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Cardiac mechanics models are developed to represent a high level of detail,
including refined anatomies, accurate cell mechanics models, and platforms to
link microscale physiology to whole-organ function. However, cardiac
biomechanics models still have limited clinical translation. In this review, we
provide a picture of cardiac mechanics models, focusing on their clinical
translation. We review the main experimental and clinical data used in cardiac
models, as well as the steps followed in the literature to generate anatomical
meshes ready for simulations. We describe the main models in active and passive
mechanics and the different lumped parameter models to represent the
circulatory system. Lastly, we provide a summary of the state-of-the-art in
terms of ventricular, atrial, and four-chamber cardiac biomechanics models.
We discuss the steps that may facilitate clinical translation of the biomechanics
models we describe. A well-established software to simulate cardiac
biomechanics is lacking, with all available platforms involving different levels of
documentation, learning curves, accessibility, and cost. Furthermore, there is no
regulatory framework that clearly outlines the verification and validation
requirements a model has to satisfy in order to be reliably used in applications.
Finally, better integration with increasingly rich clinical and/or experimental
datasets as well as machine learning techniques to reduce computational costs
might increase model reliability at feasible resources. Cardiac biomechanics
models provide excellent opportunities to be integrated into clinical workflows,
but more refinement and careful validation against clinical data are needed to
improve their credibility. In addition, in each context of use, model complexity
must be balanced with the associated high computational cost of running these
models.
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1 Introduction

1.1 Cardiac physiology and pathophysiology

Cardiac biomechanics consists of the study of one or more of the
processes involved in cardiac function. By studying the
biomechanics of a patient’s heart and how it is different
depending on the patient’s demographics and health state, we
can optimise therapies, help planning procedures, or learn about

pathophysiology. Historically, this study has been conducted
clinically and experimentally, but more recently computer models
have helped in this task [1]. Computational biomechanical
modelling tools can aid in this effort, providing information that
is inaccessible, too invasive, or unethical to obtain clinically. These
tools must also be sufficiently robust to work with typically sparse
clinical data and their associated uncertainty. Mathematical
representations of fundamental mechanisms can provide the
basis for a bottom-up reconstitution of whole-heart function in

FIGURE 1
Clinical translation of cardiac biomechanics models. The clinical application dictates the type of cardiac biomechanics model to employ: passive,
circulatory system, cell or three-dimensional multiscale model. In-vivo clinical data collected from patients or ex-vivo experimental data are used to fit
the model parameters and/or to validate model predictions. Once validated, the model can be used to provide mechanistic insight into processes
underlying cardiac function, understand disease mechanisms, perform patient stratification, and test and compare different treatments.
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silico. Using this framework, cellular mechanisms such as ion
exchange and cellular force generation can be linked to changes
in the macroscopic behaviour, affecting clinical, measurable
biomarkers such as ejection fraction.

In Figure 1, we outline the coupling between a typical clinical
and experimental pipeline with the computationally modelling
approach. Briefly, the clinical application dictates the type of
cardiac biomechanics model to employ: passive, circulatory
system, cell or three-dimensional electromechanics multiscale
model. In-vivo clinical data collected from patients (top left of
Figure 1) or ex-vivo experimental data (top right of Figure 1) are
used to fit the model parameters and/or to validate model
predictions. Once validated, the model can be used to provide
mechanistic insight into processes underlying cardiac function,
understand disease mechanisms, perform patient stratification,
and test and/or compare different treatments (bottom of
Figure 1). The continuous development and refinement of
cardiac mechanical models witnessed over the past half century,
together with increase in computational power, make this goal
increasingly realistic.

In this review, a mechanics model refers to a mathematical or
computational representation of the physical properties and
behaviours of cardiac tissues, cells (cell models), or the
circulatory system (circulatory system models). To improve
readability, when not explicitly specified (for example, with the
term ‘whole-heart modelling’), we mean both anatomical and
functional modelling. When only the geometry is replicated, we
use the term ‘anatomical model’. We use the term ‘simulation’ to
denote the computational processes that aim to replicate cardiac
biomechanical phenomena. Unless stated otherwise, when we refer
to techniques such as parameter estimation, it refers to in-vivo
parameter estimation for patient-specific parameters, typically via
inverse modelling.

1.2 Previous reviews of cardiac mechanics
computational models

Cardiac mechanics models are developed to represent a high
level of detail, including refined anatomies, accurate cell mechanics
models, and to account for mechanisms of interaction between
different chambers such as the pericardium, and the circulatory
system, and between different physics through mechanoelectric
feedback [1]. In recent years, multiple reviews have been
published on cardiac biomechanical modelling. In [2], Wang
et al. discussed some of the main articles on cardiac
biomechanical models, with an emphasis on the images from
which the anatomical data were extracted (for an introductory
overview of image-based anatomical and mechanical modelling,
see [3]). The focus was mainly on (left) ventricular properties
and mechanics modelling, while mentioning several studies in
which left ventricle (LV) modelling helped improve our
understanding of the mechanisms underlying cardiac diseases. In
2019, Avazmohammadi et al. [4] summarised the last 30 years of
myocardial biomechanics modelling focusing on constitutive
equations, highlighting the need for better integration between
clinical and experimental data with computational methods. This
integration was the focus of the review by Bracamonte et al. [5], that

is, on patient-specific inverse modelling. Several authors have
summarised the main challenges of modelling cardiovascular
mechanics, restricting their reviews to specific aspects of cardiac
biomechanics, such as multiscale modelling [6] or computational
models of specific pathologies [7–9].

Models of cardiac mechanics have been formulated for almost a
century [1]. However, only recently did these models start to
generate compelling evidence of their clinical relevance, paving
the way for their clinical translation. In [10], Lesage et al.
conducted a survey asking 163 clinicians about their familiarity
with modelling and found that computational modelling-related
terms such as patient-specific modelling are becoming well known.
More than half of the responders had already used computer
modelling and simulations to plan procedures, 57.4% of them in
the cardiovascular field. Despite some potential sampling bias, this
study indicates that clinical translation of cardiac computational
modelling is already happening. However, none of the reviews
mentioned above provided a summary of the state-of-the-art of
the clinical translation of cardiac mechanics models.

In this review, we provide a picture of some of the main
developments towards the clinical translation of cardiac
mechanics models. In Section 2, we describe the main clinical
and experimental data and methods used by the anatomical
models and the simulations. In Section 3, we describe the
processes of anatomical model generation and the incorporation
of the fibre orientation and scar. We then describe the state-of-the-
art of cellular contraction models in Section 4 and passive mechanics
in Section 5. We review circulatory system models in Section 6 and
ventricular, atrial, and four-chamber electromechanics models in
Section 7. In Section 8 we briefly discuss how machine learning is
influencing model translation. Lastly, in Section 9 we discuss the
clinical applications of all the discussed models and the challenges
that currently hinder the clinical translation of cardiac mechanics
models. The final remarks of this review are given in Section 10.

2 Experimental and clinical data used in
anatomical and mechanics models

There is a plethora of clinical tools and equipment available for
collecting a wide range of data from a patient’s heart, including
detailed anatomical, structural, and functional data. However, even
given all this information, the clinical decision-making process
remains challenging, as there is no tool capable of combining all
this information into a unified framework. Computational
electromechanics models have the potential to fulfil this purpose
by unifying all clinical information into a multiscale, multiphysics
and physics-constrained platform. In this section, we summarise the
clinical and experimental data available to modellers to constrain
and validate electromechanics models.

2.1 Anatomical and structure measurements

Anatomical information can be recovered from in-vivo or ex-
vivo data. Histology can be used to obtain slices of hearts from
different species, obtaining sparse shape information. Explanted
hearts can also be imaged to obtain high-resolution images of the
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heart and surrounding tissues. However, ex-vivo imaging cannot be
used for longitudinal or diagnostic studies. In-vivo imaging, on the
other hand, allows one to collect longitudinal data for the same
patients. Both ex-vivo and in-vivo hearts can be imaged by
techniques such as computed tomography (CT) or magnetic
resonance imaging (MRI). In contrast to CT, MRI does not
require any ionising radiation and can therefore be used to image
healthy subjects for multiple acquisitions over a short period of time
while avoiding radiation exposure. However, MRI requires long
acquisition times, which requires multiple breath holds from the
patients and may be difficult for patients with cardiac disease.
Moreover, it is not always suitable for patients with devices
implanted and has low long-axis resolution. In these cases, CT
provides submillimetre isotropic resolution, but involves ionising
radiation. Echocardiography provides a rapid and inexpensive
option to assess basic anatomical measurement using ultrasounds
at the expense of accuracy.

