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Humans collaborate in different contexts such as in creative or scientific projects,
in workplaces and in sports. Depending on the project and external
circumstances, a newly formed collaboration may include people that have
collaborated before in the past, and people with no collaboration history. Such
existing relationships between team members have been reported to influence
the performance of teams. However, it is not clear how existing relationships
between teammembers should be quantified, andwhether some relationships are
more likely to occur in new collaborations than others. Here we introduce a new
family of structural patterns, m-patterns, which formalize relationships between
collaborators and we study the prevalence of such structures in data and a simple
random-hypergraph null model. We analyze the frequency with which different
collaboration structures appear in our null model and show how such frequencies
depend on size and hyperedge density in the hypergraphs. Comparing the null
model to data of human and non-human collaborations, we find that some
collaboration structures are vastly under- and overrepresented in empirical
datasets. Finally, we find that structures of scientific collaborations on COVID-
19 papers in some cases are statistically significantly different from those of non-
COVID-19 papers. Examining citation counts for 4 different scientific fields, we
also find indications that repeat collaborations are more successful for 2-author
scientific publications and less successful for 3-author scientific publications as
compared to other collaboration structures.

KEYWORDS

hypergraphs, team performance, collaboration structure, COVID-19, motifs,
random graphs

1 Introduction

When a new team forms, who are likely to be members of this team?Who are unlikely to
join forces? Are some team constellations better suited for solving some tasks than others?
How do external circumstances such as tight deadlines or empty schedules affect how and
which teams form?

The questions above arise in all of the different settings where team formation and
performance are important. Indeed, in online collaboration over the Web [1], creative
undertakings [2], technology and science [3] and school [4], group size and the structure of
social ties in the group have been reported to be of importance for the performance of teams.
Although this diversity of settings already make the questions rich, they become even richer
when one considers the plethora of external circumstances that can influence team
formation in each of the settings. Take the COVID-19 pandemic; when researchers
needed to quickly mobilize, analyze the spread of the disease, and its impact on society,
did they work primarily in tightly-knit groups with a history of collaboration? Or did the
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interdisciplinary and high-stakes nature of the research questions
make scholars work in diverse and untried teams?

Both of the hypotheses above are reasonable and demand serious
consideration. But how does one formalize the notion of a tightly-
knit or a novel team structure? The essential thing to quantify in
these concepts is the relationship between the members of the newly
formed team. What were these people doing before they joined
forces? Did subsets of the team work together before, and
did others not?

Examples from popular culture richly illustrate the relevance of
examining the existing relationships between team members in
successful undertakings. For example, the American rock band
Audioslave rose to popularity after being formed by Soundgarten
singer Chris Cornell and 3 former members of Rage Against the
Machine: TomMorello, Tim Commerford, and BradWilk. In studio
sessions, it is also common for groups of musicians to perform
together repeatedly; the horn section of the legendary R&B-band
Tower of Power have appeared together on a large number of other
artists’ recordings. In technology, the company Bumble was founded
by three Tinder departees (Whitney Wolfe Herd, Chris Gulczynski
and Sarah Mick) and Badoo-CEO and acquaintance of Wolfe
Herd’s, Andrey Andreev. In movies, Samuel L. Jackson stars in
several Quentin Tarantino movies, and Charlotte Gainsbourg plays
leading roles in 3 of director Lars Von Trier’s recent works.

To formally study the formation of teams and existing
relationships between team members, it is useful to use the
language of hypergraphs. In the hypergraph framework, people
are represented by nodes, and connections—called
hyperedges—can connect groups of nodes of any size that have
worked together in the past. The focus on hypergraphs as
representations of networked systems, has gained considerable
traction in recent years [5–8], following 2 decades of intense
study of graphs with only dyadic interactions [9–11].

Many of the questions being pursued in this recent work on
hypergraphs are generalizations of concepts from the well-known
world of dyadic interactions. These include questions regarding
hypergraph modularity [12–19], higher-order assortativity [20, 21],
simplicial closure [6], hypergraph motifs and other structural
patterns [22, 23], construction of synthetic hypergraphs with
certain characteristics [24–30], and how to infer higher-order
network structure from data [31, 32]. The introduction of higher-
order connections also makes it possible to ask completely new
questions about the structure of the networked system. For example,
a recent paper examined how hyperedges overlap in empirical
hypergraphs [33]. Such a question would be trivial in the world
of dyadic interactions, as dyadic interactions can only overlap in
their two endpoints. In hypergraphs, however, the question is
meaningful since different hyperedges could contain identical
subsets of the network nodes.

In this paper, we introduce a new family of structural patterns in
hypergraphs, designed to capture the prior associations of the nodes
making up a given hyperedge. We call these m-patterns, and they
represent the existing relationship between groups of m nodes.
These relationships are exactly the above-mentioned quantity of
interest when studying the formation of teams of size m.

Formally, m-patterns are subhypergraphs of size m. The
subhypergraph consists of the m nodes under consideration, all
hyperedges connecting subsets of the m-nodes, and fractions of

hyperedges that connect subsets of the m-nodes to hypergraph
nodes other than the m under consideration. The inclusion of
fractions of hyperedges causes m-patterns to quantify structure
between the level of nodes and hyperedges. This makes m-
patterns different from motifs and a new kind of microstructure
that exists in hypergraphs, but not in graphs with dyadic
interactions only.

After having introduced m-patterns, we argue that the
prevalence of different m-patterns are expected to depend on
hypergraph characteristics such as hyperedge density. To
understand this dependency, we examine how prevalence of m-
patterns change with parameters in a G(N, p)-like model. We
proceed to compare these null-model results to m-pattern
prevalence in a wide range of datasets on human collaborations,
drug networks, email networks and online tagging data. We then
examine whether collaboration structure can be influenced by
external circumstances such as tight schedules. We do this by
comparing collaboration structure in scientific preprints and early
preprints of COVID-19 papers. Finally, we investigate whether
future citations of academic publications correlate with
collaboration team structure; specifically, we compare citation
counts for repeat collaborations and first-time collaborations
without first-time authors.

