion is caused by a surface flux j(s) (scaled by Jref) on
the surface of the bent rod actuator. The surface activity creates a
concentration field c(s, r) (scaled by aJref

D ) in the surrounding solution.
Gradients along the length of the rod in the solute concentration field
cause the bent rod actuator to move by inducing a diffusiophoretic slip
velocity uphoreticet on the surface of the rod. In addition to the self-
diffusiophoretic motion, we also consider bent rod actuator motion due
to the hinge altering the angle θ between both arms, denoted as hinge
articulations or flapping. As the hinge articulates, the arms move with

an angular velocity,ωn for the negative arm andωp for the positive arm,
which induces a normal fluid velocity uflappinger on the surface of the
bent rod actuator.

2.2 Slender-body theory

The velocityU and angular velocityΩ of the bent rod actuator, in the
particle frame of reference, can be determined via the mobility relation,

U
Ω

[ ] � R −1 · Feff

Teff
[ ], (2)

where R −1 is the 6 × 6mobilitymatrix and Feff andTeff are the effective
force and torque acting on the center of mass of the bent rod actuator
due to self-diffusiophoresis and hinge articulations. Assuming that the
bent rod actuator is only able to translate in the e1 − e2 plane and rotate
about the e1 × e2 axis, we write Eq. 2 as

U1

U2

Ω3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � M ·
F1

F2

T3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (3)

The bent rod actuator can move with a velocity U1 in the e1
direction, U2 in the e2 direction, and angular velocity Ω3 about the e1 ×
e2 axis. The motion is caused by an effective force F1 in the e1 direction,
F2 in the e2 direction, or an effective torqueT3 about the e1 × e2 axis. The
mobility coefficients M are determined by numerically inverting the
resistance coefficients (multiplied by a minus sign) determined by
Roggeveen and Stone (Eq. 3.5 in their work) [91] using the Python
module Scipy with the linalg.inv function. Using the results from
Ganguly and Gupta [42], calculated with the reciprocal theorem, we
express the effective force and torque in terms of a velocity on the
surface of the bent rod actuator,

FIGURE 1
Non-dimensional geometry of a bent rod actuator. We consider the motion of a bent rod actuator with an angle θ(t) between the positive (s > 0) and
negative (s < 0) arms. The angle θ(t) is allowed to vary in time via an articulating hinge at s = 0 that connects the positive and negative arms. Hinge
articulations induce a normal velocity uflappinger on the surface of the actuator arms. We also consider the motion of the bent rod actuator due to a self-
diffusiophoretic slip velocity uphoreticet in the direction tangential to the arms. The diffusiophoretic velocity is caused by a solute flux j(s) into the fluid
surrounding the bent rod actuator imposing concentration gradients in the solution. We determine the velocity U and angular velocity Ω of the bent rod
actuator in the particle frame of reference, as described with the e1 − e2 unit basis vectors. After calculating U and Ω, we integrate Eq. 14 to find the
trajectory and orientation of the bent rod actuator in the laboratory frame of reference.
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U1

U2

Ω3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � M ·

∫ usurf · I − 1
2
etet( ) · e1ds

∫ usurf · I − 1
2
etet( ) · e2ds

∫usurf · I − 1
2
etet( ) · e3 × xh s( ) − rcom( )ds

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

where xh(s) = set is the position of a point along the center-line of the
bent rod and rcom � ∫q+1/2

q−1/2 setds � (12 cos θ(q − 1
2)2 + 1

2(q + 1
2)2)e1+

1
2 sin θ(q − 1

2)2e2 is the center of mass of the bent rod. We
consider the surface velocity to be composed of a tangential
component due to self-diffusiophoresis and a normal component
due to hinge articulations,

usurf � uphoreticet + uflappinger. (5)