Diffusion tensor MRI (DT-MRI) and histology can also be used
to recover information about cell alignment within the myocardium.
In the heart, myocytes are organised into fibre bundles. Although
histology measurements are often used as a ground truth for the
estimation of fibre direction [11], they are sparse and time
consuming and are associated with an uncertainty of about 10°

[11]. DT-MRI is a technique that allows to map the predominant
direction of water molecules diffusion within the tissue, providing
essential insights into the underlying fibre structures. When applied
ex-vivo, this provides high-resolution data about fibre distribution in
the whole heart. Although in-vivo DT-MRI is limited by cardiac
motion and long acquisition times, it has been used to detect fibre
disarray and remodelling in patients with hypertrophic [12] and
dilated [13] cardiomyopathies, showing its potential for future
clinical applications.

Scarring and fibrosis occur when cardiac tissue dies due to a lack
of blood supply. Scar tissue constitutes a substrate for a wide range of
pathologies, such as atrial fibrillation (AF) or ventricular
tachycardia, and its distribution is used to identify potential
ablation targets to prevent life-threatening arrhythmias. This
makes scar estimation in cardiac patients crucial. Late
gadolinium enhancement MRI can be used to quantify the
extent, transmurality, and mass of the myocardial scar, which
appears as a bright area on cardiac images. However, late
gadolinium enhancement techniques are currently unable to
detect diffuse myocardial fibrosis, which is an earlier form of
fibrosis preceding replacement fibrosis that may be reversible.
T1 mapping refers to information derived from MRI images to
measure a mathematical constant, called T1 relaxation time. The
main advantage over late gadolinium enhancement is that
T1 mapping MRI does not require contrast and allows a
quantitative measurement of features such as diffuse fibrosis, a
reason why it has recently been used to detect this type of
fibrosis [14]. Scar can also be quantified with electroanatomical
mapping, as low-voltage areas have been shown to correlate with
scar in both ventricles [15] and atria [16], although transmurality
information is limited. Finally, the quantification of thin areas of the
ventricular wall on CT with delayed enhancement has been
correlated with areas with low voltage on electroanatomical
mapping, but this is not widely used in clinical practise to
identify scar tissue [17]. For a more thorough review on the link

between anatomical and functional modelling and imaging, we refer
the reader to [3].

2.2 Tissue and cell measurements

Passive tissue measurements have advanced our understanding
of the mechanical properties of the myocardium. Initial evaluation
of passive properties of the myocardium was carried out through
uniaxial tests (e.g., stretching the sample in the longitudinal
direction) in rabbit papillary muscle samples, showing the
nonlinear behaviour of cardiac tissue [18]. Later, biaxial tests on
canine myocardial strips excised from the subepicardium of the LV
free wall, carried out by stretching the sample in the fibre and cross-
fibre directions, showed increased stiffness in the fibre direction,
indicating that the myocardium behaves as a transversely isotropic
material rather than an isotropic material [19, 20]. Finally, more
complex shear tests were used to investigate the shear properties of
the myocardium. Using these types of measurements on tissue
samples from the LV lateral wall, Dokos et al. [21] concluded
that cardiac tissue is actually orthotropic. Most tissue
measurements are performed on ventricular samples, leaving the
properties of the atrial tissue poorly characterised. Bellini et al. [22]
provided the first and only experimental dataset that characterises
the passive properties of the healthy human myocardium of the left
atrium (LA) and the right atrium (RA) by performing biaxial tests on
samples collected from five different areas of the atria.

A substantial proportion of experiments investigating the active
properties of the cardiac muscle are carried out in skinned muscle
preparations, where the sarcolemmal membrane has been dissolved
[23]. The benefits of these experiments include 1) the ability to tailor
the biochemical environment of the sarcomere components; 2) the
isolation of the contraction mechanisms from other cellular
subsystems, such as the sarcolemmal membrane; and 3) the
ability to preserve the system for several months (particularly
useful for human samples, which are naturally scarce) [24]. The
underlying assumption of skinned muscle measurements is that the
structural and molecular features of the myofilament system are
sufficiently preserved to reproduce the essential functional
properties and behaviour of the original system. However, in
reality, there are notable discrepancies between the skinned and
intact systems, which make the translation of the measurements of
the skinned system into their physiological context challenging [25].
Nonetheless, skinned muscle preparations are widely used to
provide quantitative information about active tension properties
and cardiac cell kinetics.

Force-calcium (F-Ca) relationships provide a conventional basic
characterisation of steady-state force generation at the sarcomere
level [26]. Typically measured using skinned preparations (although
they have also been measured in intact myocytes [27]), the F-Ca
relationships are used to measure the force generated by muscle
fibres at different levels of calcium concentration and under different
conditions, for example, sarcomere length [28]. More precise
measurements have identified an asymmetry in the F-Ca curves [29].

More complex experiments carried out on both skinned and
intact muscle preparations have been used to provide in-depth
information about the system kinetics and to quantify the force
generated by cellular contraction. Dominant processes can be
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observed by applying small length perturbations [28] or by
measuring dynamic stiffness through a strain of varying
frequency [30]. These experiments provide an intuitive
framework for interpreting kinetics-modifying interventions, such
as the application of the contraction inhibitor mavacamten [31].
Tension-recovery experiments, also performed in skinned
preparations, probe the cross-bridge turnover dynamics. These
experiments involve rapidly slackening the muscle fibre to zero
tension, followed by rapid restretching, assumed to cause cross-
bridge dissociation [32]. Therefore, the observed tension recovery
reflects the dynamic reforming of the cross-bridges. Controlling
calcium concentrations precisely in skinned muscle preparations on
short time scales poses a challenge. Consequently, experiments that
measure muscle twitches are conducted on intact cells, rather than
skinned muscle preparations, to study dynamic force generation in
response to calcium transients [33]. The experimental data
described above are based on complex procedures and setups,
making data collection time consuming and challenging.
Furthermore, these experiments allow one to observe only very
specific processes and, therefore, lack the link to other mechanisms
affecting cardiac function as a whole.

2.3 Organ-scale measurements

Measurements carried out in myocardial tissue samples are
fundamental to investigate tissue properties, both active (e.g.,
force generation), and passive, (e.g., material stiffness). However,
in some cases, in-vivo measurements might be needed instead. In
this section, we provide a brief summary of the main types of data
and their collection techniques used to validate mechanics
simulations.

Time-volume traces can be non-invasively derived from cine
MRI. However, in some cases, MRI is not indicated, for example, due
to the presence of a device. In such cases, if ionising radiation is not a
concern, time-volume traces can be derived from retrospective gated
cardiac CT. Cine MRI suffers from lower long-axis resolution
compared to CT, but retrospective gated cardiac CT has a poorer
temporal resolution than cine MRI. Echocardiography constitutes a
non-invasive, inexpensive and widely available measurement of
volumes, ejection fraction, and local longitudinal strains for all
cardiac chambers. Tagged MRI and retrospective gated cardiac
CT can also be used to measure local strains, but interpreting
these data requires more advanced analysis, such as motion
tracking and deep learning.

In addition to imaging, cardiac biomechanics can be
characterised clinically using a range of diagnostic measurements.
In-vivo end-diastolic pressure-volume relationships (EDPVRs) can
be invasively measured using pressure-conductance catheters,
providing simultaneous recordings of pressure and chamber
volumes [34]. Invasive catheter measurements of LV pressure
over time can be used to quantify the efficiency of myocardial
contraction and relaxation using peak pressure and maximum
and minimum pressure time derivatives. For cases where time
traces of volume and/or pressure measurements are not available,
[35] proposed a law (the so-called Klotz curve) to estimate EDPVR
for a specific patient based on a single pressure-volume
measurement. Clinically, EDPVR is used to assess the passive

mechanical behaviour of a patient’s heart and can be used to
identify the presence of fibrosis, remodelling, or hypertrophy [36].

Although they do not provide direct information on cardiac
function, electrical measurements are widely used in the clinic in
combination with functional mechanical measurements described
above, and can be used to validate the electrical activation simulated
in a multi-scale electromechanics model. Twelve-lead
electrocardiograms (ECGs) are routinely used to identify
myocardial scar, dyssynchrony, and other electrical disturbances.
Body surface potential maps and electrocardiographic imaging are
an extension of standard ECGs, with more recording electrodes
located on the patient’s torso, and can provide more detailed
information about the electrical activity of the heart. However,
these techniques are not intended for routine clinical use and are
restricted to specific use cases, such as response to cardiac
resynchronisation therapy (CRT) [37, 38] or different types of
arrhythmias [39].

