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The study of hybrid nanoliquids can aid in developing numerous advanced
features that facilitate heat transmission, such as pharmaceutical processes,
hybrid-powered engines, microelectronics, engine cooling, and domestic
refrigerators. In the current study, a mathematical model is designed to
elaborate the physical inception of an unsteady second-grade hybrid nanofluid
with Al2O3 − Cu/SA, a combination concentrated over the permeable
exponentially heated stretching/shrinking sheet under hydromagnetic, heat
source/sink, and viscous dissipation implications. The set of similarity
transforms is used to convert underlying partial differential equations into the
system of ordinary differential equations. The well-known homotopy analysis
method is applied to tackle the formulated differential system in the
MATHEMATICA program, which can obtain non-uniqueness outcomes. The
imprecision of nanofluid and hybrid nanofluid volume fractions was modeled
as a triangular fuzzy number [0%, 5%, 10%] for comparison. The double parametric
approach was applied to deal with the fuzziness of the associated fuzzy
parameters. The nonlinear ordinary differential equations are converted into
fuzzy differential equations, and the homotopy analysis method is used for the
fuzzy solution. In terms of code validity, our results are matched to previous
findings. The features of several parameters against the velocity, surface-friction
coefficient, heat transfer, and Nusselt number are described via graphs.
Furthermore, the nanoparticle volume fraction magnifies the fluid temperature
and retards the flow profile throughout the domain, according to our findings.
Thermal profiles increase with progress in the heat source, nanoparticles
volumetric fractions, viscous dissipation, and nonlinear thermal radiation. The
percentage increase in the drag force and heat transfer rate are 15.18 and
5.54 when the magnetic parameter takes input in the range 0.1 ≤ M ≤ 0.3 and
nanoparticle volume fraction inputs 0.01 ≤ ϕ1 ≤ 0.15. From our observation, the
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hybrid nanofluid displays the maximum heat transfer compared to nanofluids. This
important contribution will support industrial growth, particularly in the processing
and manufacturing sectors.
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1 Introduction

Investigations into non-Newtonian materials have been
ongoing since the past century due to their unique
characteristics and fascinating rheological properties. These
materials are widely used across various industries, including
chemical engineering, metal processing, food, and plastics. Non-
Newtonian fluids have a range of applications, including biofluids,
glassblowing, synthetic fibers, cosmetics, food, pharmaceuticals,
shampoo, and metal spinning. These fluids exhibit different
behaviors and can be classified as dilatant, shear-thickening,
thixotropic, or shear-thinning. Rheologists have identified
various fluid models, such as Casson, Maxwell, Burgers,
Williamson, Oldroyd-B, third-grade, Jeffrey, micropolar, Sisko,
and Sutterby Cross. However, second-grade fluids behave
differently under different conditions, which explains the
characteristics of shear-thickening, shear-thinning, and
Newtonian effects. Second-grade fluids have gained the
attention and devotion of intellectuals due to their dynamic
properties [1–8]. Stretching a plastic sheet, on the other hand,
is not always linear. An exponentially stretched sheet’s heat
transport characteristics have a broader range of technical
applicability. The heat transfer ratio of the continuously
expanded surface increases rapidly with the expansion rate and
temperature variations, which regulates the outcome when the
copper wire is thinned and diluted. The techniques involved in
these methods significantly impact the final product quality due to
the effect of stretching kinematics and concurrent heating or
cooling. Khan and Sanjayanand [9] analyzed a second-grade
fluid’s steady flow and heat conductivity with an exponentially
extending surface using the Runge–Kutta fourth-order (RK4)
method. Rehman et al. [10] investigated the steady flow of a
second-grade fluid over an exponentially stretching sheet using
the Keller box and homotopy analysis approaches. Nadeem et al.
[11] explored the flow and heat transfer of second-grade
(viscoelastic) liquids in thermal radiation. Ramzan and Bilal
[12] calculated the mixed convection of a second-grade
nanofluid caused by time-dependent MHD, thermal radiation,
and diffuse surfaces. Pakdemirli et al. [13] used perturbation
analysis to examine the properties of a second-grade fluid.
Recently, many researchers have studied second-grade
nanofluids over an exponentially stretching surface [14–23].

Professionals like unsteady flow in several engineering
organizations since it contributes to better mechanisms over their
deeds [24, 25]. Moreover, even in ideal flow conditions, unnecessary
destabilizing effects can occur around the system. The behavior of
unstable boundary layer (BL) flow is unique compared to steady-
state flow because the control equation has additional time-
dependent conditions that degrade the structure of BL separation

and fluid motion. However, through a healthier consideration of
unstable fluid flow presentations in manufacturing dealings,
contemporary enterprise techniques that permit improved
structure dependability, productivity, and cost saving of multiple
dynamical devices are possible [26]. Zaib et al. [27] discussed the
computational exploration of a time-dependent flow with heat flux
past an exponentially contracting surface.