2 m-patterns in random hypergraphs

Let us now proceed to studying past relationships between nodes
in hyperedge formation. Our first step will be to study a simple
model of random hypergraphs. Later, we will move from such
synethetic hypergraphs and analyze node relationships in
empirical hypergraphs. Before we can make any of these
analyses, however, we must introduce the mathematical
structures that we will use to understand node relationships in
hyperedge formation.

2.1 A structural pattern to summarize past
relationships

To define the topic of this paper, m-patterns, we will need some
other concepts. The first of these is the notion of an induced
subhypergraph [34].

Definition 2.1: Induced subhypergraph. The induced
subhypergraph of a hypergraph H � (V, E) on m nodes, VI, is a
hypergraph HI � (VI, EI) . For each e ∈ E that contains at least one
node from VI, EI contains a hyperedge e′ linking all nodes that are
both in e and VI.

It is clear that an induced subhypergraph completely summarizes all
existing relationships between its constituting nodes. The final sentence
of Definition 2.1 means thatHI contains fractions of the hyperedges of
H. This makes the induced subhypergraph an interesting object for
hypergraphs. For graphs, fractions of edges are simply vertices, and so
the graph equivalent of this definition would just be a subgraph on m
chosen nodes. If we do not need the entire relationship history between
nodes, but are content with summarizing the largest subsets of nodes
that have collaborated in the past, the following definition is useful.
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Definition 2.2: Maximal induced subhypergraph. The maximal
induced subhypergraphHI � (VI, EI) of a hypergraphH � (V, E) on
m nodes, VI, is the corresponding induced subhypergraph made
simple by removing all hyperedges from EI that are entirely
contained in other hyperedges in EI.

The key difference between an induced subhypergraph and a
maximal induced subhypergraph is that the latter is simple. A simple
hypergraph is defined as follows [35].

Definition 2.3: Simple hypergraph. A hypergraph H � (V, E) is
simple if none of its hyperedges are entirely contained in another,
esi, sj ∈ E: si ⊆ sj.

Notice that simple hypergraphs are different from simple
graphs in that simple hypergraphs can contain self-looping
hyperedges. We note that the hypergraphs we consider in this
paper generally are not simple. Simple hypergraphs play a
different role in this story. Because simple hypergraphs cannot
have parallel edges there exists only a finite number of different
such hypergraphs of size m. This is a nice feature if we are
interested in quantifying typical relationship structures among
people that choose to form teams. This is exactly what we are
interested in, so we refer to these finitely many relationship
structures on m nodes as m-patterns.

Definition 2.4: m-pattern. A simple hypergraph with m vertices is
an m-pattern.

With the concept of an m-pattern in hand, we are now ready to
look for instances of m-patterns in larger hypergraphs.

Definition 2.5: Instance of an m-pattern. An instance of an m-
pattern X in the hypergraph H � (V, E) is a maximal induced
subhypergraph X′ on m nodes which is isomorphic to X.

Figure 1 illustrates what such m-patterns from maximally
induced subhypergraphs might look like. The figure shows three
collaborations. Some people in these collaborations have worked
together previously–perhaps in larger groups. Such larger
collaborations become k-node hyperedges in the m-patterns that
the collaboration structure form.

With the definition of m-patterns, and their instances in
hypergraphs, we now have a formal way of talking about existing
relationships between hypergraph vertices. In particular, when a
new team of m individuals appears, we consider the team members’
past history of interactions to be the m-pattern consisting of all
maximal subsets that have worked together before.

Definition 2.6: Instance of a labelled m-pattern. An instance of a
labelled m-pattern X with assigned vertex labels 1, 2, . . ., m in the
hypergraphH � (V, E) is a maximal induced subhypergraph X′ onm
nodes with assigned vertex labels 1, 2, . . . ,mwhich is isomorphic to X
and where corresponding vertices have the same assigned labels
as in X.

In Supplementary Section S1, we illustrate connections between
some of the concepts introduced in this section.

We are now ready to examine what m-patterns among nodes
precede hyperedge formation in hypergraphs. In the following
subsection, we will do so in a class of synthetic random hypergraphs.

2.2 G(m)(N, p) model of random hypergraphs

From Definition 2.4 and 2.5, it is clear that the structure of the
underlying hypergraph H greatly influences what m-patterns that
can exist among sets of m nodes, and what multiplicity these m-
patterns might have in the hypergraph. If the hypergraph is very

FIGURE 1
Illustration of the relationship between individual members of Audioslave, Bumble founders and musicians on recording of Regndans by
Danseorkestret.

Frontiers in Physics frontiersin.org03

Juul et al. 10.3389/fphy.2023.1301994

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1301994


sparse, most sets of m nodes have never collaborated before. For
sparse hypergraphs, this presents us with the following question.
When a newly formed team consists of m nodes with no past
collaborations, is this because people tend to team up with strangers,
or because the underlying hypergraph is sparse? If we want to
understand whether some existing relationship structures are more
likely to give rise to future team formations, we must know what to
expect by chance alone. Studying m-patterns in a null-model of
hypergraphs can help us gain intuition about what m-patterns we
should expect to dominate at different hyperedge densities.

We choose to study m-patterns in a hypergraph
generalization of the widely-studied random-graph family
known as Erdős–Rényi graphs—or G(N, p). G(N, p) is known
to create unrealistically simple graph structures. Nonetheless, the
dyadic G(n, p) model has been a major driver in the development
of the study of networks: it is the simplest random-graph model,
analytically tractable, and its phenomena are correspondingly
clear to articulate. We study a G(N, p)-type model for the
same reasons.