All the data mentioned above can be used to validate the heart’s
mechanical behaviour simulated by different types of computational
biomechanics models of the heart. In the following section, we
describe how anatomical models of the heart are built, mainly using
three-dimensional imaging techniques such as CT or MRI.

3 Anatomical model generation

The first animal [40] and human [41] anatomical models of the
heart were based on the LV, partially due to its regular shape, well
approximated by a truncated ellipsoid. Increased availability of
experimental data have made the realisation of more detailed
anatomical models possible. Biventricular anatomical models of
mammals have been generated using digital images of short-axis
histological slices [42], ex-vivo MRI images of histological samples
[43–45], and ex-vivo whole heart MRI [46–48]. The growing interest
in the effect of the atria on cardiac function has led to increasingly
anatomically detailed models generated from histological slices of
the sheep atria [49], the human atria [50, 51] and the whole human
heart [52]. Advances in in-vivo imaging allow one to acquire highly
detailed anatomical datasets. Both MRI and CT have been used to
generate patient-specific anatomical models of the ventricles
[53–57], the LA [58–60], the atria [61], and the whole heart [56,
62, 63], as shown in the first row of Figure 2.

Fibre orientation in the ventricles has been directly incorporated
from high-resolution ex-vivo DT-MRI datasets [43, 46, 64–66] or by
registering histological data in a computational geometry [42], see
the second row, left, of Figure 2. Although these methods provide
measurement-based fibre architectures, they can be considerably
difficult to apply in-vivo. For this reason, rule-based methods [67]
remain popular. Essentially, these methods establish a series of rules
for describing fibres in the myocardium based on (typically canine)
histological data. Several rule-based methods have been developed
for the ventricles [68–73] and atria [58, 71, 73–79]. Ventricular
fibres can also be mapped from a geometry with a known fibre
orientation using universal ventricular coordinates [80], a set of
coordinates that uniquely define a point within a biventricular
anatomy independently of the geometry. Similarly, universal
atrial coordinates have been used to map ex-vivo DT-MRI fibres
from an atlas onto patient-specific biatrial anatomies [59, 60, 81]. An
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example is shown in the right side of the second row of Figure 2. Due
to the challenges of acquiring high-resolution in-vivo DT-MRI
datasets, patient-specific fibre orientation is not yet achievable in
cardiac anatomical models.

Depending on the application, tissue heterogeneity might play a
role in the dynamics of interest. For example, accounting for the scar
and border zone (the region usually surrounding the scar with
abnormal conduction properties) in the anatomical and mechanics
model is important when trying to detect the optimal location for

leads in pacemaker implantation, to understand the strain and work
distributions in different pathological conditions, or to reproduce
reentrant waves during arrhythmias. More recently, machine
learning techniques have been used to identify scar areas on
delayed enhancement CT imaging [82] and CT angiography [83].
Electroanatomical voltage mapping can also be used to detect
fibrotic areas by thresholding the voltage in the atria [84, 85] and
in the ventricles [86, 87] to detect low-voltage areas, which can be
surrogates for the scar. The typical data and methods can be seen in

FIGURE 2
Anatomical models pipeline. An idealised geometry can be built using measurements from ex-vivo hearts and a mathematical formulation for a
truncated ellipsoid, while patient-specific anatomies of ventricles, the atria, or the whole heart can be segmented fromCT or MRI imaging data. Atrial and
ventricular fibre orientations can be directly incorporated or mapped from ex-vivo DT-MRI datasets, or by using rule-based methods based on sparse
histology data. Scarred tissue can be detected using late gadolinium enhanced MRI, thresholding electroanatomical voltage maps or by applying
machine learning methods to CT datasets.
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the bottom row of Figure 2, as well as an example of scar geometry in
two ventricular meshes. However, in the ventricles, it can be hard to
discern whether this scar is endocardial or transmural. When
clinical data are not available, universal atrial and ventricular
coordinates can also be used to map segmented scar areas from
one geometry to another.

Once the anatomical model is built, functional properties must
be assigned to the tissue. These can be classified as active or passive
depending on whether the tissue generates force or not, respectively.
In the following sections, we summarise the state-of-the-art for the
active mechanics at the cellular level and the passive mechanics at
the tissue level.

4 Active cell mechanics

Single-cell experiments have provided essential insight into
myocyte biomechanics. However, these experiments typically
focus on measuring specific effects in isolation and do not always
capture the interactions between different mechanisms that occur
simultaneously. In this context, the biomechanical modelling of cell
contraction potentially provides a theoretical framework for

integrating experimental measurements into a unified
picture [4, 88].

Various paradigms of biomechanical models of force generation
at the cell level have been proposed over the years. A depiction of the
main ones can be seen in Figure 3. The Hill model of 1938 [89] was
designed to reproduce careful measurements of the relationship
between force and muscle velocity on a phenomenological basis,
without invoking specific mechanisms of force production within
the muscle. This simplified representation reduces the
computational load and facilitates large multiscale analysis
pipelines [53]. These multiscale pipelines include the integration
of cardiac anatomy, electrophysiology, biomechanics, and
hemodynamics in a patient-specific model of heart failure (HF)
[55, 90]. In this context, the phenomenological nature of the cell
model may well suffice in some data analysis pipelines designed for
therapy planning, e.g., personalised cardiac CRT in a large cohort of
patients [90].

In contrast, the Huxley model of 1957 [91, 92] sought to
reproduce muscular function by starting from a more explicit
representation of molecular interactions at the sarcomere level. In
this framework, the force is generated from the strain of an elastic
“spring” associated with the bound cross-bridge. Many subsequent

FIGURE 3
Cell contraction models pipeline. Simplified cell models directly computing the active tension transient can be used to save computational cost and
discard the kinetic processes underlying active force generation. More complex cell models explicitly represent the molecular processes of the cross-
bridge cycle, discretising it into a finite number of states. Different types of experimental data are used to fit the parameters and validate the cell model
outputs: isometric tension transients, cell shortening and F-Ca relationships under different sarcomere length conditions.
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Huxley-inspired models vary in their degree of sophistication. The
cross-bridge cycle is represented in terms of transitions within a
kinetic system comprising two [93], three [94, 95], four [28, 96], or
more (e.g., [97–99]) states. In the hybrid approach by Gusseva et al.
[100], a Hill-type model is used where the active behaviour of the
myocardium is modelled within Huxley’s filament theory. In
general, the computational cost increases with complexity and is
typically much higher with Huxley-type models compared to Hill-
type models. Force predictions in cellular biomechanical models are
typically validated using measurements of F-Ca relationships,
tension-recovery curves, or dynamic stiffness measurements and
twitch dynamics in intact fibres, as seen in the bottom and on the
right of Figure 3. In-vitro solution-kinetic data may also provide
kinetic rate estimates of specific state transitions in contraction
models. Constraining parameter values in complex mechanics
models inevitably involves some degree of “inheritance”, that is,
using experimental data from disparate existing sources that were
sometimes obtained under inconsistent measurement conditions,
which constitutes a source of uncertainty.

Alternative modelling approaches use a more abstract
perspective based on the mass-action principle. They express
biochemical transitions as “probability fluxes” between system
states that may formally amalgamate ensembles of actual
molecular states. Essential experimentally observed dynamic
features can be reproduced, often requiring fewer ad hoc
assumptions [101, 102]. The relative simplicity of such cell
models arguably facilitates parameter calibration using more
limited and more consistent datasets, unlike recent state-of-the-
art platforms for simulating contraction [98, 103–105] that rely on
calibrations derived from a wide set of experimental sources.

Spatially explicit cell models can extend the investigation of cross-
bridge dynamics to filament interactions on the scale of the half-
sarcomere. Fenwick et al. [106] suggested amechanistic explanation of
the sarcomere length dependence of force production. The status and
location of individual myosin heads and actin binding sites can also be
dynamically tracked to allow the exploration of the biophysical
interactions of sarcomere components [103]. Cell models with
resolution at the protein level provide a framework to investigate
drug action pathways [107]. In particular, genetic mutations with a
role in cardiomyopathies can serve as therapeutic targets [108]. Such
effects, in principle, can at best be included only phenomenologically
in spatially implicit cell models.

Modelling can provide insight into the impact of genetic variants
of sarcomeric proteins and their manifestation under pathological
conditions. In [109], the authors constructed an electromechanical
cardiomyocyte model to reproduce phenotypes in hypertrophic
cardiomyopathy, linking alterations in model parameters with
mutations in myosin heavy chain and troponin genes. When the
cell model is coupled with in-vitro measurements, they carried out
an in silico clinical trial of the drug mavacamten, a contraction
inhibitor used to treat hypertrophic cardiomyopathy. Similarly, in
[105], Tomasevic et al. projected single-cell contraction onto the
organ level using a finite element simulation to estimate the impact
of drug interaction within cardiac cells. Therefore, this approach
provides a clinical tool for tailoring drug administration to patients
and altering myocardial contraction.