Following similar treatments in the literature [42, 90, 94], we
model the velocity induced by solute concentration gradients with

uphoretic � Γ s( ) dcs s( )
ds

, (6)

where Γ(s) is a lumped phoretic mobility parameter, cs(s) = c(s, ϵ),
and dcs(s)

ds is the surface concentration gradient. For simplicity, we
consider Γ(s) = ±1, a value representative for diffusiophoretic
systems [72]. Considering the slip velocity to be composed of
only a phoretic component, Eq. 4 can be integrated and written as

U1,phoretic

U2,phoretic

Ω3,phoretic

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � sign Γ( )M

·

1
2
Δcq+

1
2

0 − cos θ
2

Δc0q−1
2

−sin θ
2

Δc0q−1
2

sin θ
4

q − 1
2

( )2

Δcq+
1
2

0 + q + 1
2

( )2

Δc0q−1
2

( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (7)

where Δcq+
1
2

0 � cs(q + 1
2) − cs(0) and Δc0q−1

2
� cs(0) − cs(q − 1

2) [42].
The phoretic motion is driven by the concentration difference
between the hinge and ends of the bent rod actuator arms. As we
are considering bent rod actuators with a small aspect ratio ϵ≪ 1,
we use boundary layer theory [42, 95] to determine the
concentration profile along the bent rod actuator by
numerically solving

cs s( ) � 1
2
∫q+1

2

q−1
2

j s′( )
xh s′( ) + ϵer s( ) − xh s( )∣∣∣∣ ∣∣∣∣ ds′. (8)

We note that all results shown are calculated with ϵ = 10–3.
The framework is agnostic to the flux profile used; however, we
use a uniform flux profile j(s) = 1 for simplicity. The
concentration profile is derived for the case of small
Péclet number, i.e., Pe � Uref ℓ

D ~ O(10−3) [42]. The numerical
solution of Eq. 8 is difficult to resolve near s = 0 due to a
singularity in the concentration profile at s = 0 (Figure 2)
caused by the sharp turn in the bent rod actuator at the hinge,
see Figure 3A.

To achieve a numerical solution, we approximate the entire bent
rod actuator center-line with the smooth continuous function
xh(s) � X(s)e1 + Y(s)e2, where

X s( ) � −s cos θ + 1 + cos θ
k

ln
1 + eks

2
( ), (9a)

Y s( ) � −s sin θ + sin θ
k

ln
1 + eks

2
( ), (9b)

and k is a smoothness parameter that controls the curvature of
the approximate bent rod actuator near s = 0. A larger k
corresponds to a corner with higher curvature and a better
approximated bent rod actuator, while a smaller k corresponds
to a corner with lower curvature and a worse approximation of
the bent rod actuator, see Figure 3A. To approximate the
concentration profile near the hinge, we use Eq. 9 to
calculate Eq. 8 with k = 100 and k = 1,000 (Figure 3B). We
determine the values of s for s < 0 and s > 0, where the value of
concentration profiles differs by 5% and fit the concentration
profile for k = 1,000 with a fourth-order spline using the Scipy.
interpolate.UnivariateSpline function (Figure 3B) between the
two s values.

In addition to the phoretic contribution, we consider the
motion of the bent rod actuator due to hinge articulations, θ →
θ(t). The articulation of the hinge induces an angular
velocity ωn for the negative arm and ωp for the positive arm.
The angular velocity of each arm is related to the hinge
articulation via

dθ

dt
� − ωn + ωp( ) � −ω. (10)

We write the flapping velocity as

uflapping � −ωns s< 0,
ωps s≥ 0.