In the classic G(N, p) model, an N-vertex random graph is
created by inserting each possible edge with probability p [9].
Various hypergraph generalizations of the G(N, p) model have
been studied in the past [36–40]. We choose to study a version
where a hypergraph with N nodes and m-vertex hyperedges is
created by inserting each possible hyperedge connecting m nodes
with probability p. Since the parameters N, p and m define this
hypergraph family, G(m)(N, p) is a natural name to summarize the
family. The dyadic Erdős–Rényi graphs, normally known as G(N, p),
would be G(2)(N, p) in this notation.

With the G(m)(N, p) model in hand, we set out to examine how
often a new hyperedge would join m nodes with m-pattern X by
chance, given that the hyperedge is forming in a hypergraph created
using the G(m)(N, p) model with parameters N, p andm. To quantify
this, we create a large number of G(m)(N, p) hypergraphs and count
the average fraction of sets of m nodes that form each pattern X
across these many random hypergraphs for choices of hypergraph
size N, set size m and as a function of hyperedge probability p. In
Figure 2, we show results obtained for two such simulations. In
Figure 2A, the constructed hypergraphs have sizeN = 50 and contain
hyperedges joiningm = 3 nodes. In Figure 2B, the hypergraphs have
size N = 100 and hyperedges join m = 4 nodes. The first thing to
notice about these figures is that, when increasing p from 0, all but
two m-patterns increase in prevalence, experience peak prevalence,
and finally become less common again. The two patterns that do not
take such journeys are: 1) the pattern in which noone collaborated
with anyone before; and 2) the repeat collaboration. The occurrences
of the no-past-collaboration pattern monotonically decreases with p,
whereas the repeat-collaboration pattern increases monotonically
with p. These “exceptions” are easily understood: As p increases,
more nodes become part of m-node hyperedges. A higher p means
that fewer nodes avoid collaborations altogether, whereas m-node
collaborations (what we also call repeat collaborations) increase
linearly with p.

Having noticed regularities in the general shape of prevalence
curves in Figure 2A, another interesting observation is that not all
patterns get to be the most common for any p in Figure 2B. For
example, the pattern consisting of a single 3-node hyperedge and a
solitary node (dashed orange line) never outgrows all other patterns.
This observation is interesting enough that we introduce a term for a
pattern which gets to be the most common at a given value of p.

Definition 2.7: Extreme pattern. An m-pattern, X, is extreme if, for
a particular value of N, the m-pattern is the most prevalent of all m-
patterns for some p.

Definition 2.8: Extreme in the limit.Anm-pattern, X, is extreme in
the limit if there exists an N0 such that for all N > N0 there exists a p
where the pattern is the most prevalent of all m-patterns in the
hypergraph.

A third interesting observation from Figure 2 is the order in
which extreme patterns are the most common in the hypergraphs
when increasing p. As p increases, the pattern with no previous
collaborations is the most common at first. Then follow patterns
containing disjoint nodes that all have previous collaborations, but
none with each other. Then patterns that include dyadic
collaborations, etc. These observations beg for explanations. Can
we understand the shape of the prevalence curves and estimate them
analytically? Can we understand which m-patterns are extreme and
for which hyperedge densities, p, these patterns are the
most common?

The answers to both of the above questions are yes. With the
following theorem, we identify a sizeable number of patterns that
cannot be extreme in the limit.

Theorem 2.9: If the pattern X contains H-node hyperedges and
misses l + 1-node hyperedges, and |H − l|≥ 2, X is not extreme in
the limit.

FIGURE 2
Frequency ofm-patterns in theG(m)(N, p) model as a function of p
for m = 3, N = 50 (A) and m = 4, N = 100 (B). Each datapoint is the
average frequency of anm-pattern in 100 independent simulations of
themodel. The pattern 3i − 2j − 1k contains i 3-node, j 2-node and
k 1-node hyperedges. Analytical estimates of prevalence in Eq. (1) is
plotted with dashed lines. The legend above the figure panels
describes the curves in (A). In (B), multiple curves are plotted with
same colors; See Supplementary Section S2 for a labelled version
of (B).
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Theorem 2.9 tells us why them-pattern with a 3-node hyperedge
and a solitary node is not extreme in Figure 2B (or rather, why it
would not be in the limit N → ∞). The reason is that the pattern
contains a 3-node hyperedge, and misses 2-node hyperedges that
could have existed. Since |3 − (2 − 1)| = 2, Theorem 2.9 tells us that
such a pattern cannot be extreme in the limit.

In order to prove Theorem 2.9, we will need 2 Lemmas. The first
Lemma conveniently answers the second question we asked above:
Can we understand the shape of the prevalence curves of m-
patterns? We will answer this question by writing down a
formula for the expected frequency of the m-pattern X among
the instances of m-patterns in G(m)(N, p) hypergraphs. We can
do this if we think about the prevalence of an m-pattern in the
following way. The fraction of sets of m nodes that form an m-
pattern X in a G(m)(N, p) hypergraph is equal to the probability that
the pattern is formed by them nodes when each size-m hyperedge is
inserted with probability p. Calculating this probability is an exercise
in combinatorics. The result reveals that the prevalence curve of any
m-pattern takes the same analytical form.