Coupling simulations with experimental measurements can help
to elucidate the mechanism of action of drugs. Omecamtiv mecarbil

(OM) was designed to directly target the cell contraction mechanism
by selectively accelerating the formation of the force-generating state
of the cross-bridges [110]. At the whole-heart level, it increases the
duration of blood ejection without changing the contraction rate
[111]. To improve understanding of the mechanism of action of
OM, in [112] the authors combined a biomechanical model with
machine learning to infer the model parameters from experimental
data from rats. Recent modelling studies have further investigated
the action of OM by simulating its impact on failing muscle. Using a
cell model within a three-dimensional finite element analysis, in
[113], van Herck et al. confirmed an increase in myocardial
contraction driven by OM in the failing system. However, other
discrepancies with experimental measurements highlight the need to
further refine the cell model to fully understand the drug’s
mechanism. Using Bayesian inference methods, in [114],
Longobardi et al. fitted a cellular biomechanical model to in-vivo
and in-vitro measurements of OM in rats. Combined with purely
clinical studies of the drug, the model can assist in the development
and improvement of clinical treatment.

Only myocytes activated by an action potential wave (a change
in electric charge due to the exchange of ions) generate force in that
instant. Nonactive tissue deforms as a result of passive forces. In the
following section, we describe the main mechanics models that
define how tissue deforms depending on its anisotropy and (hyper)
elastic properties.

5 Passive mechanics

The passive behaviour of the myocardium is typically
represented with a hyperelastic formulation, where stresses within
the tissue are represented by a strain energy function [115]. The first
material laws were developed for the LV myocardium, based on
samples collected from the canine LV free wall [20]. Initially, the
myocardium was represented as exponential and isotropic [116], to
represent the nonlinear behaviour of cardiac tissue. Following
biaxial experiments in canine myocardium samples [117],
transversely isotropic laws were developed [19, 118–123], in
order to represent the increased stiffness in the fibre direction
compared to the transverse plane. More complex orthotropic
laws [33, 115, 124–126] have been developed after the shear data
published by [21]. Orthotropic material laws provide a more
accurate representation of the passive properties of the
ventricular myocardium, and, as shown by [127], transversely
isotropic laws can reproduce only three of the six deformation
modes from the Dokos dataset. However, more complex
orthotropic formulations have more material parameters than
simpler transversely isotropic laws, leading to concerns about
reliability, uniqueness, and computational cost of parameter
identification. For this reason, transversely isotropic material laws
are still widely used in clinical applications of mechanics models.

Myocardial stiffness provides information about chamber filling
and can be used as an indicator for various cardiac pathologies, but it
is difficult to quantify in-vivo. In this context, cardiac mechanics
models can provide a platform to measure passive filling properties
of the patient’s heart non-invasively. A typical pipeline to show how
anatomical models and material laws are coupled with
experimental/clinical data is show in the left side of Figure 4.
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This coupling provides an estimation of multiple biomarkers, such
as the patient’s heart estimated motion, stress and strain
distributions and passive stiffness estimations. We depicted
examples on a univentricular mesh in the left of Figure 4.
Cardiac mechanics models were first applied to measure passive
stiffness in-vivo in healthy animals [128–130] and patients
[131–134] using cine-MRI data, passive pressure-volume
relationships or, alternatively, the Klotz curve. Mojsejenko et al.
[135] used diastolic cine-MRI and invasive LV pressure data
collected from porcine hearts 1 week after infarction to estimate
myocardium and scar stiffness, as well as changes in fibre orientation
within the scar. Using cine-MRI patient data, transversely isotropic
laws were used to quantify passive stiffness in patients with aortic
coarctation and aortic valve stenosis [136], myocardial infarction
[137], and to compare the passive stiffness of healthy controls and
patients with dilated cardiomyopathy [138], HF [139], and tetralogy
of Fallot [140]. Similar works have also been done using 3D printed
phantoms [141]. All these applications made use of transversely
isotropic laws and, in many cases, the number of estimated
parameters was reduced either by using prior relationship

between parameters or by fixing a subset of them. This highlights
the need for more sophisticated fitting techniques allowing to fit
more parameters at a time, or better curated and complete clinical
datasets to help constrain a large number of parameters. This will
ultimately allow orthotropic material laws to be used in clinical
applications.

The material laws and applications described above were
designed and performed in the ventricles and were based on
experimental data collected from samples of the ventricular
myocardium. Only relatively recently, due to the increased
interest in atrial dynamics and modelling, existing linear elastic
[142], nonlinear isotropic [143] and transversely isotropic
[144–146] material laws have been adapted to represent the atrial
myocardium. Other groups have proposed atrial-specific and
transversely isotropic material laws [147, 148] and fitted the
material parameters to the available experimental data from
Bellini et al. [22]. Finite element analysis of the atria using a
linear elastic model has been used to correlate low-voltage areas
and areas with high stresses in the LA in patients with AF [142].
More complex nonlinear, isotropic, and transversely isotropic

FIGURE 4
Passive mechanics models pipeline. Using an idealised or patient-specific geometry and a material law representing passive properties of the
myocardium, the material parameters can be fitted to match stress-strain relationships derived from tissue measurements, or in-vivo cine-MRI data and
pressure-volume relationships measured during the diastolic phase. Passive mechanics models can provide an estimation of the patient’s heart diastolic
motion, stress and strain distribution and passive stiffness.
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models have been used to approximate and investigate in-vivo stress
distribution in porcine biatrial [149] and human LA [147]
geometries, showing the potential of atrial modelling to improve
our understanding of the mechanical behaviour of the complex
anatomy of the atria.

Once active and passive mechanics of the myocardium are
represented in a cardiac mechanics model, a representation of
the circulatory system can be included to be able to track
changes of pressures and volumes inside the cavities. Due to the
computational cost, the circulatory system is commonly simulated
with lumped parameter models. In the following section, we provide

a summary of the state-of-the-art of lumped parameter models to
represent the circulatory system.

6 Lumped parameter models for the
circulatory system

Lumped parameter or zero-dimensional models represent the
circulatory system as a combination of resistors, capacitors, and
inductors, representing the resistance the blood encounters while
flowing through different compartments, the energy stored by the

FIGURE 5
Workflow for lumped parameter models. In lumped parameter models, the circulatory system ismodelled as an electric circuit (top left). The cardiac
chambers and the other components of the circulatory system are simulated with varying elastance models and a combination of resistance, inductance
and capacitance, respectively. To represent local dynamics, the heart can be represented with more sophisticated circulatory systemmodels (TriSeg and
MultiPatch). The parameters of the circulatory system can be fitted to available pressure and volume clinical data, or regional strains. Lumped-
parameter models are then capable of simulating pressure curves, valve flows and global indices for cardiac function, such as cardiac output and ejection
fraction.
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vessels’ compliance, and blood inertia, respectively (see Figure 5, top
left). The periodic activity of the heart is normally modelled using a
varying elastance model. Although lumped parameter models
discard spatial information, they constitute an appealing option
for clinical applications due to the computational speed, compatible
with clinical timescales, and their flexibility, with modules or
compartments normally easily replaced by a more complex
representation if required by the application of interest. The
versatility of lumped parameter models makes them useful in a
wide range of applications. Zero-dimensional models of the whole
heart, systemic and pulmonary circulations have been applied to
investigate diseases such as aortic stenosis and aortic valve
regurgitation; and to simulate pulmonary hypertension to better
understand the underlying causes of the disease and improve
treatment [150]. They have also been used to test, using
simulations, different types of ventricular assisted devices in
peadiatric [151] and adult patients with HF [152]. An even
simpler setup, including only the left side of the heart and the
circulatory system, has been used to match the pressure-volume
relationships measured from different stages of HF, in order to
provide a visual representation of the stages of HF from the
American Heart Association [153]. An example of these
pressure-volume curves can be seen in the bottom of Figure 5.
Other indices such as ejection fraction, cardiac output or flow
transients can be obtained from such circulatory system models,
see bottom right of Figure 5.