The spectacle of heat transfer in electromagnetic waves is called
thermal radiation. It happens because the two mediums have a
significant temperature difference. In manufacturing and physical
science, radiative influences are a crucial part. In the polymer
manufacturing sectors, where heat-controlling variables influence
the ultimate product quality to some extent, thermal radiation
impacts are essential in controlling heat transfer. In addition, the
radiation effects of missiles, aircraft, solar radiation, gas turbines,
liquid metal fluids, spacecraft, nuclear power plants, and MHD
accelerators are also prominent. Pantokratoras and Fang [28] were
pioneers in examining the effect of nonlinear thermal radiation on
Sakiadis flow. Dogonchi and Ganji [29] evaluated the impact of
radiant heat on the MHD flow of a water-based nanofluid in a
channel that can shrink, stretch, and diverge or converge. Khan et al.
[30] studied the radiation flow of hybrid nanofluids through porous
surfaces [30]. Many researchers [31–36] are involved in nonlinear
thermal radiation.

Recognizing the need for improved thermal conductivity in
traditional fluids, a new type of nanofluid called “hybrid
nanofluid” is presented to provide highly industrialized heat
conductivity. Two or more semiconductor materials are mixed
with a base fluid to make a hybrid nanofluid. Different
nanomaterials include carbon nanotubes [37], metals, metal
oxides, and carbides. Numerous investigators are now interested
in hybrid nanofluid due to its significance for the betterment of
thermodynamic characteristics in real-world applications [38, 39],
as a result of Choi and Eastman’s [40] outstanding findings that gave
the unique notion of nanoliquid. Hybrid nanofluids are also used in
various applications, including electrical gadget cooling [41], cooling
of domestic refrigerators [42], automobile braking fluid,
transformers, heat exchangers, and solar water heating [43].
Suresh et al. [44] explored the effects of a hybrid nanofluid (Al2O3 +
Cu/Water) in a circular tube that was uniformly heated. Momin [45]
investigated the thermal act of a hybrid nanofluid in a spherical tube
and demonstrated that the hybrid nanofluid improves thermal
conductivity compared to a conventional working liquid. Waini
et al. [46] explored the influence of buoyancy on hybrid (Al2O3 +
Cu/Water) nanofluid flow toward the stagnation point of an
exponentially stretching/shrinking vertical sheet. They determined
that the (Al2O3 + Cu/Water) hybrid nanofluid had a greater rate of
heat transfer than the Cu/water nanofluid. Khan [47] numerically
examined the convection of copper (Cu + Water) and nanoliquid
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across a spinning disc in a porous media. Cu–water has a faster heat
transfer rate than Al2O3/Water, and the presence of porous media
raised the thickness of the thermal boundary layer. Takabi and
Salehi [48] analyzed the heat transfers of (Al2O3/Water) nanofluids
and (Al2O3 + Cu/Water) hybrid nanofluids with a heat source. The
literature is well stocked with further information on this topic
[49–53].

The fuzzy set theory (FST) [54] has proved to be a valuable
technique for modeling uncertainties in recent decades, providing
models with a more accurate view of reality and allowing them to
express themselves with a broader perspective [55–59]. After
modeling real-world problems, they convert into partial
differential equations (PDEs) or ordinary differential equations
(ODEs). Uncertainty issues may arise during the development of
a dynamic model. Researchers must deal with inaccurate data,
parameters, dynamical variability, and complex relationships. As
a result, many scientists use fuzzy models to depict dynamical
systems to prevent artificial data accuracy and produce more
realistic results. The fuzzy differential equation (FDE) is critical
in overcoming these challenges. Initially, Chang and Zadeh [60]
proposed the basic idea of fuzzy derivatives. Dubois and Prade [61]
proposed the idea of fuzzy numbers (FNs) for solving an FDE.
Kaleva [62] introduced the concept of FDEs in a fuzzy environment.
Recently, FDEs played a significant role in fluid dynamics, such as
the effects of MHD and gravitation on the third-grade fluid through
an inclined channel in a fuzzy atmosphere, which were
quantitatively explored by Nadeem et al. [63]. They used the
triangular fuzzy numbers to analyze ambiguity. The heat
transmission of SWCNTs MWCNTS on a third-grade nanofluid
along an inclined channel in a fuzzy atmosphere was explored by
Siddiqui et al. [64]. For comparison and uncertainty, they used
nanoparticle volume fraction as TFN.