Lemma2.10: Let X be a pattern consisting of xmm-node hyperedges,
xm−1 (m − 1)-node hyperedges, . . . , and x1 1-node hyperedges. In
addition, denote the number of missing i-node hyperedges by yi(xi,
xi+1, . . . , xm). For N ≥m nodes and 0 ≤ p ≤ 1, the prevalence of X, can
be written,

P X( ) � γX ∏m
i�1

pxi
i 1 − pi( )yi xi,xi+1 ,...,xm( ). (1)

Here, γX ∈ N is a combinatorial factor and pi is the probability that i
nodes chosen uniformly at random from the N nodes, are connected
by an i-simplex,

1 − pi � 1 − p( )ci , (2)
where we defined (N−m

m−i ) � ci.
The combinatorial factor γX counts the number of isomorphic

configurations of X that exists on m nodes. Hence, the prevalence
curve of a labelled version of m-patterns can be obtained by setting
γX = 1. A side-effect of this fact is that all labelled versions of an m-
pattern are equally likely under the G(m)(N, p) model.

Lemma 2.11: For any ϵ > 0 and large enough N, the values of p at
which pl = a, for 0 < a < 1, pk take the values

pk
> 1 − ϵ, if k≤ l − 1,
< ϵ, if k≥ l + 1.

{

Proof: If pl = a, Lemma 2.10 allows us to find the corresponding
value of p,

p � 1 − 1 − a( )1/cl .
Inserting this in the formula for pk gives us

pk � 1 − 1 − a( )ck/cl .
Now let k > l. Then,

cl
ck

�
N−m
m−l( )
N−m
m−k( ),

≥ N −m( )k−l m − k( )!
m − l( )m−l,

� N −m( )k−lβ−1. (3)
Here we used the inequality

nk

kk
≤ n

k( )≤ nk

k!

repeatedly and defined β = (m − l)m−l/(m − k)! Taking the reciprocal
value of both sides of Eq. (3) gives us the bound

ck
cl
≤ N −m( )l−kβ.

Because 0 < (1 − a) < 1,

pk � 1 − 1 − a( )ck/cl
≤ 1 − 1 − a( )β N−m( )l−k .

What does N need to be larger than, if pk < ϵ? Demanding that

1 − 1 − a( )β N−m( )l−k < ϵ,

ensures that pk < ϵ and allows us to isolate N,

N>m + β
ln 1 − a( )
ln 1 − ϵ( )[ ]

1/ k−l( )
. (4)

This proves half of the Lemma. For the other half, we now let k <
l. With similar steps as in the previous case, we can get the bound,

cl
ck
≤ β′ N −m( )k−l,

with β′ = (m − k)m−k/(m − l)! Taking the reciprocal value of both
sides, the bound becomes,

ck
cl
≥ β′−1 N −m( )l−k.

We now proceed in analogous manner as in the first half of the
proof. With the bound on ck/cl,

pk � 1 − 1 − a( )ck/cl
≥ 1 − 1 − a( )β′−1 N−m( )l−k .

If this final quantity is larger than 1 − ϵ, pk is too. For what N is this
the case then? Setting the final expression larger than 1 − ϵ and
isolating N yields

N>m + β′ ln ϵ
ln 1 − a( )[ ]

1/l−k
. (5)

We conclude that if N is larger than both of the values given in
Eqs. (4) and (5),

pk
> 1 − ϵ, if k≤ l − 1,
< ϵ, if k≥ l + 1.

{
This proves the Lemma.

With Lemmas 2.10 and 2.11, we now present our proof
of Theorem 2.9.

Proof: (Theorem 2.9) If the pattern X is extreme, all factors in the
analytical expression for its prevalence must be large enough that
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P(X) takes a larger value than P (X′) for any other pattern X′. By
Lemma 2.10, P(X) contains factors (1 − pl+1)yl+1 and pxH

H , with yl+1,
xH ≠ 0. By Lemma 2.11, if for some p, pH takes a value bounded away
from 0 and 1, then one can choose an N large enough to make pk
arbitrarily close to 1, if k ≤ H − 1. For any such k, (1 − pk) then
becomes arbitrarily close to 0. Hence, if P(X) contains factors of both
pH and (1 − pl+1), and |H − l|≥ 2, P(X)→ 0 for large enoughN, which
implies it cannot be extreme in the limit.

Theorem 2.9 settles that a large class of m-patterns cannot be
extreme in the limit. A natural next question to ask is then, what
patterns are extreme in the limit? Are some types of patterns bound
to be extreme? Are some types of patterns only extreme for certain
choices of m?

Proving such positive results appears to be more challenging
than proving the negative results of Theorem 2.9. A useful concept in
proving such positive results is what we call a pure pattern.

Definition 2.12: Pure pattern. An m-pattern with no hyperedges
other than all possible k-node hyperedges is a pure pattern.

Pure patterns are easy to think about and work with because they
contain only one kind of hyperedge, and there is only a single way of
constructing each pure pattern. In Lemma 2.10, this means that γX = 1
for any pure pattern. The simplicity of working with pure patterns has
caused these patterns to play a central role in our results on which
patterns are actually extreme. One important result concerns exactly
these pure patterns (proof given in Supplementary Section S3).

Theorem 2.13: All pure patterns are extreme in the limit.
Our next theorem requires a result for labelled m-patterns. We

remind the reader that instances of labelled m-patterns are different
from instances of m-patterns in that we do not group isomorphic
maximal induced subhypergraphs together. In this case, Lemma
2.10 still gives us the analytical expression for the prevalence of
labelled m-patterns, but γ = 1 for all patterns.

The following two lemmas are proven in Supplementary
Section S4, S5.

Lemma 2.14: For labelled m-patterns and N → ∞, when pk > 1
2, the

pure pattern containing only k-node hyperedges is more frequent than all
patterns consisting of both k-node hyperedges and (k − 1)-node
hyperedges.

Lemma 2.15: For labelled m-patterns and N → ∞, when
0<pk+1 < 1

2, the pure pattern containing only k-node hyperedges is
more frequent than all patterns consisting of both (k + 1)-node
hyperedges and k-node hyperedges.

These two Lemmas and Theorem 2.9 give us the following
interesting result.

