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1 Introduction

The self-propelled motion in inanimate systems is one of the fascinating manifestations
of life-like behavior [1]. The size of these objects can range from molecular level- (e.g.,
photochemical oscillator [2] and chemo-hydrodynamic pulsations [3]) to macro- (e.g.,
droplets) [4–6] via microscales (e.g., Janus particles) [7–9], and the underlying mechanisms
of the self-propelled motion can be diversified. It can be passive (the particles generate their
motion along the gradient generated in the environment through thermophoresis,
electrophoresis, or diffusiophoresis) and active (the objects also create a fluid flow,
Marangoni flow, inside them which contributes to the motion). The BZ reaction has
been studied theoretically and experimentally as a chemical oscillatory reaction that
exhibits nonlinear phenomena, e.g., synchronization [10–15], bifurcation [16, 17], and
pattern formation [18–21]. Repetition between swelling and contraction of a gel loaded with
the catalyst of the BZ reaction was reported [10, 22, 23]. The periodic motion of a w/o
emulsion droplet consisting of the BZ solution has been demonstrated [1, 24, 25]. However,
there are no reports on self-propelled systems in which the BZ reaction-produced bubble
generates the driving force. In this study, we developed a self-propelled bead that exhibited
repetition between up-and-down motion and synchronization between the periodic motion
of the bead and the BZ chemical oscillation via the CO2 bubble produced during the
oxidation of malonic acid in the BZ reaction.

2 Experiments

The reagents used in the experiments were the same as those in a previous report [19].
Ferroin, as the metal catalyst of the BZ reaction, was adsorbed into cation exchange resin
beads (Strong Acidic Cation Exchange 50Wx4 200–400 Mesh, H Form) in a similar manner
to previous protocols [19]. 5.4 nmol ferroin was adsorbed per one bead (called a “BZ bead”).
The BZ solution whose total volume was 1.0 mL composed of 0.75 M NaBrO3, 1.3 M
malonic acid, and 0.95 M H2SO4 was poured into a glass vessel (diameter: 13 mm, height:
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40 mm) and then a BZ bead was put into the solution. One hour after
soaking, the vessel was placed on a Peltier device (Matsuo Electric
Co., LTD., MET III, Japan) to control the temperature of the
solution. Temperature was monitored with a thermometer (AS
ONE Co., 1-5455–02 Digital Thermometer IT-2000, Japan). The
chemical oscillation and motion of the bead were monitored with a
digital video camera (SONY, HDR−CX590V, Japan) from the side
view. The resulting movies were analyzed with ImageJ software
(National Institutes of Health, Bethesda, MD).

3 Results

At first, we investigated the motion of a BZ bead in the BZ solution.
Figure 1A shows an image sequence of up-and-downmotion of the BZ

bead. The BZ bead generated the bubble on the top of its surface
(Figure 1A1) increasing the buoyancy. The object floated to the air/
aqueous interface with the bubble once the buoyancy overcame the
gravitational force acting on the BZ bead and bubble (Figures 1A2,
1A3). After reaching the interface, the bubble bursted, and the BZ bead
came back to the bottom of the vessel driven by the gravitational force
(see Figures 1A4, 1A5). Figure 1B shows the time-variation of the
position of the BZ bead and the volume of the bubble generated on the
BZ bead. The BZ bead started floating when the size of the bubble
reached ~2.4 × 10−2 mm3 (see Figure 1B). Supplementary Figure S1
shows the thermal gradients in the BZ solution. A cation exchange bead
without adsorbing ferroin in the BZ solution with the thermal gradients
exhibited no up-and-down motion (data not shown).

We also measured the period of up-and-down motion of the
BZ bead (Tm) under various periods of the oscillatory reaction (Tr).

FIGURE 1
(A) Snapshots of vertical motion (side view) of the BZ bead when the temperature of the solution was 35°C. The time interval was 1.0 s. (B) Time-
variation of the position of the BZ beadmeasured from the bottom of the vessel (filled black square) and the volume of the bubble on the bead (filled blue
circle). The data corresponds to the Movie S1 in the Supplementary Material.