A careful review of the previously cited literature reveals
several breaks and confines. No preceding studies have examined
the unsteady MHD flow of the second-grade hybrid (Al2O3 −
Cu/SA) nanofluid over the exponentially stretching/shrinking
sheet with heat source/sink and viscous dissipation in their
research outline. Also, the nanoparticle volume fraction of
nanofluid and hybrid nanofluid are taken as triangular fuzzy
numbers using the double parametric concept for comparison
and uncertainty. The homotopy analysis technique was used to
tackle the problem under consideration. The impact of
important parameters on heat and flow field quantities and
nanoparticle volume fraction is graphed and briefly discussed.
This innovative contribution might help improve industrial
manufacturing, predominantly in the processing and
industrial areas.

The motivations for performing this analysis inspire the
following research questions:

1) How do the thermal characteristics of nanoparticles vary when
nonlinear thermal radiation features are used?

2) How do different developing parameters affect heat transfer and
flow rates?

3) How does heat transfer improve in heat source/sink and
magnetic force implications?

4) Why is the homotopy analysis method (HAM) preferred over the
other methods?

5) Ho\w does the Lorentz force affect the velocity of the second-
grade hybrid nanofluid by applying the magnetic field?

2 Mathematical formulation

The time-dependent, 2D incompressible, and unsteady flow of
the MHD viscoelastic (second-grade) hybrid Al2O3 + Cu/SA
nanofluid over the exponentially stretching/shrinking surface is
engaged into interpretation in this research, as shown in
Figure 1. uw(x, t) � λex/L(a/(1 − ct)) signifies the stretching/
shrinking velocity, where lambda represents a constant that
relates to stretching λ> 0 . In shrinking λ< 0 cases of the velocity
rate, L indicates the characteristic length and c denotes the
unsteadiness. vw(x, t) � (]oex/2L/

�����
1 − ct

√ ) signifies the mass flux
velocity, where vo is the constant. The ambient and reference
temperatures are labeled as Tw and T∞, correspondingly, while
Tw � T∞ + ex/2L(To/(1 − ct)) regulates the temperature circulation
close to the surface. The magnetic field is expected to be
B(x) � ex/2L(Bo/

�������(1 − ct)√ ), with Bo indicating an identical
magnetic field. The viscous, source/sink, and nonlinear thermal
radiation impacts are also deliberated.

When using the BL approximation, the governing equations for
continuity, momentum, and heat are established on all of the
preceding assumptions [12, 51]:

∂v
∂y

+ ∂u
∂x

� 0, (1)
∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

� μhnf
ρhnf

∂2u
∂y2

+ α1
ρhnf

∂3u

∂t∂y3
+ u

∂3u
∂x∂y3

+ ∂u
∂x

∂2u
∂y2

+ ∂u
∂y

∂2v

∂y2
+ v

∂3u
∂y3

( )
− σhnf
ρhnf

B2
0u,

(2)

u
∂T
∂x

+ v
∂T
∂y

+ ∂T
∂t

� αhnf
∂2T
∂y2 +

Q0 T − T∞( )
ρcP( )hnf + 16δ*

3k* ρcP( )f T3∂
2T

∂y2 + 3T2 ∂T
∂y

( )2( )
+ μhnf

ρcP( )hnf ∂u
∂y

( )2

+ α1
ρcP( )hnf (∂u

∂y
∂2u
∂y∂t

+u ∂u
∂y

∂2u
∂x∂y

+ v
∂u
∂y

∂2u
∂y2), (3)

and the boundary conditions are

t< 0: T � T∞, v � 0, u � 0, ∀x, y,
t≥ 0: v � vw, u � Uw x, t( ) � λuw x, t( ), T � Tw at y → 0,
u � 0, T � T∞ as y → ∞,

⎫⎪⎬⎪⎭
(4)

where u and v indicate the velocity components along the x − a�xis
and y − a�xis, respectively, while the fluid temperature is denoted by
T. The dynamic viscosity Al2O3 + Cu/SA is μhnf, ρhnf is the density
of Al2O3 + Cu/SA, (ρCp)hnf is the Al2O3 + Cu/SA heat capacity,
khnf is the Al2O3 + Cu/SA thermal/heat conductivity, and δhnf is the
electrical conductivity Al2O3 + Cu/SA. The aluminum oxide
(Al2O3) thermophysical properties, along with copper (Cu) and
sodium alginate (SA) nanoparticles, are revealed in Table 1.
Equation (5) contains the thermophysical properties of
Al2O3 + Cu/SA. Here, Al2O3 and Cu are nanoparticles having
the volume fractions ϕ1 and ϕ2, respectively.