{ (11)

Inserting Eq. 11 into Eq. 4 and integrating yields

FIGURE 2
Concentration profile across the bent rod actuator.
Concentration profile across the bent rod actuator for q = 0, θ = π/4,
and j(s) = 1, as determined by solving Eq. 8 with Eq. 1 using the
Scipy.integrate.quad function.
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U1,flapping

U2,flapping

Ω3,flapping

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � M

·

1
2
ωn sin θ q − 1

2
( )2

−1
2
ωn cos θ q − 1

2
( )2

+ 1
2
ωp q + 1

2
( )2

1
192

2q − 1( )3 6q + 5( )ωn − 2q + 1( )3 6q − 5( )ωp + 3 cos θ ωn − ωp( ) 1 − 4q2( )2{ }

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(12)

The total velocity and angular velocity of the bent rod actuator is
determined by a linear combination of Eqs. 7, 12:

U1

U2

Ω3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � U1,phoretic

U2,phoretic

Ω3,phoretic

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + U1,flapping

U2,flapping

Ω3,flapping

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦. (13)

We note that in order to use the combined phoretic and
flapping contributions to the bent rod actuator motion, the
Péclet number due to flapping must also be small. To justify, we

briefly restore dimensions and note that

Peflapping � ωℓ
URef
ℓ

ℓ

D � ωUref ℓ

D . In our simulations, ω ~ θa
T , where θa

∈ [0, 2π] is the amplitude of an articulation and T is a typical
period for a given articulation. By constraining our results to
T ~ O(1), we ensure that Peflapping ~ O(10−3)≪ 1. In addition to
the dependence of Eq. 13 on geometric parameters, the phoretic
velocities and flapping velocities also linearly depend on j(s) and
ω, respectively. Therefore, the relative contribution of each
velocity can be tuned by either changing j(s) or by changing
ω through θa or T.

2.3 Numerical procedure

To calculate the bent rod actuator trajectory, we convert from
the particle (e1 − e2) to the laboratory (ex − ey) frame of reference by
employing the rotation matrix

d

dt

x t( )
y t( )
ϕ t( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � cos ϕ t( ) −sin ϕ t( ) 0
sin ϕ t( ) cos ϕ t( ) 0

0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ · U1

U2

Ω3

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ + 0
0
ωp

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, (14)

where ϕ(t) is the angle between e1 and ex and t is the dimensionless
timescale (scaled by ℓ

URef
). Additionally, as e1 in the particle frame of

reference aligns with the tangential direction of the positive arm, we
need to account for changes in ϕ(t) due to the angular velocity ωp of the
positive arm about the hinge at s = 0. To do so, we addωp to

dϕ(t)
dt . Eq. 14

is evaluated use an eighth-order Runge–Kutta integration scheme
(DOP853) as implemented in the Python Scipy package via the
Solve-IVP function. We use initial conditions x(0) = y(0) = ϕ(0) = 0.
We note that x(t) and y(t) correspond to the center of mass of the bent
rod actuator in the laboratory reference frame. To determine the
coordinates of the hinge and end points of the bent rod actuator at
each time point in the laboratory reference frame, we first determine the
position of the hinge point rhinge(t) and two end points, rs� q−1

2
(t) and

rs� q+1
2
(t), relative to the center of mass in the particle frame of

reference.

rhinge t( ) � −rcom, (15a)
rs� q−1

2
t( ) � − q − 1

2
( )cos θ t( )e1 − q − 1

2
( )sin θ t( )e2 − rcom, (15b)

rs� q+1
2
t( ) � q + 1

2
( )e1 − rcom. (15c)

Weapply the rotationmatrix and translate the hinge and end points
to determine the coordinates of the hinge and end points of the bent rod
actuator in the laboratory frame of reference at each instant of time.

rhinge′ t( ) � cos ϕ t( ) −sin ϕ t( )
sin ϕ t( ) cosϕ t( )[ ] · rhinge t( ) + x t( )

y t( )[ ], (16a)

rs� q−1
2

′ t( ) � cos ϕ t( ) −sin ϕ t( )
sinϕ t( ) cos ϕ t( )[ ] · rs� q−1

2
t( ) + x t( )

y t( )[ ], (16b)

rs� q+1
2

′ t( ) � cos ϕ t( ) −sin ϕ t( )
sin ϕ t( ) cos ϕ t( )[ ] · rs� q+1

2
t( ) + x t( )

y t( )[ ]. (16c)