Although lumped parameter models can be used for clinical
applications because of their low computational demand and
flexibility, some of their parameters do not necessarily have a
physiological meaning, which makes it difficult to estimate their
values from clinical or experimental data. To improve parameter
identifiability and reduce the number of unknown parameters, Arts
et al. developed CircAdapt [154], a lumped parameter model for the
heart and circulatory system that includes adaptation rules capable
of updating geometry parameters such as the wall volumes of the
chambers and the wall areas of the vessels depending on the load
they experience. Subsequent developments of CircAdapt were able
to account for the mechanical interaction between the LV free wall,
the right ventricle (RV) free wall and the septum (TriSeg model)
[155], and for heterogeneity of cardiac tissue properties (MultiPatch
model) [156], see top of Figure 5. In contrast to other lumped
parameter models, which discard spatial information, these versions
of CircAdapt provide local as well as global dynamics of the heart.
This makes CircAdapt suitable for studying diseases or treatments in
which LV-RV interaction and/or spatial heterogeneity are
important. The TriSeg model has been used in combination with
echocardiography strain data to investigate different substrates in
RV arrhythmogenesis cardiomyopathy, and was able to link RV
deformation abnormalities to changes in RV contractility and
compliance [157, 158], to identify potential causes of abnormal
septal motion in patients with pulmonary hypertension [159] and to
link cellular contractile properties to CRT response [160]. The
MultiPatch model has been used to investigate local work
heterogeneity during different pacing modalities to compare
various CRT delivery methods [161]. Depending on the
application, CircAdapt and its extensions constitute a valuable
tool for in silico investigations. Furthermore, thanks to its
modular structure, CircAdapt can also be coupled with three-

dimensional mechanics models to have a more sophisticated
representation of the electromechanical function of the heart. In
the following section, we provide a summary of the state-of-the-art
of tissue- and organ-level cardiac electromechanics modelling,
showing their integration with active and passive mechanics and
the incorporation of lumped parameter models.

7 Three-dimensional electromechanics
models

In order to simulate the electromechanical activation of the heart
at the tissue level, an electrophysiology simulation is often needed,
see Figure 6, top-centre. Before focusing on three-dimensional
electromechanics models, we briefly explain electrophysiology
simulations, as these are an essential building block of an
electromechanics model. In essence, an ionic model is coupled
with a tissue-level electrophysiology model and computes
transmembrane potentials and/or other variables of interest, such
as cytosolic calcium concentration. These variables (activation
times, transmembrane potential, etc.) are then passed to the
active stress model to trigger active tension development,
represented with an active cell mechanics model.
Electrophysiology and mechanics models can be coupled in
multiple ways. We talk about phenomenological coupling if the
tension development in the cell model is triggered with an activation
time, discarding the cross-bridge cycle and the calcium transient. A
detailed ionic model can otherwise provide a calcium transient that
can be passed to the cell model (weak coupling). Both
phenomenological and weak coupling neglect the effect of
mechanical deformation on electrophysiology. Strong
electromechanical coupling instead accounts for bidirectional
coupling through stretch-activated channels and length-
dependence calcium buffering of troponin C [162]. Although
strong coupling is often not used due to its high computational
cost and complexity, accounting for such mechanisms can be
important for some applications, such as arrhythmias, where
stretch-induced activation can serve as a trigger for ectopic beats.
A review of the different ionic and tissue-level electrophysiology
models is beyond the present scope. For more information, we refer
the reader to [163].

In Figure 6 we show a schematic representation of all the
different components of three-dimensional electromechanics
models. The electrophysiology output, together with boundary
conditions such as springs, the pericardium, or normal springs
constrain the mechanics model, both at the initial step of the
simulation (initial conditions) and at each timestep (boundary
conditions), as shown in the centre of Figure 6. Multiple outputs
such as pressure and volume curves, motion, ejection fraction or
stroke volume are produced, see left column of Figure 6. These
results can be fitted to experimental or clinical data for validation
(Figure 6, bottom row). Depending on the application, tissue-level
mechanics models can include one chamber, two chambers (usually
the ventricles or atria), or the whole heart. In this section we review
the research done with electromechanics simulations, depending on
whether they are done with ventricular, atrial, or four-chamber
models. We use the terminology ‘tissue-level’ here to denote cases
when not the whole organ is modelled, but only specific chambers.
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FIGURE 6
Three-dimensional electromechanics models pipeline. Depending on the application, tissue-level mechanics models can include to one chamber,
two chambers, or the whole heart. A material law and a circulatory systemmodel are needed to represent passive behaviour of the myocardium and the
preload and the afterload of the chambers. The electrophysiology model is coupled with an active tension model to simulate active contraction, and the
parameters are fitted to available clinical data. The electromechanics model can output pressure-volume loops for the chamber(s) of interest, the
motion of the anatomy and functional metrics such as ejection fraction and stroke volume.
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We refer to ‘tissue-level’ simulations to denote studies where only
specific chambers rather than the whole heart was modelled.

7.1 Ventricular models

Ventricular mechanics models were the first cardiac models to
be formulated at the tissue level mainly due to data availability and
geometric simplicity. As early as 1892, Woods applied Laplace’s
theorem to the LV assuming it to be a sphere [164]. Since then,
multiple ventricular models have been used, from truncated
ellipsoids to patient-specific anatomies.

Simplified ventricular geometries have been used to link
subcellular simulations with simulation of the entire chamber
[105] in patients with dilated and hypertrophic
cardiomyopathies. Despite using a simplified LV geometry, this
approach allows to link protein unction to observable clinical
biomarkers after administering antiarrhymtic drugs, using a
Huxley-based cell model. This simplification of the ventricular
geometry makes it more manageable to investigate how changes
at the subcellular level, such as the effects of drugs or alterations in
proteins, influence the behaviour at the organ scale. Similarly, to
translate mechanical behaviour from the cellular to the anatomical
level, in [165, 166] the authors coupled the mechanical model of
MyoSim to a simple hemispherical representation of the LV. In
[100], Gusseva et al. combined a hybrid Hill-Huxley model with a
spherical representation of the RV in a cohort of Tetralogy of Fallot
patients after pulmonary valve replacement, to assess the predictive
value of the mechanics models before and after replacement using a
transversely isotropic material law.

Biomechanics ventricular models have been widely used to study
therapies such as CRT. In [55], Sermesant et al. simulated the
transversely isotropic mechanical behaviour of a biventricular
mesh from a patient undergoing CRT using MRI and pressure
catheters. In [53], Niederer et al. formulated a new active tension law
in combination with a transversely isotropic material law to assess
the influence of length dependence on failing hearts undergoing
CRT. This law was later used by the same group to assess the
distribution of work in CRT patients [56]. In [56], the authors used
biventricular mechanics simulations to find the optimal location of
the LV pacing lead based on the acute hemodynamic response.
Gerach et al. [167] performed a CRT study using simplified LV
geometries in a cohort of patients. These were combined with
patient-specific electrophysiological measurements to quantify
mechanical torsion in HF patients.

Mechanics models can be used to integrate electrophysiology
models, which might lack sufficient data for certain diseases or
applications, and computational fluid dynamics models, which may
have demanding technical needs and high computational expenses.
For example, multiple mechanics models have been used to study
how physiological and pathological electrophysiology are impacted
by cardiac mechanics. In [168], Salvador et al. modelled LV
tachycardia using electromechanic simulations. They used a
patient-specific geometry, scar location, pressure, and volume
biomarkers. One of the main findings was that, due to the
mechanoelectric feedback, tissue deformation affects the
activation pattern of ventricular tachycardia. The authors
extended this study in [169] to investigate the role of stretch-

activated channels on the arrhythmia dynamics, finding that
tissue deformation could affect the basic cycle length of
tachycardia but not its stability. A transversely isotropic law and
a Hill-based cellular model were used. The role of the
mechanoelectric feedback was previously studied by Hermeling
et al. [170], where, using lumped parameter models, Huxley-
based cell models, and a simplified geometry, the authors found
that the mechanoelectric feedback could partially explain
electrophysiological characteristics such as T-wave memory in
ventricular pacing. Finally, in [171] Adeniran et al. studied the
effect of adding stretch-activated channels to ventricular models
using a Huxley-based cell model, finding that it can be an essential
feature to adequately model short QT syndrome.

Studies where a computational fluid dynamics model might have
been adequate but was too prohibitive due to computational cost
and complexity have also used ventricular mechanics models. This
will depend on the context, as in some cases analysing the motion,
pressures or stress, for instance, is enough and the specific blood
flow patterns are not needed. In [172], Bakir et al. simulated
ventricular assist devices for patients with dilated
cardiomyopathy on idealised biventricular meshes, combining a
simplified biventricular geometry and using an orthotropic
material law with high-fidelity blood flow simulation in the
cavities. This device was also modelled by Sack et al. in [173],
where the authors focused on the effects of the device on septum
deformation. An orthotropic material law was also used with a Hill-
type active tensionmodel. In [54], the authors compared biomarkers
such as myofibre stress and strain in a patient with pulmonary
hypertension with a healthy control using personalised biventricular
models anatomically (from MRI) and functionally (through
pressure catheters), while using a transversely isotropic material
law. Therapies for complex and rare diseases such as Tetralogy of
Fallot were modelled in [174], where Tang et al. simulated patch
modelling for RV reconstruction comparing stress and strain
distributions for different transversely isotropic patch designs
[174] using delayed enhancement MRI to locate the patches and
valves. In [175], Cutrì et al. modelled the ventricle of a patient with
hypoplastic left heart syndrome. The authors used an orthotropic
material law and a Hill-based cell model and simulated the effects of
surgery.