The thermophysical properties of hybrid nanofluids are as
follows [51]:
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ρr �
ρhnf
ρf

� 1 − ϕ2( ) 1 − ϕ1( ) + ρs1ϕ1

ρf

⎧⎨⎩ ⎫⎬⎭ + ρs2ϕ2

ρf
⎡⎣ ⎤⎦, μr � μhnf

μf
� 1 − ϕ1( )−2.5 1 − ϕ2( )−2.5 ,

ρCρ( )
r
�

ρCρ( )
hnf

ρCρ( )
f

�
ϕ2 ρCρ( )

s2

ρCρ( )
f

+ 1 − ϕ2( ) 1 − ϕ1( ) + ρCρ( )
s1
ϕ1

ρCρ( )
f

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
kr � khnf

knf
� 2knf − 2ϕ1 ks1 − knf( ) + ks1

2knf + ϕ1 ks1 − knf( ) + ks1
,
knf
kf

� 2kf − 2ϕ2 ks2 − kf( ) + ks2

2kf + ϕ2 ks2 − kf( ) + ks2
,

σr � σhnf
σbf

� σs2 1 + 2ϕ2( ) + 2σbf 1 − ϕ2( )
σs2 1 − ϕ2( ) + σbf 2 + ϕ2( )[ ], σbf � σs1 1 + 2ϕ1( ) + 2σf 1 − ϕ1( )

σs1 1 − ϕ1( ) + σf 2 + ϕ1( )[ ]σf .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5)

The following similarity transformations are presented in [10] to
simplify the governing Eqs 1–3 along with the boundary conditions
(4). The stream function ω can be expressed as a customizable form
v � −∂ω/∂x, u � ∂ω/∂y, and the similarity variable is η:

ω �
�����
2la]f
1 − ct

√
e
x/2Lf η( ), η �

����������
a

2l]f 1 − ct( )
√

e
x/2Ly, θ η( ) � T − T∞

Tw − T∞
,

u � ae
x/

L

1 − ct
f′ η( ), v � −

��������
a]f

2l 1 − ct( )
√

e
x/2L f η( ) + ηf′ η( )( ).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(6)

Using Eq. 6, Eqs (2), (3) can be condensed to the following set of
nonlinear ODEs in the context of the abovementioned relations [36]:

μr
ρr

( )f‴ − 2 f′( )2 − β
η

2
f″ + f′( ) + ff″ + α

ρr
βf‴ + 2f′f‴ − f″( )2 − ffiv + βη

2
fiv( )

−σr
ρr

Mf′ � 0,

(7)

1 +Nr 1 + θ θw − 1( )( )3( )θ″ + 3Nr θ′( )2 θw − 1( ) 1 + θ θw − 1( )( )2 + Prfθ′ − Pr β
1
2
ηθ′ + θ( )

−Pr θf′ + PrHθ

ρcP( )r + μrPrEc
ρcP( )r f″( )2 + αPrEc

ρcP( )rf″ 2ηf″ + 2f′f″ − ff‴ + ηβf‴( ) � 0,

(8)
with the constraints

f η( ) � s, f′ η( ) � λ, θ η( ) � 1 at η � 0,
f′ η( ) � 0, θ η( ) � 0 as η → ∞ .

}, (9)

where the unsteadiness parameter is β � 2Lc/ae
x /

L, the magnetic
parameter is M � 2δfLB2

o/aρf, the Prandtl number is Pr � ]f/αf,
the second-grade fluid parameter is α � aex/L/2Lμf(1 − ct), the Eckert
number is Ec � a2/(1 − ct)2(Tw − T∞)(Cρ)f, the heat generation/
absorption parameter is H � 2L(1 − ct)(Tw − T∞)Qo/a, and the
suction parameter is s � −vo ������

2L/a]f
√

.
The stretching/shrinking parameter is λ. The coefficient of skin

friction (Cfx) and the local Nusselt number (Nux) are, thus,
demarcated as follows [12]:

Cfx � 1
ρfu

2
e

μhnf
∂u
∂y

+ α1 u
∂2u
∂x∂y

+ v
∂2u
∂y2

+ ∂2u
∂t∂y

+ 2
∂u
∂y

∂u
∂x

{ }[ ]
y�0

,

(10)
Nux � − x

kf Tw − T∞( ) khnf
∂T
∂y

+ 16σ*T3
∞

3k*
∂T
∂y

[ ]
y�0

. (11)

Using Eq. 6 in Eq. 10 and Eq. (11) yields the following
relationship:

FIGURE 1
Flow problem.

TABLE 1 Al2O3 thermophysical properties along with Cu and SA [51].