Theorem 2.16: For labelled m-patterns, only pure patterns are
extreme in the limit.

Moreover, the arguments leading to Lemmas 2.14 and 2.15 also
lead us to the following Lemma (see also Supplementary Section S6),

Lemma 2.17: For labelled m-patterns, all patterns consisting only of
(k + 1)-node hyperedges and all possible remaining k-node hyperedges
are equally prevalent when pk+1 � 1

2.

These results for labelledm-patterns help us prove the following
more general theorem for non-labelled patterns.

Theorem 2.18: If m ≥ 3 at least one non-pure pattern is extreme.

Proof: If m ≥ 3, non-pure patterns exist that do not violate
Theorem 2.9. Since we are not dealing with labelled patterns, the
combinatorial factor γ is some integer larger than or equal to 1 for
each pattern. For pure patterns γX = 1. Now focus at the point
pm−1 � 1

2. From Lemma 2.17, prevalence curves for several pure
and non-pure labelled patterns cross at this point in the large-N
limit. At least one of the corresponding non-labelled non-pure
patterns has γX ≥ 2. For example, the pattern missing a single
pm−1-node hyperedge and containing (m−1

m−2) (m − 2)-node
hyperedges instead has γX = m − 1. Hence, in this point, at
least this non-pure pattern is more prevalent than the two pure
patterns containing (m − 2)-node and (m − 1)-node hyperedges.
For this reason, and Lemma 2.11, it is more prevalent than all
pure patterns. This proves the Theorem.

Having shown that all pure patterns are extreme and that
some none-pure patterns are extreme, too, we present a final
result that shows that a large number of potentially
extreme patterns are not extreme (proof in
Supplementary Section S7).

Theorem 2.19: Two different m-patterns that have different
combinatorial factors and consist only of xk k-node hyperedges
and all possible remaining (k − 1) hyperedges cannot both be
extreme in the limit.

We note that in cases where several patterns compete for
being extreme as described in Theorem 2.19, the pattern that
actually gets to be extreme in the limit can have very different
structure depending on m. The reason for this is that the
combinatorial factor γ depends on the value of m. Take, for
example, the two possible non-isomorphic patterns consisting
of two two-node hyperedges and all remaining possible one-
node hyperedges for m ≥ 4. In one pattern the two 2-node
hyperedges share a node, whereas in the other, the 2-node
hyperedges are completely separate. For a given choice of m,
there are 3(m3 ) ways of constructing the m-pattern with linked 2-
node hyperedges, and 3(m4 ) ways of constructing the pattern
with separate 2-node hyperedges. Hence, patterns with 2-node
hyperedges in sequence have larger combinatorial factors when
m ≤ 6, the patterns have the same combinatorial factor if m = 7
and patterns with parallel 2-node hyperedges dominate
when m ≥ 8.

3 Hypergraph patterns in empirical data

The G(m)(N, p) model informs us how prevalent we should
expect an m-pattern X to be in an N-node hypergraphs where a
fraction p of possible m-node hyperedges exist if the hyperedges
were distributed uniformly randomly among all possible m-node
hyperedges. This raises a natural question: In empirical datasets, are
some m-patterns overrepresented and others underrepresented
compared to the G(m)(N, p) null-model?
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3.1 Academic coauthorship hypergraphs

Making an informative comparison of m-patterns in empirical
hypergraphs and the G(m)(N, p) model is not as straight forward as it
sounds. Any empirical hypergraph has a fixed number of nodes and
a given hyperedge density. For this reason, any comparison of the
G(m)(N, p) model to an empirical hypergraph results in a comparison
for just one value of p. Since one of the interesting features of the
G(m)(N, p) model is how the prevalence of the m-patterns change
with the hyperedge density p, we seek a large collection of
hypergraphs with different hyperedge densities. We construct
such a collection from the set of ego hypergraphs in empirical
coauthorship hypergraphs. For each node v in the coauthorship
hypergraph, H � (V, E), we construct an ego hypergraph
He � (Ve, Ee). Ve includes all neighbors of v, but not v itself. Ee

includes all m-node hyperedges between nodes in Ve. Furthermore,
for any m′-node hyperedge (m′ ≥ m + 1) in E that joins m nodes
from Ve and (m′ − m) nodes from V\(Ve ∪ v), we include a
subhyperedge in Ve joining these nodes from Ve.

Figure 3A shows the prevalence of 3-patterns in ego hypergraphs
in a coauthorship hypergraph of scientists working in the field of
Geology [6]. These ego hypergraph have very diverse hyperedge
densities, p (horizontal axis). The ego hypergraphs also have
different sizes, N. In the plot, we include results for all ego
hypergraphs of sizes 10 ≤ N ≤ 50. Since the prevalence of m-
patterns depends on N in the G(m)(N, p) model, the data points are
not expected to fall on clear lines as were found for the null model.
Indeed, instead of lines, datapoints for each pattern form point

clouds in the Figure. This makes it difficult to compare the data to
the model.

In Figure 3B, we show the same data after performing a rolling
average. In this panel we split the logarithmic horizontal axis into
equidistant segments; 10 for each order of magnitude. For each
segment, we calculate an average prevalence of all 3-patterns X.
Every datapoint with p-value between the p-values of segments i − 1
and i + 1 count in the average calculated for segment i. The data is
plotted with dots. TheG(m)(N, p) expectation (curves) was created by
plugging the empirical values for N and p for each ego hypergraph
into the G(m)(N, p) model. We then performed our averaging
procedure to the resulting point cloud.

Although there are similarities between prevalence curves of 3-
patterns in the empirical ego hypergraphs and the model, there are
clear discrepancies as well. For example, the pattern with just a single
1-hyperedge is clearly overrepresented in the data for several orders
of magnitude of the hyperedge density p. On the other hand, the
pattern consisting of a 1-node and a 2-node hyperedge is
underrepresented in the data. Similar plots of a dataset of
coauthorships in the field of history confirms these observations
(Figures 3C, D).