We then sequentially solve 14 and 16 to determine the trajectories
of the bent rod actuator. Trajectories shown in Figure 4, Figure 5,

FIGURE 3
Determination of the concentration profile with approximated bent rod actuator geometry. (A) Comparison between bent rod actuator geometry,
as approximated by Eq. 9 for k= 100 and k= 1,000 and Eq. 1. (B)Concentration profiles (q=0, θ0 = π/4, and j(s) = 1) for the approximated bent rod actuator
with k = 100 and k = 1,000 as well as the spline interpolated concentration profile near s = 0.
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Figure 6, and Figure 7 are ascertained fromEq. 16a, with the coordinates
of the hinge and end points of the bent rod actuator drawn according to
Eqs. 16b, 16c.

3 Results and discussion

3.1 Reciprocal motion

We first show that the bent rod actuator experiences zero
net displacement while undergoing reciprocal hinge
articulations without the contribution of diffusiophoresis

(see Figure 4A). At t = 0, the hinge initiates articulation,
changing θ(t) from an initial angle of θ0 to a final angle of
θ0 + θa over a time T

4. The hinge then changes θ from θ0 + θa
back to θ0 over a time T

4. Therefore, by
T
2, the bent rod actuator

has reciprocally articulated the hinge. To determine the
angular velocity of the positive and negative arms (ωp and
ωn), we use Eq. 10. First, we note that θ(t) is piece-wise
defined as

θ t( ) �
θ0 + θa sin 2π

t

T
( )H t( ) t≤

T

2

0 t> T

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (17)

FIGURE 4
Motion of a bent rod actuator due to reciprocal hinge articulations. (A) θ(t) used for a bent rod actuator with reciprocal hinge articulations. θ(t) is
characterized by an initial angle θ0, flapping amplitude θa, and period T. (B) Schematic illustration of flapping distribution between arms, as characterized
by n. n= 1 describes a bent rod actuator where all changes in θ(t) are ascribed to the negative arm. n=0.5 describes a bent rod actuator where the positive
and negative arms are equally responsible for changes in θ(t). n=0 describes a bent rod actuator where the positive arm is responsible for all changes
in θ(t). Trajectory plots of rhinge over one half period for (C) θ0 ∈[π/4, π/2, π], θa = π/2, T = 1, q = 0, and n = 0.5. (D) θ0 = π, θa = π/2, T = 1, q ∈[0, 0.15, 0.3], and
n = 0.5. (E) θ0 = π, θa = π/2, T = 1, q = 0, and n ∈[0, 1/2, 1].
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whereH(t) is the Heaviside function. By using Eq. 17 and Eq. 10, we
write the angular velocities as

ωp �
− 1 − n( ) 2πθa

T
cos 2π

t

T
( )H t( ) t≤

T

2

0 t> T

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (18a)

ωn �
−n 2πθa

T
cos 2π

t

T
( )H t( ) t≤

T

2

0 t> T

2

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (18b)

where n ∈ [0, 1] describes the distribution of angular velocities
between the positive and negative arms, Figure 4B.When n = 1, only
the articulation of the negative arm contributes to the changes in θ.
When n = 0, only the positive arm articulates. When n = 0.5, both
arms equally articulate. Thus, n = 0.5 distinguishes symmetric
flapping, where both arms have the same angular velocity, and
n ≠ 0.5 describes asymmetric flapping, where one arm has a larger
angular velocity than the other. We solve Eq. 14, including no
phoretic contributions, using Eq. 18. Figure 4C shows the
trajectories of the hinge as well as the orientation of the bent rod

actuator with an asymmetry parameter q = 0, flapping distribution
n = 0.5, flapping amplitude θa � π