Physical properties ρ(kg/m3) ρcp(J/kgK) k(W/mK) βT × 10−5(1/K) σ(Ω/m)−1

SA 989 4,175 0.6376 99 2.6 × 10−4

Al2O3 3,970 765 40 0.85 3.69 × 107

Cu 8,933 385 401 1.67 5.96 × 107
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���
Rex

√
Cfx � μrf″ 0( ) + α 7f′ 0( )f″ 0( ) − f 0( )f″ 0( ) + 3βf″ 0( )((

+ηf″ 0( )f″ 0( ) + ηβf‴ 0( ))), (12)
Rex( )−0.5Nux � − kr +Nr 1 + θ 0( ) θw − 1( )( )3( )θ′ 0( ), (13)

where Rex � uex/]f is the x-axis-local Reynolds number. Moreover, the
graphical explaination of triangular fuzzy number is given in the Figure 2.

2.1 Homotopy analysis method

The HAM is a multifaceted investigative system that solves
nonlinear equations with several variables. Based on Eq. 9, the
HAM computes consequential Eqs 7, 8. Linear operators and
preliminary approximations are mandatory to surprise the process
through this technique. Consequently, we used them as (Λf,Λθ) linear
operators and (f0(η), θ0(η)) initial assessments to resolve motion and
energy transform equations using the abovementioned method. See
[9–12] for further facts on this method.

f0 η( ) � s − λ 1 − e−η( ), θ0 η( ) � e−η, (14)
Λf f η( )[ ] � f‴ − f′, Λθ θ η( )[ ] � θ″ − θ. (15)

The properties of the operator described above are as
follows:

Λf A1 + A2e
−η + A3e

η( ) � 0,
Λθ A4e

−η + A5e
η( ) � 0,

} (16)

where Ajs (j = 1, 2, 5) are arbitrary constants.

1 − q( )Λf
~F η; q( ) − ~f0 η( )[ ] − qhfNf

~F η; q( )[ ] � 0,

1 − q( )Λθ
~θ η; q( ) − ~θ0 η( )[ ] − qhθNθ

~F η; q( ), ~θ η; q( )[ ] � 0,

⎫⎬⎭
(17)

where hf and hθ signify non-zero auxiliary parameters, q ∈ [0, 1]
represents an embedding parameter, and ~F, and ~θ represent the
mapping occupations for f(η), and θ(η), respectively.

The boundary conditions become [12]

~F 0; q( ) � s, ~F′ 0; q( ) � λ, ~θ 0; q( ) � 1,
~F′ ∞ ; q( ) � 0, ~θ ∞ ; q( ) � 0,

} (18)

Nf
~F η; q( )[ ] � d~F‴ η; q( )

dη
− 2

d~F′ η; q( )
dη

( )2

+ d~F η; q( )
dη

d~F″ η; q( )
dη

− β
d~F′ η; q( )

dη
+ η

2
d~F″ η; q( )

dη
( )

+α β
d~F‴ η; q( )

dη
− d~F″ η; q( )

dη
( )2

− ~F η; q( ) d~F′′′′
η; q( )

dη
⎛⎝

+2 d~F′ η; q( )
dη

d~F‴ η; q( )
dη

+ βη

2
d~F

′′′′
η; q( )

dη
) −M

d~F′ η; q( )
dη

, (19)

Nθ
~F η;q( ),~θ η;q( )[ ]� 1+Nr 1+~θ η;q( ) θw−1( )( )3( )d~θ″ η;q( )

dη
−Pr~θ η;q( )d~F′ η;q( )

dη

+3Nr d~θ′ η;q( )
dη

( )2

θw−1( ) 1+~θ η;q( ) θw−1( )( )2
+PrD~F η;q( )d~ϕ″ η;q( )

dη
+Pr~F η;q( )d~θ′ η;q( )

dη
+PrEc d~F″ η;q( )

dη
( )2

−Prβ 1
2
η
d~θ′ η;q( )

dη
+~θ η;q( )( )+αPrEcd~F″ η;q( )

dη

2η
d~F″ η;q( )

dη
+2d~F′ η;q( )

dη

d~F″ η;q( )
dη

+ηβd~F‴ η;q( )
dη

− ~F η;q( )d~F‴ η;q( )
dη

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+Prd
~θ′ η;q( )
dη

Nb
d~ϕ′ η;q( )

dη
+Nt

d~θ′ η;q( )
dη

( ). (20)

Equations (7)–(9) convert into nonlinear operators like Eqs
18–21, and then, the series solution becomes

f η( ) � f0 η( ) + ∑∞
m�1

fm η( ),
θ η( ) � θ0 η( ) + ∑∞

m�1
θm η( ).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (21)