3.2 Hypergraphs of human and non-
human systems

The similarity of Figures 3B, D is striking. For the two different
coauthorship hypergraphs, many of the same patterns seem to be

FIGURE 3
(A) Frequency ofm-patterns in ego networks for sizes 10 ≤N ≤ 50 in the Geology coauthorship network Benson et al. [6]. (B) Rolling average of data
in (A) plotted alongside G(m)(N, p) prediction (curves) (C) As in (B) but for a History coauthorship network Benson et al. [6] (D) As in (B). In all panels, colors
indicate the m-pattern shown in the legend.
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underrepresented and overrepresented as compared to the G(m)(N, p)
null model. The two datasets both stem from academic coauthorship
hypergraphs. Could the similarities inm-pattern prevalence be due to
the fact that the hypergraphs stem from the same domain? And if so,
which patterns are overrepresented or underrepresented in
hypergraphs from other domains?

In Figure 4 we compare the prevalence of m-patterns in ego
hypergraphs of 9 different empirical hypergraphs to the G(N, p)
model. The hypergraphs represent very different domains: Human
and non-human, processes on the web and in nature. Hypergraphs
represent email networks (“Enron”), drug networks (“NDC-classes”
and “NDC-substances”), human contact networks (“contact-primary-
school” and “contact-high-school”), online tagging data (“tags-math-
sx” and “tags-ask-ubuntu”) and the academic coauthorship networks
introduced above. The vertical axes quantify the difference between the
prevalence ofm-patterns in the empirical ego hypergraphs and theG(N,
p) model, Δf = [P (Xdata) − P (Xmodel)]/min (P (Xmodel), P (Xdata)). The
color and shape of the marker depends on the domain that the ego
hypergraph represents.

The first thing to notice in Figure 4 is how numerically large the
values on the vertical axes are (note the symmetrical logarithmic
axes). If a datapoint is plotted at vertical value 10, the pattern is
10 times more prevalent in the data than in the model. So with the
vertical scale covering the interval [−102, 1014], some patterns are
vastly over and underrepresented in the data.

A second thing to notice in Figure 4 is that some patterns are
consequently underrepresented in data. Most clearly
underrepresented is the pure pattern of 2-node hyperedges
(Figure 4H). For all datasets but “NDC-classes” this lies clearly in
the negative vertical values. The pattern consisting of a 2-node and
1-node hyperedge and the pattern with just 2 2-node hyperedges
(Figures 4F, G) are also mostly underrepresented in the datasets.

A third and interesting aspect of Figure 4 is hints of similarities
between datasets from similar domains. With the exception of the
school contact networks, datapoints from similar domains fall very
close together on the plots.

Figure 4 represents one way of comparing prevalence of m-
patterns for different datasets. In Figure 5 we provide another. Each
panel in the figure shows a scatter plot of the prevalence of 3 3-
patterns in each of the empirical ego hypergraphs. The color and
shape of the marker depends on the domain that the ego hypergraph
represents. We also plot the results for our G(m)(N, p) model (with
N = 50). In all panels, the model traces out a parametric curve
starting in the point marked by a black dot. Interestingly, the data are
not scattered all around the curve; instead, for these scatter plots,
datapoints often fall in a limited subspace around the curve. While
we have no theoretical explanation for this tendency for data to
cluster in a limited subspace around the curve, we believe that the
tendency might be explained by studying how the frequency of
different m-patterns are correlated. We also note that Ugander et al.
derived bounds for subgraph frequencies in a system related to
ours–frequencies of induced subgraphs in larger graphs [41]—and
that extending these methods might cast further light on the matter.
Lastly, the panels show that datapoints from similar domains fall
close together. We note that some of this separation could be due to
the different orders of magnitude of the hyperedge densities, p,
present in each dataset (see Figure 4).

4 COVID-19 collaborations

In the previous 2 sections, we have counted the prevalence ofm-
patterns in empirical ego hypergraphs and ourG(m)(N, p) model. The
hypergraphs we were examining were always fully grown. One of our

FIGURE 4
(A–H) quantify the difference between m-pattern prevalence in 9 datasets as compared to our G(m)(N, p) model. The difference measure is Δf = [P
(Xdata) − P (Xmodel)]/min (P (Xmodel), P (Xdata)) and Δf = 0 corresponds to perfect agreement between data and model. Each panel plots Δf for a specific 3-
pattern as found in all 9 datasets.
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main motivations for introducing m-patterns was to investigate
what prior relationships between a set of m nodes are likely to exist
when these nodes choose to collaborate. To confront this question,
we now examine hyperedge formation in a growing hypergraph: the
coauthorship network of papers submitted to the arxiv.org,
biorxiv.org and medrxiv.org preprint servers.

Figures 6A, C show what fraction of authors on new 2-author
and 3-author papers had prior relationships that could be
summarized by different m-patterns. The curves are shown as a
function of time; time running from the first datapoints for arxiv.org
and until 1 September 2020. Datapoints are averages of all papers
uploaded in a given month. As the coauthorship hypergraph grows,
the likelihood of different prior relationship structures leading to a
newm-author paper changes. We speculate that each of these curves
converges to some value with time. For both 3 and 2-author
preprints, the repeat collaboration is the most frequent
collaboration structure in 2020.

During the spring of 2020, a surge of COVID-19 related papers
accompanied the rising pandemic. Teams working on early

COVID-19 papers must have formed quickly, and worked
intensively to analyze the disease and its consequences. Keeping
the common collaboration structures found in Figures 6A, C in
mind, one might wonder whether collaboration structures looked
different for these papers that were induced by the external shock of
the pandemic. For example, related previous work has established
that for a particular subset of these papers–multidisciplinary
COVID-19 papers–collaborations were smaller and more diverse
than other collaborations [42].