Alternatively, ventricular mechanics models have also been used
to achieve clinical translation mainly through two ways: conducting
in silico trials and reducing the burden of expensive and not readily
available imaging technologies such as CT and MRI. We use the
definition of in silico trial used before in [176]: a research study that
uses computer models of cells, tissues, organs, or systems of human
subjects, assigned to one or more interventions (which may include
some form of control group) to evaluate the effects of those
interventions on health-related biomedical or behavioural
outcomes. In [109] Margara et al. performed a set of in silico
trials using ventricular mechanics to investigate the effect of
specific mutations in hypertrophic cardiomyopathy. This setup
was based on the one presented by Wang et al. [177]. In [177],
Wang et al. presented a framework to simulate electromechanic
simulations on a patient-specific biventricular mesh. Parameters
were chosen from the literature or tuned to achieve physiological
pressures and volumes, and a Hill-based model for active tension
and an orthotropic material law were used. The purpose was to
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demonstrate the feasibility of such a framework. The clinical
availability of imaging technologies can heavily influence the
development of anatomical and functional models. In [178],
Krishnamurthy et al. presented a pipeline that combines
multimodal data (CT, catheter data, echocardiography) and
integrates them into closed-loop biventricular mechanical
simulations using a Hill-type cell model in patients with HF.
Instead of using CT or MRI images, Aguado-Sierra et al. [179]
created biventricular meshes from echocardiography images and ran
mechanics simulations on HF patients using an orthotropic material
law. Although this technique has lower resolution than CT or MRI,
it might allow greater translation in environments where costly
scans are not available. Additionally, models can be used to reduce
the imaging burden using more accessible and readily available
imaging technologies to provide insights into the patient’s heart, that
otherwise would require more complex and time-consuming image
acquisition protocols. In [180], Peña et al. also used
echocardiography to create ventricular models but in foetuses at
different stages and assess which properties (such as active tension)
change over time. The authors used a transversely isotropic material
law with a Hill-based active tension model.

7.2 Atrial models

The development of three-dimensional atrial models has lagged
behind that of ventricular models, as the atria were long believed to
contribute little to overall heart function. However, in recent years,
the importance of atrial function and its role as an indicator of
cardiac health have been increasingly recognised, triggering the
development of atrial models. Typically, three-dimensional atrial
models fall into two types: LA-only models and biatrial models,
including both LA and RA. In terms of clinical applications, most
atrial models have been used to investigate AF and the response to
catheter ablation procedures. However, the vast majority of these
atrial models focus only on atrial electrophysiology and neglect
biomechanics.

Although the number of existing atrial biomechanics models in
the literature is limited, they can have significant clinical value.
Adeniran et al. [144] used a multiscale, transversely isotropic
biatrial model to investigate how electrical remodelling induced by
persistent AF affected atrial mechanics and leads to loss of atrial
contraction commonly associated with persistent AF. A remodelled
state was created by modifying a family of electromechanically
coupled single cell models, previously validated against the F-Ca
relationship of human atrial myocytes [181]. It has also been
possible to create an AF pathological state in atrial models through
tissue- and organ-level modifications, without considering cellular
remodelling. Feng et al. created an AF state in their LA-mitral valve
model [182], without considering cell-level characteristics, but simply
by removing atrial contraction. Feng’s atrial model of healthy
individuals included a transversely isotropic material model and
used a phenomenological approach with a simplified active stress
to model active contraction. In the AF case, the active stress was set to
zero and represented only an advanced AF case where the atrial
booster function is completely lost.

Given the number of remodelling mechanisms associated with
AF, mechanics models can benefit from including more

information. In the atrial model by Moyer et al. [183], the
authors included information about changes in material
properties, size, shape, pressure, and conduction. The authors
used a transversely isotropic LA model with a Huxley-based cell
model coupled to a hydraulic circuit model of the LV and
pulmonary circulation to examine how AF-related remodelling
could affect mechanics [183]. In this study, the baseline
configuration was created from the average MRI-measured
geometry of a cohort of healthy patients and loaded using scaled
pressure-time curves measured from patients with paroxysmal AF
prior to an ablation procedure. The mechanics model incorporated
the contact between the LA and surrounding structures by applying
inward pressures to the LA septum, anterior wall, and roof.
Furthermore, a representation of the LV contraction force acting
on the LA was included by applying a downward force driven by the
displacement of the mitral valve measured along the pulmonary
vein-mitral valve axis of the patient’s MRI. The baseline atrial model
was modified to investigate the effect of common factors related to
AF on atrial function. Modified factors included size - changing the
geometry of the anatomical model so that the end-diastolic
endocardial volume matched the average value measured from a
cohort of AF patients; shape–modifying the geometry of the
anatomical model to match the average geometry measured from
patients with AF but scaled tomatch healthy atrial volumes; pressure
- increasing the measured healthy pressure load curves; and fibrosis
burden - increasing the isotropic stiffness terms in the myocardium
material model. With pathological state atrial models, the global LA
function could be examined with reference to the healthy case,
illustrating the effect of the AF-related factor using simulated
pressure-volume loops.

The baseline Moyer et al. atrial model [183] was further built
upon in the paper by Phung et al., where three common scar tissue
patterns created during catheter ablation procedures were added, to
investigate the effect of scar onmechanical function [146]. Here, scar
tissue was modelled in the atrium for the first time by stiffening the
isotropic material parameter in the myocardial material model to an
even greater extent compared to the increase made when modelling
fibrosis, along with the elimination of anisotropy and active
contraction [146]. Regional and global functions were assessed
using the regional motion of the atrial wall segments and the
pressure-volume loops, respectively. With these functional
metrics, the effect of each ablation pattern on atrial function was
examined with respect to the baseline atrial model. Here, the authors
highlight the value of this type of investigation in planning and
guiding ablation strategies to correct arrhythmia while having
minimal effect on normal atrial function. The pressure-volume
loops generated with this mechanics model, however, did not
reproduce the characteristic figure-8 shape observed clinically.
This could be due to issues surrounding the boundary conditions
applied to the LA or to the tuning of the lumped parameter model
used to represent the LV and pulmonary circulation. Although the
characteristic atrial pressure-volume loop is difficult to achieve in
silico, the simulated pressure-volume loops still provide valuable
information on how the atrial function is affected under various
conditions.

Atrial model output, including simulated motion, volume, and
pressure data, is rarely validated in the literature (only in [183],
Moyer et al. validated their mechanics model), due to lack of patient
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data. Additionally, the lack of patient data affects the construction of
mechanical models of the atria. Many atrial models assume a
constant pressure based on literature values [142, 144] due to
difficulty in obtaining patient pressure trace data. Another issue
related to atrial model construction is that none of the existing
human atrial models mentioned the incorporation of a pericardium.
However, the importance of the pericardium for cardiac
biomechanics has recently been highlighted by computational
studies [62, 184, 185]. Limitations of existing imaging methods
have also affected the construction of atrial models. In the literature,
many atrial models assume a uniform wall thickness [142, 144, 146],
while physiologically, the atria have a heterogeneous wall thickness,
ranging between 0.5 and 6.5 mm [186–188]. This limitation persists
because the thin walls of the atria require high-resolution imaging to
be captured. However, the study by Feng et al. [182] showed a
difference in mechanical behaviour when a uniform wall thickness
was assumed compared to a patient-specific wall thickness. In a
study by Augustin et al. [147], the authors suggested a correlation
between heterogeneous wall thickness and LA mechanical
behaviour. As such, in the future, to derive the most clinical
realism, it may be necessary to include patient-specific wall
thickness in 3D atrial models when atrial mechanics is of
interest. It should be mentioned, however, that the thin walls of
the atria present some difficulties with respect to stability and
convergence of the mechanical solver. Augustin et al. highlighted
challenges in estimating the unloaded configuration [147] of the
atria due to their thin walls. Simulated pressures might then be
limited to values lower than physiological ranges, or myocardial
stiffness may be increased in an attempt to avoid over-inflating the
atria [147].