2.2 Fuzzification

Using fuzzy concepts, comparing nanofluid and hybrid nanofluid
is also explored in this study. The nonlinear ODEs convert into FDEs,
and the nanoparticle volume percentage is taken as a TFN. The
governing FDE is converted into a double parametric form. In this
case, Eq. 8 can be converted into an interval form using the χ − cut
concept. Here, χ and ω are parameters that range from 0 to 1,
controlling the fuzziness of the uncertain parameters. The
aforementioned problem was solved using the HAM as well. The
slight variation in the volume percentage of nanoparticles impacts the
flow rate and heat. These parameters alone determine the nanofluid’s
flow rate and heat transfer because some researchers estimate that the
volume percentage of nanoparticles falls within the [1%–4%] range. It
is preferable to address a challenging situation in a fuzzy atmosphere
by getting volume fractions as a TFN since ϕ1 and ϕ2 signify the
volume fraction of Al2O3/SA and Cu/SA, respectively, as shown in
Table 2. The volume fractions of nanoparticles used in this study are
classified as TFNs, with the TFNs being transformed into χ − cut
methods, and the fuzziness of the TFNs is controlled by χ − cut [64].

FIGURE 2
Membership function of TFN [54].

TABLE 2 ϕ1 and ϕ2 transform into TFN [54, 55].

Fuzzy numbers Crisp value TFN χ − cut approach

ϕ1(Al2O3) [0.01–0.04] [0, 0.05, 0.1] [0.05χ, 0.1 − 0.05χ], χ ∈ [0, 1]

ϕ2(Cu) [0.01–0.04] [0, 0.05, 0.1] [0.05χ, 0.1 − 0.05χ], χ ∈ [0, 1]
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FIGURE 3
Impression of f′(η) for M.

FIGURE 4
Impression of f′(η) for α.
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Let ϕ1 � ϕ2 � [0, 0.05, 0.1] be a TFN that is described by the three
values highlighted in Figure 3: 0 (lower bound), 0.05 (most belief value),
and 0.1 (upper bound). As the input value moves from position 0 to
position 0.05, the value of the membership function climbs linearly from
0 to 1 and then linearly declines from 1 to 0 as the input value moves
from position 0.05 to position 0.1. Eq. 22 represents the mathematical
form of the triangular fuzzy membership function as follows:

Membership function �

0 − η

0.05 − 0
for η ∈ 0, 0.05[ ],

η − 0.1
0.1 − 0.05

for η ∈ 0.05, 0.1[ ],
0, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩ (22)

The χ − cut technique is used to convert TFNs into an interval form
and is represented as ϕ1 � ϕ2 � [0 + χ(0.05 − 0), 0.1 − χ(0.1 − 0.05)],
where 0≤ χ − cut≤ 1.

To handle this scenario, the FDEs are renewed into lower
θ1(η, χ) and upper θ2(η, χ) bounds.

3 Results and discussion

An unsteady flow analysis was performed on a second-grade
hybrid (Al2O3 − Cu/SA) nanofluid above the exponential surface.
Because of the viscous and nonlinear radiation heat transfer
amalgamation, conductive fluids are studied in this context. The
consequence of dynamic parameters on the speed and temperature
profile of the system is scrutinized. In addition, an estimated analysis
method called the HAM is used to follow the transformation
equation generated from the abovementioned model. For the
simulation of our model, we absolute the key parameters, such as
M = 0.2, β � 0.5, α � 0.2, s = 0.2, Pr = 10, θw � 1.2, Ec = 0.3,H = 0.1,
λ � 0.3, ϕ1 � 0.02, and ϕ2 � 0.02. Table 2 is created to confirm the
values of θ′(0) [36]. The values obtained by the HAM in the current
survey agree well with the literature.

The influence of the magnetic (M) parameter on the velocity field is
depicted in Figure 3. For higher values ofM, the velocity dropped in both
cases. Lorentz pressure is responsible for this phenomenon, which arises

FIGURE 5
Impression of f′(η) (A) and θ(η) (B) for β.

FIGURE 6
Impression of f′(η) (A) and θ(η) (B) for s.
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from the cooperation of electric andmagnetic fields during an electrically
conducted fluid flow. So, the fluid velocity in the BL is controlled by the
generated Lorentz force. As a result, asM rises, the velocity of the fluid

and hybrid nanofluids falls. The interaction of magnetic fields is
significant in different technical and industrial applications, such as
crude oil extraction, geothermal systems, and groundwater hydrology.

FIGURE 7
Impression of f′(η) (A) and θ(η) (B) for λ.

FIGURE 8
Impression of f′(η) (A) and θ(η) (B) for ϕ1.