2, flapping period T = 1, and initial
angles θ0 ∈ [π4, π2, 3π4 , π]. For a symmetric bent rod with symmetric
flapping (q = 0, n = 0.5), the trajectory makes an angle of θ02 with ex.
This is a consequence of Ω3 identically going to 0 for a bent rod
actuator with symmetric flapping and geometry. In contrast,
rotation and curved trajectories can be induced by either
introducing geometric asymmetry via q (Figure 4D) or flapping
asymmetry via n (Figure 4E). As geometric asymmetry is
introduced, the bent rod actuator moves in the positive ex
direction, toward the longer arm, and rotates counter-clockwise
up to t � T

4 before retracing the same trajectory in reverse to attain
the original position and orientation of the bent rod actuator. See
Supplementary Video S1 for a movie of a bent rod actuator moving
due to sinusoidal hinge articulations, described by
θ(t) � θ0 + θa sin(2π t

T), with q = 0.3, n = 0.5, θ0 � π
2, θa � π

4, and
T = 1. A similar behavior is observed when the flapping asymmetry is
introduced (Figure 4E). Both the direction of rotation, clockwise or
counter-clockwise, and the direction of translation depend on which
arm has a larger angular velocity.When n > 0.5, the negative arm has
a larger angular velocity and the entire bent rod actuator rotates

FIGURE 5
Distance traveled for a bent rod actuator with a single hinge articulation. (A) Variation of θ for a single hinge articulation from an initial angle π to a final
angle 3π/2 under sinusoidal, linear, and quadratic temporal evolutions. (B) Distance traveled as a function of time for a bent rod actuator (q = 0, n = 0.5)
undergoing a single hinge articulation from θ(t) = π to 3π/2 for sinusoidal, linear, and quadratic evolutions of θ(t). (C)Distance traveled at the end of a single
articulation as a function of θa for linear hinge articulations (q= 0, n = 0.5, θ0 = π). (D)Distance traveled at the end of a single articulation for q = 0 and
q = 0.25 as a function of n. (E) Bent rod actuator trajectories resulting from a single hinge articulation with an initial angle π and a final angle 3π/2 for q = 0,
0.25 and n = 0, 0.5, 1.
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clockwise and translates in the negative ex direction during the first
half of the articulation. Inversely, when n < 0.5, the positive arm
has a larger angular velocity and the entire bent rod actuator
rotates counter-clockwise and translates in the positive ex direction
during the first half of the articulation. An intuitive understanding
of this motion based on free-body diagrams will be explored in
Sec. 3.2.

We also note that the bent rod actuator does return to its original
position after undergoing a reciprocal hinge articulation. While
known mathematically, to our knowledge, this is the first time
where the trajectories of the bent rod actuator have been
calculated numerically. It can be shown analytically via our
framework that the bent rod actuator must return to its original
location, as given in Eq. 14 and 12. We note that Eq. 12 can be
expressed as

U1,flapping

U2,flapping

Ω3,flapping

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � A q, n, θ( )
B q, n, θ( )
C q, n, θ( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ dθ
dt
, (19)

where A,B & C are functions of q, n, and θ only. Upon inserting
into Eq. (14), we write

d

dt

x t( )
y t( )
ϕ t( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � cos ϕ t( )A q, n, θ( ) − sin ϕ t( )B q, n, θ( )
sin ϕ t( )A q, n, θ( ) + cos ϕ t( )B q, n, θ( )

C q, n, θ( ) + n − 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ dθ
dt
. (20)

By integratingEq. 20,we see thatϕ is a unique function of θ only (up to an
arbitrary choice of ϕ(0), q, and n). Therefore, any trajectory characterized
by a reciprocal choice of θ, i.e., θ(t = 0) = θ(tfinal), implies that x(t � 0) �
x(t � tfinal), y(t � 0) � y(t � tfinal), and ϕ(t � 0) � ϕ(t � tfinal).

In summary, our framework using slender-body theory is able to
recapitulate Purcell’s scallop theorem both numerically and

analytically. In addition, we are able to numerically determine
the trajectories taken by the bent rod actuator due to reciprocal
hinge articulations. Either geometric or flapping asymmetry can be
used to introduce rotation and motion along a curved trajectory.