Atrial mechanics models are in their infancy compared to
ventricular models and, as highlighted above, present significant
challenges. However, due to the now widely recognised role that
atria play in overall cardiac function, atrial models are rapidly
developing, alongside novel atrial-specific imaging and functional
data collection methods to capture the thin atrial walls and to better
understand atrial physiology. The integration of richer clinical
datasets from the atria into mechanics models will make atrial
computational mechanical models more suitable for clinical
applications.

7.3 Four-chamber models

Electromechanical models of the whole heart are increasingly
being used to provide mechanistic insight into cardiac pathologies
and predict clinical output metrics on the organ scale [189–192].
Although they suffer from higher computational cost and stability
issues, four-chamber models imply significant advantages compared
to biventricular models: they avoid the need for an unphysiological
spatial boundary condition on the base or apex of a biventricular
mesh, and incorporating the atria in combination with a closed-loop
circulatory system also provides physiological preload and afterload
to the ventricles. In addition to improved boundary conditions,
four-chamber models are able to capture the complex
atrioventricular interaction, which are critical in the study of
cardiac pathologies affecting the whole organ. Despite the relative
novelty of four-chamber biomechanics, there have already been

successful applications for investigating pharmaceutical effects
[189], evaluating surgical treatment strategies [190], and
questioning the validity of computationally-derived clinical
metrics [191].

Some applications, traditionally investigated through
electrophysiological studies only, would benefit from the
inclusion of biomechanics. An example of this is the use of four-
chamber models to investigate cardiac arrhythmias. Peirlinck et al.
[189] used a four-chamber electromechanical model coupled to a
closed-loop circulatory system to investigate the proarrhythmic
potential of pharmaceutical therapy. The mechanics model used
a transversely isotropic hyperelastic material and implemented a
Huxley-based law for the active stress modelling, including the
active stress interaction between adjacent muscle fibres along the
sheet direction. By blocking the pharmacologically affected ion
channels, the mechanics model was used to link the effect of
antiarrhythmic drugs on a single ion channel to the effect on the
whole heart and system function.

The clinical application of four-chamber modelling to surgical
planning for cardiac arrhythmias is also becoming increasingly
feasible. Electromechanical models generated from healthy
patients have been modified to include radiofrequency ablation
scars typical of a surgical treatment strategy for AF [193]. Gerach
et al. developed a four-chamber model using an orthotropic material
law and a Huxley-based model for active tension. This model was
embedded in an explicit representation of the pericardium, as in
[185] and coupled to a closed-loop representation of the circulatory
system. By defining the scar regions as non-conducting and
simulating multiple heart beats, Gerach et al. found that the
efficiency of ventricular pumping was not significantly affected by
the atrial scar. This work was extended to include the increased
mechanical stiffness of scar tissue and the new configuration was
used to analyse combinations of five commonly used ablation scar
patterns [190]. The authors concluded that the position and extent
of ablation scars have implications not only for atrial pressures and
stroke volumes but also for ventricular performance. These in silico
experiments represent a promising step towards using four-chamber
heart models to optimise choice of ablation strategy in a specific
patient.

The four-chamber model of [193] was also extended by
embedding the heart in a torso to investigate the influence of
contraction on ECG [191]. With a conclusion similar to that
from [194] but in a four-chamber heart, the model suggested
that some features of the T-wave are significantly affected by
cardiac motion. This has implications for the clinical translation
of purely electrophysiological models, as some ECG features may
not be accurately predicted without a full electromechanical
approach.

Whole-heart models have also been used to study myocardial
infarction [192]. Jafari et al. developed a four-chamber model using
a transversely isotropic, hyperelastic material law for passive
mechanics and implemented the active mechanics using a
Huxley-based model accounting for sarcomere length and
mechanical activation. This model was coupled to a lumped
parameter representation of the circulatory system. An infarcted
region was defined in the LV wall and the contractility of this region
was reduced to simulate acute tissue damage after MI. A comparison
of cardiac motion and pressure-volume loops for the healthy and
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infarcted heart indicated a reduction in cardiac work immediately
after MI. The use of a four-chamber geometry removes the need for
nonphysiological boundary conditions that require extensive
parameter tuning to match the simulated motion with data
acquired from the participant.

Four-chamber electromechanical models have also been used to
investigate cardiac remodelling and its effect on cardiac function.
Strocchi et al. [195] varied the orientation of the ventricular fibres
and studied the effect on the displacement of the atrioventricular
plane, atrial pressures, and venous return. Land et al. [196] used a
four-chamber model to investigate AF-induced electrophysiological
remodelling of the atria considering changes in calcium dynamics
after restoration of sinus rhythm. The authors concluded that
remodelling led to a lower peak atrial pressure and reduced atrial
relaxation, as well as a small reduction in ventricular filling. Finally,
Genet et al. created a four-chamber model for cardiac growth and
remodelling during chronic HF by simulating parallel and serial
deposition of sarcomere [197]. In addition to predicting wall
thickness, chamber volume, and cardiac geometry, the four-
chamber model can predict papillary muscle dislocation, annular
dilation, and other clinically relevant outcomes. This work
highlights the potential four-chamber models have for predicting
the progression of HF in specific patients and promises to aid in
personalised treatment planning for HF in the future.

8 Machine learning to reduce
computational burden

One of the main barriers to the clinical translation of cardiac
biomechanics models is the computational cost, as simulations
usually require several hours of hundreds of cores in high-
performance computing facilities [198].

Recently, a new approach has been presented to accelerate
ventricular mechanics simulations: combining them with neural
networks to reduce the computational burden. In [199] Motiwale
et al. tested this approach with an idealised LV represented as a
truncated ellipsoid. The neural network was trained by minimising
certain residual force vectors obtained from the weak form of the
partial differential equations that drive a simulation, achieving a
speedup of 4 orders of magnitude.

Two of the main bottlenecks when running cardiac mechanics
models are in parameter fitting and in sensitivity analysis. In both
cases, multiple combinations of parameters must be chosen to run
simulations and analyse the output. Although the different
techniques of parameter fitting and sensitivity analysis are
beyond the scope of this review, machine learning techniques
such as Gaussian process emulators are being used to alleviate
the computational cost [200]. In [200], Strocchi et al. ran
multiple mechanics simulations to then train a set of Gaussian
process emulators. These emulators were then used to rapidly and
finely sample the parameter space and find the most influential
simulation parameters. Similarly, in [201], Salvador et al. used latent
neural ordinary differential equations to perform a global sensitivity
analysis and parameter estimation, learning not scalar values, but
temporal traces. Trained with 400 multiscale mechanics simulations,
this approach allowed for simulations 300 times faster than real time
on a single processor of a standard laptop.

9 Discussion

One of the end-goals of cardiac biomechanics models is clinical
translation: to improve the clinical decision-making process, to
improve and/or optimise a therapy outcome, and to gain more
knowledge about a disease. Although this field is not new, there is
still a gap before biomechanics models can fulfil this purpose.

In most of the papers discussed in this review that describe
tissue-level simulations, only a few virtual patients were analysed
(n < 20). Although a few patients might suffice for a pilot study, if we
want to make general statements that will be true throughout the
wider population, more virtual patients are needed. The main
reasons for this shortcoming are 1) the time-consuming, expert-
requiring pipelines to generate patient-specific anatomical models
from imaging data and 2) the computational cost of simulations. For
the former problem, reliable, validated, up-to-date and ideally open-
source software tools are needed to accelerate simulation pipelines.
For the latter, machine learning-based solutions can be used to
reduce computational cost.

9.1 Enabling clinical translation through
simulation software

At present, there are multiple software platforms to simulate
cardiac mechanics, possibly due to the complexity of the systems
considered, their multiscale and multiphysics nature, and the ever-
evolving field in terms of solvers, physiological findings, and user-
specific needs.

Cell models, such as the one used in [98], can be run in theMyoSim
(or MATMyoSim) software1. MyoSim, able to simulate half or full
sarcomeres, monitors the distribution of cross-bridge strains at
individual binding sites over time, dynamically adjusting these
distributions as the cross-bridges undergo the power stroke or as the
filaments slide past one another. This explicit representation of cross-
bridge strain, while increasing the computational load relative to the
mean-distortion approach, allows for a finer characterisation of strain-
related effects, including cooperativity between near-neighbouring
cross-bridges. MyoSim simulations have been included in finite-
element simulations [202]. The FiberSim2 platform, developed by
the Campbell Muscle Lab, extends the MyoSim modelling approach
to provide more flexibility to simulate spatially explicit phenomena
[103]. Another option for cell simulations is MUSICO3 [104], a
simulator developed by the Mijailovich Lab, based on Monte-Carlo
modelling. Although not explicit, this approach exploits experimental
measurements to predict contraction properties via sarcomere-level
regulation pathways.