FIGURE 9
Impression of f′(η) (A) and θ(η) (B) for ϕ2.
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The change of the second-grade parameter (α) in motion is shown in
Figure 4. The rise in α clues to an enrichment in the velocity of liquid and
hybrid nanofluids. This is because as α increases, the viscosity and
viscous forces of the fluid decrease. The effects of an unsteady parameter
(β) and suction parameter (s) on velocity and temperature fields are
shown in Figures 5, 6. The temperature and velocity contours drop when
β and s are increasing. The increase in β and s decreases the momentum
and thermal boundry layer. Figure 7 shows the impression of stretching/
shrinking parameters (λ) on velocity and temperature dispersals. When

λ increases, the velocity also increases while the temperature diminishes.
Because the stretching parameters are set to higher levels, the
temperature and thickness of the BL are reduced. Due to the
exposure of the cooler to the ambient fluid, the BL thickness reduces
with growing values of stretching parameters. Figure 8 shows the
variation of nanoparticle volume fraction (ϕ1) on the velocity and
temperature distributions.When ϕ1 increases, the velocity declines while
the temperature boosts up. The variability of the volume fractional of
nanoparticles (ϕ2) on velocity and temperature gradients is shown in

FIGURE 10
Impression of θ(η) for Nr and θw .

FIGURE 11
Impression of θ(η) for H.
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Figure 9. When ϕ2 progress, speed drops while temperature upsurges.
The main reason for the decay in the velocity is that as the values of the
volume fractional of nanoparticle grow, the resistive force also increases,
reducing the fluid flow speed. Physically, the energy is discharged from

the exponential sheet due to the nanoparticle’s resistive force. More
energy is generated when more nanoparticles are added, causing the
temperature to rise. Furthermore, the optimum temperature may be
achieved because a hybrid nanofluid has a higher thermal conductivity

FIGURE 12
Impression of M and α on Cf .

FIGURE 13
Impression of s and β on Cf .
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than a mono nanofluid. Figure 10 shows the features of radiation
parameters (Nr) and liquid temperature. High Nr approximations
support the random motion of particles. As a result, more particles
collide and producemore heat. As a result, the heat of the fluid increases.
Figure 10 shows the thermal profile matures when the temperature ratio
parameter (θw) rises. These consequences specified that when θw

develops, the temperature difference (Tw − T0) upsurges, instigating
the fluid temperature to increase. Figure 11 pierces the heat generation
parameter (H) impressions on the temperature field. It is noticed that as
the H > 0 grows, the temperature distribution improves. Physically,
higher heat production shows more heat within the boundary layer,
increasing the temperature field.

FIGURE 14
Impression of Nr and H on Nu.

FIGURE 15
Impression of ϕ1 and ϕ2 on Nu.
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As shown in Figure 12, f ′′(0) increases with M and decreases
as α grows. Due to the Lorentz drag force, an increase in the M
value leads to a substantial confrontation to fluid flow, which
reduces the fluid velocity and momentum BL thickness, upsurges
the velocity, and thus, increases the shear stress of the
exponential stretch sheet. The behavior of f″(0), the unsteady
parameter (β), and the suction/injection parameter (s) is revealed
in Figure 13. It can be detected that the drag force declines with
the rise in β and s. Physically, growth in β and s results in an
augmentation in the fluid density, due to which more friction is
observed by the fluid particles. Figure 14 shows the impact of Nr
andH onNux. It is observed thatNux reduces with an increase in
Nr and H. Nux decreases when ϕ2 increases, while Nux increases
when ϕ1 increases, as shown in Figure 15. Physically, heat is
emitted from the exponential sheet when enhancing ϕ1 and ϕ2.

3.1 Fuzzy results and discussion

Figure 16 portrays the calculated fuzzy temperature using volume
fractions of ϕ1 and ϕ2 as the TFN [0%, 5%, 10%] for different values of η,

1, 2, 3, and 4; four subplots delineate the fuzzy temperatures for
triangular MFs. The vertical axis represents the MF of the fuzzy
temperature bend χ − cut (0≤ χ − cut≤ 1), and the horizontal axis
represents the fuzzy temperature curve with varying values of ?. The
resulting fuzzy temperature is TFN, but not symmetric, while a portion
of the fuzzy volume is symmetric TFN. These variations might be due to
the nonlinearity of the governing FDE. It was also revealed that hybrid
nanofluids had a wider width than nanofluids. As a result, the hybrid
nanofluid is uncertain according to the TFN. On the other hand,
Figure 16 shows the comparison of Al2O3/SA (ϕ1), Cu/SA (ϕ2),
and Al2O3 + Cu/SA hybrid nanofluids through MF for numerous
values of η. In these figures, we evaluated three scenarios. When ϕ1
is preserved as TFN and ϕ2 � 0, it is signified by blue shapes.When ϕ2 is
preserved as TFN and ϕ1 � 0, it is signified by red shapes, and the black
lines show that the hybrid nanofluid is non-zero with both ϕ1 and ϕ2. It
is observed that the temperature change in hybrid nanofluids is more
noticeable than in two nanofluids; the performance of hybrid nanofluids
is better. To deliver the maximum transmission of heat in hybrid
nanofluid joined, the thermal conductivities of Al2O3 and Cu.
Al2O3/SA have a higher heat transfer during the comparison of
Al2O3/SA and Cu/SA because the thermal conductivity of Al2O3 is

FIGURE 16
Comparison of Al2O3/SA, Cu/SA, and Al2O3 + Cu/SA hybrid nanofluids for ω � 0.5 and different values of η.
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higher than that of Cu. The comparative analysis is provided in Table 3
of the proposed technique with prevailing approaches.