FIGURE 2
(A) Relationship between the average value of the period of up-and-down motion of the BZ bead (Tm) and period of the oscillatory reaction (Tr) at
different temperatures. Tm and Tr were calculated from 10 cycles of oscillations under different temperatures and the error bars represent the standard
deviations. (B) The distribution of Δt/Tr at 30°C–35°C, where Δt corresponds to the time elapsed between the latest oxidation of ferroin in the BZ bead and
the time when the BZ bead left the bottom of the vessel, Tr was the latest period of oscillatory reaction before up-and-downmotion. The data sets
were 17, 18 and 23 obtained from three experiments. The error bars represent the standard deviations.
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Tr was adjusted by the temperature of the solution. Figure 2A
shows the relationship between Tm and Tr at different
temperatures. The relationship between Tm and Tr was linear,
and the slope was approximately 3. We also measured the time
elapsed between the latest oxidation of ferroin in the BZ bead and
the time when the BZ bead left the bottom of the vessel as Δt at
30°C–35°C. Oxidations of ferroin were detected as the peak of the
gray value on the center of the BZ bead (see Supplementary Figure
S2). The reason for the temperature limit in this measurement was
to accurately observe Δt at 40°C–45°C were difficult to observe
accurately. Figure 2B shows the distribution on the phase
difference between motion and oscillation, Δt/Tr. Smaller values
of Δt/Tr was observed rather than lager ones.

4 Discussion

We discuss the relationship between up-and-down motion of the
bead and gas production in the BZ oscillatory reaction in relation to the
previous study [26]. Figures 1A,B suggest that the driving force of the
upmotion is buoyancy due to the bubble, and it starts after inflating the
bubble to a constant size. This bubble is composed of CO2, which is
produced by oxidizing malonic acid in the reduction using a metal
catalyst [26]. The bead with the bubble moves up once the overall
density of the bead and bubble reaches the density of the solution. We
assume that the density of the solution is equal to the density of the
water (at 35°C), which is 9.94 × 10−4 g/mm−3. Based on the
measurement, the mass of the bead is 4.71 × 10−4 g. To start the lift
of the bubble, the total volume of the system should be 9.94 × 10−4 g/
mm−3/4.71 × 10−4 g = 0.474 mm3. The volume of the bead is 0.454 mm3.
Therefore, the volume of the bubble should be 0.020 mm3. Using the
image analysis, the volume of the bubble was obtained as 0.024 mm3,
which is close to the value that was estimated based on hydrostatics.
CO2 bubble is released at the air/aqueous interface, and the BZ bead
comes back to the bottom of the vessel because of gravity. Figure 2A
shows that three cycles of BZ oscillations are necessary to float the BZ
bead regardless of the period of BZ oscillations. Thismay be because the
volume of CO2 produced by one BZ oscillation was constant. Figure 2B
suggests that the BZ bead tends to float relatively early after the
reduction phase in the BZ reaction. This may be because more CO2

is produced by oxidizingmalonic acid when themetal catalyst of the BZ
reaction is reduced from Fe3+ to Fe2+.

5 Conclusion

In this study, we reported up-and-down motion
synchronized with the BZ reaction. The bubble of CO2 was
generated from a ferroin-loaded bead called BZ bead. The
bead and the bubble float to the air/aqueous interface because
of the buoyancy of the bubble and release CO2. After that, the BZ
bead is back to the bottom of the vessel because of the gravity. The
synchronized ratio of the chemical oscillation and up-and-down
motion is constant regardless of the period of BZ oscillation. In
addition, floating BZ bead tended to occur relatively soon after
the reduction of the BZ reaction. The up-and-down BZ beads
propose the utility of BZ reaction for a periodic mass transport
system. Such a mass transport system is expected to provide a

novel platform for a more complex and organized mass transport
system by applying pattern formation, optical control, and
synchronous phenomena of BZ reaction-based systems.
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