In some cases, simulation software platforms that initially
focused purely on electrophysiology have broadened their scope
to includemechanics, for example, the Cancer, Heart and Soft Tissue
Environment (CHASTE)4 and the Cardiac Arrhythmia Research

1 https://campbell-muscle-lab.github.io/MATMyoSim/

2 https://campbell-muscle-lab.github.io/FiberSim/

3 https://www.solindies.com/musico

4 https://www.cs.ox.ac.uk/chaste/
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Package (CARP)5. In both cases, a cell dynamics-electrophysiology-
mechanics coupling is possible from the microscale to the
macroscale, although the electrophysiology is more established,
with Cardiac CHASTE6 and OpenCARP7, respectively, compared
to mechanics.

Some research groups have followed a top-to-bottom approach
for software development. Instead of developing a tool specifically
for cardiac mechanics simulations, general-purpose software
(usually finite element-based) has been used for cardiac
simulations. Some examples include SimCardEMS8, from the
Simula Laboratory based on FEniCS, Ansys9, FEBio10 or
Abaqus11, from Dassault Systemes.

To allow clinical translation, thorough benchmark tests should
be performed on the simulator, serving as a verification step before
focussing on specific applications. Benchmark studies such as the
one provided by Land et al. [203] are essential to achieve this goal.
These recommendations were also described in the Food and Drug
Administration (FDA) draft on the credibility of simulations in
medical device submissions [204]. Although focused on medical
devices and not encompassing only mechanics modelling, these
recommendations are easily applicable to facilitate clinical
translation of cardiac biomechanics models.

9.2 Learning from the existing regulatory
framework

Clinical decisions are traditionally built on evidence from bench,
animal studies, and clinical trials. All this information is usually
collected in guidelines and recommendation guides. Recently, some
guidelines have contained digital evidence, either from in silico
studies or even in silico clinical trials. One of the most recent is
the FDA draft on credibility for simulation and modelling of clinical
devices [204], built on their previous report from 2016 [205]. Even if
a study is not intended for an FDA submission of a medical device,
practises such as code verification, validation, and uncertainty
quantification are necessary steps to increase trust in mechanics
models. However, these steps are rarely performed, even in in silico
clinical trials [176].

Although lacking specific regulatory guidelines for best practise,
mechanics modelling studies are already being used to support
regulatory submissions at different stages [206], allowing them to
complement clinical trials in aspects such as predicting performance
beyond instructions for use, cost and time. In the United Kingdom, a
recent report highlighted success stories of modelling and
simulations in healthcare [207]. However, these cases do not yet

include cardiac biomechanics, but cardiac electrophysiology or
noncardiac biomechanics.

9.3 The gap between experimental data and
models

The challenge of reliably calibrating and validating simulations
with experimental data also increases with model complexity. For
example, an important source of experimental data for these
purposes is derived from skinned muscle preparations. This
experimental system allows for a more direct characterisation
and control of sarcomere biomechanical reactions than can be
inferred from intact cells. However, the interpretation of these
measurements in the context of intact cells faces significant
challenges [25]. To a large extent, the interpretation of the
measurements themselves often necessarily rests on model-based
assumptions. Variations in measurements can be the result of
experimental uncertainty, but also variability inherent in muscle
samples. Unless addressed, these challenges will only increase in the
future with novel techniques, such as experiments with engineered
heart tissue [208]. Consequently, the expectation of achieving an
ultimate model that is suitable for all purposes might be
unreasonable. Therefore, the specific context of use should be
established beforehand, as recommended by the FDA [204].

The lack of biophysical mechanisms of cell-scale contraction has
yet to be fully clarified. Previously unconsidered phenomena are
being established, for example, the tension-dependent regulation of
thick-filament activation involving the myosin “off” state. Another
issue that needs further investigation is that of tissue heterogeneity
in cellular properties within a tissue [209–211]. This effect,
unrepresented by the assumption of homogeneity in most
existing models, can affect simulated cardiac muscle performance
[212, 213].

On the experimental side, novel findings, including tissue
staining [214] and proteomics [215] can provide novel tools to
characterise tissue heterogeneity and find changes in response to
disease. In [215], Linscheid et al. provided the largest dataset of
cardiac protein expression from human samples collected in-vivo,
classified by chamber-specific expression. Cardiac conexins (a class
of proteins) have also been linked to specific tissue, for example,
conexins Cx43 are expressed mainly in atrial and ventricular
myocytes and less expressed in the conduction system such as
Purkinje fibres, where conexins such as Cx40 are more
ubiquitous [214]. These findings provide a potential bridge
between the microstructure and the whole-organ level. However,
it can be difficult to identify how specific changes in proteins affect
cardiac function in-vivo or in bench studies. Multiscale modelling
can bridge this gap using techniques such as global sensitivity
analyses [200].

9.4 Future directions

Cardiac anatomy is highly variable depending on sex, subject
size, and from healthy to diseased state, and adjusting for this
variability is often important. Cardiac atlases built from a
collection of patient-specific anatomical and mechanics models

5 https://carpentry.medunigraz.at/

6 https://www.cs.ox.ac.uk/chaste/cardiac_index.html

7 https://opencarp.org/

8 https://computationalphysiology.github.io/simcardems/

9 https://www.ansys.com/en-gb/applications/cardiovascular

10 https://febio.org/knowledgebase/case-studies/structural-mechanics/
cardiac-mechanics-benchmark-problems/

11 https://www.3ds.com/products-services/simulia/products/abaqus/
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provide a statistical representation of the anatomy of a cohort.
Multiple datasets of CT and MRI have been used to create
biventricular [216–218], LA [81], biatrial [219], and whole heart
atlases [198]. Statistical shape models have been used to investigate
the LV shape induced by preterm birth in adults [220], obesity in
adults [221] and children [222]; to identify potentially favourable
remodelling as a response to CRT in patients with HF [223] and to
quantify LA anatomical remodelling in patients with AF [224].
Although complex and computationally demanding, accounting
for shape variability in cardiac mechanics models would make in
silico mechanics models more relevant for clinical applications.

A different approach to account for patient intervariability
would be to include genomic information. Currently, mechanics
models include genetic effects mainly in the shape of expressed
proteins, for example, with changes in ion channel properties.
Including the vast amount of genetic information that can now
be collected routinely would improve the personalisation level of
patient-specific cardiac mechanics models.

Although multiple cardiac mechanics models used are already
multiscale, there are still several relevant processes that are not being
routinely included in these studies, namely, the link to other organs,
perfusion, and energetics. In this regard, the recent work by Sharifi
et al. [225] is notable, where the authors were able to mimic
important features of the physiological baroreflex, one of the
body’s homeostatic mechanisms that helps to maintain blood
pressure at nearly constant levels. Regarding perfusion, the
process linking the circulatory system with the myocardium,
Zingaro et al. [226] recently presented a mechanics model linking
cardiac mechanics with perfusion. However, this is just the first step
to achieve clinical translation of this type of cardiac model. Lastly,
modelling energetics can be useful, for instance, in some cases of HF,
where there are abnormalities in how heart cells produce energy.
Works such as that by Randall et al. [227] show how to model
cardiac energetics, but there is a missing link with whole-organ
cardiac mechanics. With all these advances, we could better model
representations of physiological conditions, including exercise.

Models of cardiac growth and remodelling focusses on how
heart structure changes after different stimuli. Changes are usually
driven by a mechanical stimulus such as a pressure overload. This
type of modelling is not routinely integrated with biomechanics
modelling, due to several reasons. Firstly, the interplay between the
growth law and the mechanics simulation is not clearly established.
The meshes where growth and remodelling models are tested are
mainly ventricular or biventricular and mostly very regular or ideal
ellipsoids. This simplification hinders clinical translation and
integration with patient-specific biomechanics models. Lastly,
multiple growth laws are formulated with different advantages
and disadvantages. Although it is unlikely (as happened with the
passive material laws) that a single law becomes the only one used,
more research is needed to understand the limitations of the
available growth laws and the implications in the study,
potentially requiring integration with clinical and/or experimental
data. For a review of the existing growth and remodelling cardiac
models, we refer the reader to [228]. These models would also
benefit from adopting a multiscale approach, linking down to
subcellular growth and remodelling models similar to those used
in system modelling [229].

10 Conclusion

The clinical translation of cardiac biomechanics models is
essential to have a societal impact by improving the lives of
patients. Cardiac biomechanics models provide an excellent
framework for integration into the clinical pipeline, but more
refinement is needed. In particular, the context of use must be
adequate to the high computational cost of biomechanics models,
with a focus on better validation against clinical data.
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