4 Conclusion

This study analyzed the unsteady MHD second-grade hybrid
(Al2O3 + Cu/SA) nanofluid flow caused by the exponentially
stretching/shrinking surface. Viscous dissipation, nonlinear thermal
radiation, and heat scores/sink are also considered. An analytical
approach, the HAM, is implemented for the outcome of the
formulated problem. For validity, extant outcomes were equated
with prevailing consequences. The impacts of non-dimensional
physical parameters on velocity and temperature profiles for
second-grade fluid and hybrid nanofluid are examined and
discussed via graphs. Furthermore, ϕ1 and ϕ2 are said to be TFNs
using the χ − cut technique. Comparison and uncertainty are studied
through triangular fuzzy graphs. The foremost goals of this study are
as follows:

• The fluid velocity is dropped with the magnetic parameter,
while the fluid velocity is boosted with the second-grade fluid
parameter.

• The fluid temperature increases while the fluid velocity
declines with the improvement of ϕ1 and ϕ2.

• The fluid temperature boosts against higher values of θw, Nr,
and H, whereas the reverse holds for the unsteady parameter,
suction parameter, and Prandtl number.

• The fluid velocity grows versus the stretching/shirking
parameter while the fluid temperature declines.

• The skin friction coefficient is reduced with a rise in unsteady
and second-grade parameters while growing with magnetic
parameters.

• For higher values ofNr,H, ϕ1, and ϕ2, the surface heat transfer
rate decreases.

• The maximum width of the fuzzy fluid temperature of the
hybrid nanofluid was observed during a fuzzy analysis using a
triangular MF, indicating that the fuzziness level is higher than
that of regular nanofluids.

• The Al2O3 + Cu/SA hybrid nanofluids showed exceptional
capability to increase the heat transfer rate in Al2O3/SA
and Cu/SA during fuzzy heat transfer analysis compared to
regular substances. It has also been observed that the
performance of Cu/SA is far better than that of Al2O3/SA.

The findings of this study can be used to drive future progress in
which the heating system’s heat outcome is analyzed with nanofluids
or hybrid nanofluids of various kinds (Maxwell, third-grade, Casson,
Carreau, micropolar fluids, etc).
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TABLE 3 Comparison of current results of θ9(0) with the work of Haider et al. [36] for variation in Pr and M when H = 0.0, Nr = 0.0, β � 0.0, and Ec = 0.0

M Pr Haider et al. [36] (HAM) Haider et al. [36] (NM) Present (HAM)

0 1 0.95478 0.95478 0.95477

2 1.47146 1.47146 1.47145

3 1.86907 1.86907 1.86906

5 2.50012 2.50012 2.50012

10 3.66027 3.66027 3.66026

1 1 0.56109 0.56109 0.56108
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Nomenclature

Symbols Description

x, y Cartesian coordinates

μhnf Dynamic viscosity of the hybrid nanofluid

H Heat source/sink parameter

K Second-grade fluid parameter

θw Temperature ratio parameter

β Shrinking/stretching rate parameter

η Similarity variable

θ(η) Dimensionless temperature

(βT )hnf The thermal expansion coefficient of the hybrid nanofluid

ϕ1 Volume fraction of alumina nanoparticles

Nux Nusselt number

μ�Ω(η) Membership function

ρhnf Density of the hybrid nanofluid

ρf Density of fluid

Cf x Skin friction coefficient

νhnf Kinematic viscosity of the hybrid nanofluid

(ρCp)hnf Heat capacity of the hybrid nanofluid

δf Electrical conductivity

s Rate of mass transfer parameter

u, v Velocity components

μf Dynamic viscosity of the fluid

Pr Prandtl number

Ec Eckert number

M Magnetic parameter

ψ Stream function

Tw, T∞ References and ambient temperature

T Temperature of fluid

f (η) Normal component of the flow

ϕ2 Volume fraction of copper nanoparticles

�θ(η, γ) Fuzzy temperature profile

f 9(η, γ) Fuzzy velocity profile

FDE Fuzzy differential equation

γ Level or cut technique

Rex Local Reynolds number

νf Kinematic viscosity of fluid

δhnf Electrical conductivity of the hybrid nanofluid

Nr Thermal radiation parameter

Subscripts

S1 Solid nanoparticles of Cu

S2 Solid nanoparticles of Al1O3
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