3.2 Non-reciprocal articulation

To further understand the relationship between geometric and
flapping asymmetry, we calculate the trajectories and cumulative
distance traveled d(t) by a bent rod undergoing non-reciprocal hinge
articulations, Figure 5A. In these simulations, the bent rod actuator
starts with an initial angle of θ = π and the hinge articulates to a final
angle of θ � 3π

2 , representing a total increase in the angle of π2 over a
time period t = 1. We vary the time rate of change of θ(t) using a
sinusoidal, linear, and quadratic function, Figure 5A. Figure 5B
shows that the total distance traveled remains equal among the three
temporal variations by t = 1. Additionally, Figure 5C shows that the
total distance traveled is linearly dependent on the amplitude of the
hinge articulation. We also determine the total distance traveled by
the bent rod actuator when both geometric and flapping
asymmetries are introduced. Figure 5D shows the total distance
traveled by a bent rod actuator undergoing displacements from an
initial angle π to a final angle 3π

2 as a function of n for q = 0 and q =
0.25. When q = 0, the variation in total distance traveled is weakly
dependent on n. Interestingly, we find a minimum at n = 0.5. To
better understand why a minimum exists at n = 0.5, we plot the
trajectories that the bent rod actuators undergo, Figure 5D. When
n = 0 and n = 1, we see that the bent rod actuator turns during the
trajectory, while the bent rod actuator with n = 0.5 moves in a
straight line. In this way, the projected surface area along the

FIGURE 6
Free-body diagram of forces applied to a bent rod actuator due to hinge articulations. (A) Forces acting on a bent rod with geometric and flapping
symmetry. (B) Forces acting on a bent rod with geometric asymmetry and flapping symmetry. The trajectories and bent rod are not to scale.
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direction of the trajectory is smaller for n = 0 and n = 1, allowing
these bent rod actuators to travel slightly further. The relationship
between d(t = 1) and n is more distinct for the q = 0.25 case. In these
cases, d(t = 1) decreases with n. This shows that for a bent rod
actuator with geometric asymmetry, articulating the longer arm
leads to a larger distance traveled. In addition to traveling further,
the bent rod actuator also traces a circular trajectory.

An intuition for the motion of the bent rod actuator under non-
reciprocal articulations can be understood by considering how
forces are distributed across the bent rod arms as a function of
geometric and flapping asymmetry, Figure 6. In the case of a bent
rod actuator with both geometric (q = 0) as well as flapping (n = 0.5)
symmetry, as the hinge articulates, the force applied to the bent rod
actuator arms from the fluid is distributed across both arms, see
Figure 6A. This leads to a net effective force in the ey direction.While
the force does have a component in the ex direction, the
contributions from the positive and negative arms cancel, leading
to no net force in the ex direction. The same is true for the effective
torque about the e1 × e2 axis applied to the center of mass of the bent
rod actuator. As the arms are of the same length and flapping is
symmetric, the torque produced by both arms is equal and opposite,
leading to a net zero effective torque. When geometric (or similarly
flapping) asymmetry is introduced (q > 0.5, Figure 6B), the effective
force applied to the bent rod actuator due to hinge articulations is
biased toward the longer arm. In this case, the effective force in the ey
direction remains non-zero; however, the contributions to effective
force in the ex direction as well as the effective torque about the e1 ×
e2 axis no longer cancels between the two arms.

In summary, an intuitive picture of bent rod actuator motion
can be built by considering how forces acting on the bent rod from
the fluid are distributed at each instant of time. In the case of
flapping, this is done by considering normal force components

distributed across the arms and decomposing the forces into
their constitutive laboratory frame of reference components.