Figures 6B, D compare the collaboration structure of COVID-19
papers in our dataset to the collaboration structure frequencies
found in the entire dataset (COVID-19 papers defined as papers
with at least one of the following words in the abstract: covid,
covid19, covid-19, sars-cov-2, sars-cov2). If ni COVID-19 papers
were uploaded in month i, we compare the frequency of the pattern
X to how often we would obtain that pattern when drawing ni
preprints uniformly randomly from all preprints in month i. In the
data there are significant differences in collaboration structure of
COVID-19 papers released between January and August 2020 as

FIGURE 5
(A–D) Scatter plots of ego networks in 9 empirical datasets. Markers as in Figure 4. Each axis is a 3-pattern; axes are different in panels. TheG(m)(N, p)
model traces out the black curves; the black dot corresponds to the lowest hyperedge density p on the curve.
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compared to papers on all topics in the same period. For 2-author
papers, collaborations between two scientists with prior publications
but no past joint papers happen less than expected. For 3-author
papers, we find more collaborations consisting of two newcomers
and a scientist with prior publications than expected.

5 Relation between team structure and
citation count

A question that has attracted considerable attention in the
literature, is whether team structure influences team performance
[1–4]; [43]. Previous studies have examined correlations between
performance of teams and team size or dyadic team network
structure. Here, we investigate the relation between higher-order
team structure—in the form of m-patterns—in scientific
collaborations and team performance (crudely estimated as the
number of citations of published work).

We study scientific collaborations and their success using the
Open Academic Graph (MAG) data set (version 1) [44, 45]. The
dataset contains more than 166 million papers including
information such as author names, affiliations, publication year,
number of citations at the time of data collection, field of study (in
the form of keywords) and more.

To assess whether team structure might affect team
performance, it is necessary to consider a number of other
variables that could influence how many citations a publication
receives. For example, citations could depend on the field of study,
the age of the paper, whether the authors on the publication publish
in the field often or rarely, and whether they generally receive many
citations on their publications.

To control for the factors other than team structure that could
influence citation count, we analyze the data as follows. First, we
only compare citation counts for papers within the same field of
study. We examine papers from 4 fields of study: Computer
Science, Geology, Mathematics and Sociology. We gather papers
from each field of study in separate data sets including only
papers where the field of interest is a keyword in the paper’s MAG
“field of study” data. For each of the 4 fields, we construct an
academic collaboration network from the gathered papers and
determine the m-pattern collaboration structure of each paper.
Second, to resolve whether citations are correlated to team
structure or other variables, we use a linear regression model
to predict the number of citations of a paper based on other
variables that could influence citation count: Paper age, mean
number of citations of paper authors, mean number of
publications of paper authors, and the mean time since paper
authors published their first paper. We train the model on 80% of
a dataset that is balanced such that it contains equally many
papers with the team structures under consideration (we focus on
2 kinds of team structures: repeat collaborations and first-time
collaborations with no first-time authors), and such that these
two sets of papers have identical age distributions (for two sets of
papers A and B, each with A(y) and B(y) papers of age y, we create
two subsampled datasets with identical age distributions, ~A and
~B; these include min (A(y), B(y)) published in year y from A and
B, respectively, drawing papers uniformly at random without
replacement from the original sets). For the remaining 20% of
papers, we compute the deviation between citations as predicted
by the model and actual citations. We quantify this deviation as a
mean fractional error of the citation prediction xpredicted to the
actual citation number xactual,

FIGURE 6
(A) Frequency of 2-patterns for new collaborations in scientific preprints (on arXiv.org, biorxiv.org andmedrxiv.org) as a function of time. (B) as in (A)
but for 3-patterns. (C) Illustration of deviation of m-pattern frequency among collaborating scientists on early COVID-19 papers as compared to
expectation from the general body of preprints. μ indicates expectation and dashed lines the 2.5 and 97.5 percentiles. (D) as in (C) but for 3-patterns.
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μi �
xactual,i − xpredicted,i

xactual,i
,

where we set i = 1 for first-time collaborations and i = 2 for repeat
collaborations. Finally, we evaluate to what degree the model
underestimated citation count of repeat collaborations compared
to first-time collaborations or vice versa by performing two-sample
tests for these summary statistics.

Table 1 shows our results for 2-author and 3-author papers. For
Computer Science, 2-author repeat collaborations get more citations
than would be expected from the trained model alone; moreover, the
2-author repeat collaborations outperform model expectations to a
statistical significant higher degree than is done by 2-author first-
time collaborations. For 3-author Computer Science collaborations
the result is the opposite: 3-author first-time collaborations
outperform the model prediction to a statistically significant level
compared to the repeat collaboration. The findings for 2-author
papers in Geology and 3-author papers in mathematics mimic those
found for computer science: 2-author repeat Geology collaborations
and 3-author first-time mathematics collaborations both get
statistically significantly more citations than expected from the
model that assumes that collaboration structure does not
correlate with citation numbers. For the remaining collaborations
(3-author Geology papers, 2-author mathematics papers and both 2-
author and 3-author sociology papers) citations do not deviate to a
statistical significant degree for new collaborations and repeat
collaborations.

6 Discussion

In many different contexts, individual nodes occasionally co-
occur together. Understanding which nodes are likely to form such
collaborations, and how prior relationships influence collaboration
outcome is important to study. In this work, we have introduced the
concept of m-patterns, a new family of structural patterns that
quantify prior relationships between m nodes in a hypergraph.