3.3 Phoretic motion with hinge articulations

To investigate interactions between the chemical mode of
swimming from self-diffusiophoresis and the mechanical mode of
swimming due to hinge articulations, we begin by comparing
trajectories and the change in total distance traveled due to either
a positive or negative Γ(s) when the arms open and close, Figure 7A.
We notice that the bent rod actuator always moves further when
closing its arms, independent of whether the phoretic mobility is
positive or negative. This is due to two effects. First, as the angle
between the arms decreases, the concentration difference between
the hinge and end points increases [42]. As the effective phoretic
forces, see Eq. 7, are proportional to the concentration differences,
this leads to a larger effective force and, thus, a larger velocity. The
inverse is true for the scenario when the arms are opening. As the
arms open, the concentration difference between the hinge and end
points decreases, leading to a smaller effective phoretic force and a
shorter distance traveled. Second, as the arms close, the projected
surface area along the direction of motion decreases, decreasing the
drag and leading to a larger distance traveled over a given period
of time.

While changes to phoretic motion are the primary reason for
changes in the total distance traveled, a subtle effect involving the
competition between mechanical and chemical swimming can
also be noticed. When the arms open, the bent rod with a positive
phoretic mobility experiences a smaller decrease in the total
distance traveled when compared to the bent rod with a
negative phoretic mobility. This is because the effective force

FIGURE 7
Trajectories of an active bent rod actuator undergoing hinge articulations. (A) Comparison between bent rod actuator motion due to a uniform
surface activity (j(s) = 1) with a phoretic mobility Γ(s) = ±1, θ0 = π/2, q = 0, n = 0.5 and arms either opening or closing by θa = ±π/4 over t = 1 of linear
temporal variation. (B) Trajectories for an active bent rod actuator undergoing sinusoidal hinge articulations, Γ(s) = 1, T = 1, θa � π

4, and n = 0.5 for q ∈[0.15,
0.30] and θ0 ∈ [π/2, π].
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acting on the bent rod actuator due to a positive phoretic
mobility and the arms opening are in the same direction.
Similarly, the bent rod actuator with a negative phoretic
mobility and arms that close experiences a larger increase in
the total distance traveled.

We also investigate how θ0 and q affect the motion of a self-
diffusiophoretic bent rod actuator undergoing sinusoidal hinge
articulations described by θ(t) � θ0 + θa sin(2π t

T), Figure 7B.
First, we notice that when θ0 = π/2, the bent rod actuator
travels in a circular trajectory (see Supplementary Video S3),
while the bent rod actuator with θ0 = π travels in trajectories that
map circular arcs. Additionally, we notice that the bent rod
actuator no longer experiences zero net displacement upon
reciprocal articulations. This is due to the fact that the
effective phoretic forces, Eq. 7, do not depend on dθ

dt and
instead are functions of θ (as well as q and j(s)). Therefore,
upon integrating, the time dependence of θ matters. This leads to
trajectories that do not end and start at the same location.

We briefly discuss how the relative contributions of hinge
articulations and diffusiophoresis impact the trajectory of the
bent rod actuator. By increasing j(s), the contribution of
diffusiophoresis relative to hinge articulations increases.
Conversely, by increasing the articulation amplitude θa, the
contribution of diffusiophoresis relative to hinge articulations
decreases. Figure 8 shows the trajectories of a bent rod actuator
moving due to both hinge articulations and diffusiophoresis, with
j(s) increasing while keeping θa constant. As j(s) increases, the bent
rod actuator traces a larger distance (though not necessarily
displacement) during a given time period. This is attributed to
the increase in the effective force and torque acting on the bent rod
caused by the increasing j(s). Additionally, increasing j(s) causes the
trajectories to become more circular and approach the trajectory of a
self-diffusiophoretic bent rod without hinge articulations (refer to
Supplementary Video S2) [42].

4 Applications to biomedical
microrobots

An improved understanding of the motion of a bent rod
actuator with both mechanical and chemical swimming modes
has direct applicability to the growing field of biomedical

microrobots. Biomedical microrobots have found use in the
delivery of small-molecule drugs, living cells, and contrast agents
through complex biological media for precision medicine [8].
Primarily, the ability to enact real-time geometric changes and
predict the resultant motion can have implications for the design
of biomedical microrobots. First, real-time changes to microrobot
geometry may allow the robot to switch between characteristic
trajectories. In one sense, the ability to switch between straight-
line trajectories and circular trajectories could enable enhanced
motion through porous media [61]. In a similar manner, the
direction of the microrobot for a given propulsion mechanism
can be changed through flapping asymmetry and geometry
alterations, for instance, by flapping a single arm to induce
rotation that alters the direction of propulsion (Figure 5). This
may be particularly useful for microrobots traversing through
complex environments with multiple barriers, wherein real-time
changes to trajectories may allow the swimmer to move around
barriers and potentially escape confinement [96]. We note that the
proposed hydrodynamic model of the bent rod actuator would need
to be significantly modified to account for the presence of
boundaries and is currently limited to two-dimensional motion.
This warrants further studies that expand motion to three
dimensions and include the effects of boundaries.

Experimental realizations of microrobots with similar
geometries to the bent rod actuators exist [97–100]. These
systems use polymeric cubes, typically fabricated at the micron
scale with photolithography, coated with a ferromagnetic patch,
that assemble into linear chains with hinges in a constant uniform
magnetic field [97–99]. Systems could also be fabricated at the
nanoscale using electron-beam lithography [101]. Upon turning
the external magnetic field on and off, the assemblies open and close,
allowing them to propel in non-Newtonian fluids, such as xanthan
gum solutions for shear thinning fluids or fumed silica suspensions
for shear thickening fluids, by using time asymmetric hinge
articulations [97, 100]. Endowing such microrobots with a
chemical mode of propulsion could be enabled by conjugating
enzymes, such as urease, to the particles, allowing the microrobot
to generate propulsion by converting urea, a chemical commonly
found in the human body, to CO2 and NH3 [102]. In summary, our
results will encourage scientists and engineers aiming to design
microrobots with multiple swimming modalities for biomedical
applications.

FIGURE 8
Trajectories of an active bent rod actuator undergoing sinusoidal hinge articulations with θa � π

4, q = 0.3, n = 0.5, T = 1, and θ0 � π
2 for (A–D) j(s) ∈ [0.5,

1, 2, 4].
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5 Conclusion

In this article, we have developed a mobility framework to
calculate the trajectories taken by a bent rod actuator under
chemical and mechanical modes of swimming. In the mechanical
mode, where propulsion is induced by hinge articulations, we show
numerically and analytically that Purcell’s Scallop theorem holds. To
better understand the role of geometry on the bent rod actuator
motion, we calculate the trajectories traced under non-reciprocal
hinge articulations. Rotation and curved trajectories can be induced
either through geometric or flapping asymmetry. This is explained
through free-body diagrams that consider how forces are distributed
across the bent rod actuator’s arms. To further explore the bent rod
actuator’s motion, we also include self-diffusiophoresis to study
the interplay between chemical and mechanical modes of
swimming. We find that hinge articulations either aid or hinder
self-diffusiophoretic motion. These effects are caused by changes to
mobility, increasing or decreasing the effective phoretic force, and by the
interference between the effective phoretic and flapping forces. Our
work invites future studies to expand to swimmers with more than one
hinge [28, 98, 99], to study swimmers in non-Newtonian fluids [48, 97,
103, 104], and to incorporate optimization schemes to control
microrobot trajectories via hinge articulations. One intriguing
direction is to extend the analysis to non-Newtonian fluids by
scaling the applied forces in response to a viscosity that depends on
the hinge articulation rate [100]. Another interesting possibility is to
explore simultaneous mechanical reconfiguration with other methods
of field-driven propulsion, such as electrochemical reactions [105],
where the time dependence of the reactive flux [65, 66, 106] is
known to impact the directed assembly of particles [107]. This may
further influence the ability of swimmers to transport through confined
porousmedia [108, 109], where it is known that bothmotion [110, 111]
and the distribution of electrochemical species are altered [112, 113].
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