We have argued that prevalence of different such m-patterns
should depend on hypergraph characteristics such as density of
hyperedges, and we have quantified these expectations by studying
a G(m)(N, p) model. In particular, we have derived analytical
expressions for m-pattern prevalence and provided proofs that
some patterns are and others can never be extreme in theG(m)(N, p)
model in the limit N → ∞.

Comparing the model to data from different domains, we found
both similarities and differences. Most strikingly, we found that
some datasets had certain patterns overrepresented by several orders
of magnitude as compared to the model expectation. Interestingly,
datasets from the same domain often had similar discrepancies as
compared to the model.

In the dataset of preprints, we found the repeat collaboration to
be the most prevalent for both 2-author and 3-author papers. This is
interesting because such a finding would only take place in very
dense networks if collaborations were happening uniformly
randomly. We proceeded to examine whether collaboration
structure was different for early COVID-19 preprints as
compared to the full dataset of preprints. We found that 2-
author papers were less often coauthored by two scientists with
prior publications but no collaborations. For 3-author preprints, we
found more collaborations structures consisting of two newcomers
and a person with previous publications.

Finally, we examined whether team structure of academic papers
correlated with future citation counts. Considering 2-author and 3-
author publications separately, we compared citations of first-time
collaboration without first-time authors to citations of repeat
collaborations in the fields of Computer Science, Geology,
Mathematics and Sociology. Controlling for several factors, we
trained a linear regression model to predict future citation counts
based on paper and author details. For 2-author papers, we found
that repeat collaborations outperformed model expectations in the
fields of Computer Science and Geology. For 3-author papers on the
other hand, new collaborations outperformed model expectations
for Computer Science and Mathematics. The linear model is crude
and for all fields it tended to underestimate citation count by

TABLE 1 Relationship between past collaborations and future citations of academic papers in 4 different scientific fields.

Field Team size μ1 ± σμ1 μ2 ± σμ2 z-score

Computer Science 2 authors 0.3521 ± 0.0043 0.3690 ± 0.0046 2.670

3 authors 0.3818 ± 0.0055 0.3554 ± 0.0058 3.304

Geology 2 authors 0.2342 ± 0.0055 0.2571 ± 0.0064 2.717

3 authors 0.1377 ± 0.0050 0.1369 ± 0.0049 0.102

Mathematics 2 authors 0.2155 ± 0.0039 0.2199 ± 0.0042 0.762

3 authors 0.2846 ± 0.0052 0.2697 ± 0.0050 2.055

Sociology 2 authors 0.3184 ± 0.0179 0.2908 ± 0.0145 1.200

3 authors 0.2164 ± 0.0178 0.2016 ± 0.0179 0.585

For each field, we make two comparisons. In the first, we compare citations of 2-author papers where both authors have published in the past, but never together (the 2-pattern 20 − 12), to

citations of 2-author papers where the authors have collaborated with each other in the past (the 2-pattern 21 − 10). In the second comparison, we compare citations of 3-author papers where all

authors have published in the past but never all three together (the union of the 3-patterns 30 − 20 − 13, 30 − 21 − 11, 30 − 22 − 10 and 30 − 23 − 10) to citations of 3-author papers where the triple of

authors is a repeat collaboration (the 3-pattern 31 − 20 − 10).We train a linear regression to predict citation count from the 4 properties of a paper: paper age, mean number of past publications of

the authors, mean number of citations of the authors, and mean time since the authors published their first papers. μ1 indicates the mean error (see main text) on citation predictions for first-

time collaborations and μ2 the mean error on predictions for repeat collaborations. Lastly, we estimate whether these mean fractional errors are significantly different from each other by

computing the z-score of the pairs of estimates.
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between 13% and 39% of the actual future citation counts. This being
said, the consistency of the statistically significant results speak to
their trustworthiness: We found that repeat collaborations had
better performance for 2-author collaborations whereas first-time
collaborations had better performance for 3-author collaborations.

There are several natural future research directions related
to our work.

In our modeling efforts, we have focused our attention on a
random-hypergraph family related to the class of random graphs
known as G(N, p). The simplicity of this hypergraph family allowed
us to make a range of theoretical contributions. Nonetheless, there
are many graph families that resemble empirical networks more in
various aspects than the G(m)(N, p) model does. In future work, it
would be natural to study m-patterns and their prevalence in the
higher-order network extensions of the configuration model [9];
[27], exponential random graph models [27], and growing networks
such as the scale-free Barabási-Albert preferential-attachment
model [46] and the CHKNS uniform-attachment model [47] To
extend our analytical results on m-patterns to a larger class of
models from the rich back catalogue of network models, future
work must adjust Eq. (2) in Lemma 2.10 to depend on other
variables than the variables N and p that are specific to the
G(m)(N, p) model studied here. We anticipate that many of the
results related to pattern extremity will depend on family of random
hypergraphs in question.

Throughout this paper, we have argued that investigating
whether team structure correlates with team performance is an
interesting question. Although we did examine this for 2-author
and 3-author papers from 4 fields, there are many promising
questions in this direction. We found different results for 2-
author and 3-author papers; what happens for larger
collaborations? And if repeat collaborations tend to have higher
or lower performance, is the effect larger, smaller or unchanged for
teams that collaborate over and over again? Our investigation of
whether datasets from the same domains tend to have the samem-
patterns over and underrepresented remains qualitative. An
obvious next step would be to attempt to train an algorithm to
guess the domain that a hypergraph stems from given only
information about m-pattern prevalence. We note that such
investigations should carefully control for the fact that data
from different domains typically cover different orders of
magnitudes of the hyperedge density p. Finally, we note that
collaboration hypergraphs such as the preprint coauthorship
network are growing systems. Although models for
collaboration networks exist [2], these are based on dyadic
interactions. Formulating a growth model that gives rise to
correct m-pattern frequencies is an open question.
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