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With the continuous development of the 6G mobile network, computing-
intensive and delay-sensitive onboard applications generate task data traffic
more frequently. Particularly, when multiple intelligent agents are involved in
tasks, limited computational resources cannot meet the new Quality of Service
(QoS) requirements. To provide a satisfactory task offloading strategy, combining
Multi-Access Edge Computing (MEC) with artificial intelligence has become a
potential solution. In this context, we have proposed a task offloading decision
mechanism (TODM) based on cooperative game and deep reinforcement learning
(DRL). A joint optimization problem is presented to minimize both the overall task
processing delay (OTPD) and overall task energy consumption (OTEC). The
approach considers task vehicles (TaVs) and service vehicles (SeVs) as
participants in a cooperative game, jointly devising offloading strategies to
achieve resource optimization. Additionally, a proximate policy optimization
(PPO) algorithm is designed to ensure robustness. Simulation experiments
confirm the convergence of the proposed algorithm. Compared with
benchmark algorithms, the presented scheme effectively reduces delay and
energy consumption while ensuring task completion.
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1 Introduction

With the advent of the Internet of Things (IoT), many sensing devices have been
deployed in networks. The data generated by these devices and related large-scale mobile
applications are growing explosively [1]. In the context of IoT, the Internet of Vehicles (IoV)
is a study hotspot. It uses IoV technology to provide services for vehicles through onboard
processors [2,3]. However, task data also increase with a significant increase in the number of
vehicles. The emergence of various computing-intensive tasks poses a significant challenge to
the onboard computing capability of the vehicle itself Zhou et al. [4]. Multi-Access Edge
Computing (MEC) is considered a feasible method to tackle this issue. MEC has significant
advantages in addressing compute-intensive tasks in the IoV system. By moving
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computational and data processing functions to the network edge, it
reduces task processing latency, enabling faster real-time decision-
making, which is crucial for areas such as autonomous driving,
traffic optimization, and intelligent traffic management. Moreover,
MEC alleviates the burden on TaV, optimizes network load, and
reduces energy consumption. MEC is considered a prevalent
computing paradigm that has been widely studied to promote
data processing efficiency, which can perform computation
services closer to the data sources Porambage et al. [5].

Specifically, in the IoV system, tasks are offloaded to the service
nodes (SNs) with computing power, and tasks are processed
cooperatively to improve efficiency. The premise of task
offloading is that jobs can be split into multiple subtasks and
offloaded to SNs. Parked or moving vehicles, as idle resources,
can provide specific computing and storage resources for task
processing Sookhak et al. [6]. In addition to offloading tasks to
the service vehicles (SeVs), task vehicles (TaVs) can also offload
tasks to the MEC servers. The MEC servers coexist with the base
station (BS) and connect the roadside units (RSUs) to provide
services Xiao and Zhu [7]. In recent years, the issue of task
offloading in the IoV system has received extensive research
Zhou et al. [8], and task processing delay and energy
consumption are essential indicators. It is challenging to
minimize overall delay and energy consumption while
completing the task Li et al. [9]. When the amount of task data
is large, the task transmission delay is high, increasing the total task
delay and energy consumption. To solve this problem, integrated

radar sensing and communication is a feasible solution. The
integrated radar sensing and communication technology aims to
reduce the task processing latency and energy consumption in the
IoV, improving the efficiency and performance of task processing in
IoV. By collecting data through radar sensing and sharing, instead of
traditional data transmission, it reduces node waiting energy
consumption and enhances the response speed of the IoV
system. Its advantage lies in optimizing the overall performance
of the IoV system, including perception of traffic data, improvement
of communication quality, and increased accuracy of vehicle
positioning, thereby enhancing the efficiency and safety of the
entire IoV system. Game theory and optimization techniques
provide technical support for it. In this study, a game theoretic
approach was utilized to construct a game model, analyze the
cooperative relationship between TaVs and SNs, and define the
utility function for task offloading. This facilitated the development
of an optimal task offloading decision strategy, encompassing task
allocation and resource coordination. Optimization techniques were
employed to achieve an optimal allocation of resources, including
computing, storage, and communication resources, maximizing
system utility while minimizing task processing delay and energy
consumption.

Some scholars have conducted some studies on this issue. For
example, in [10], a relatively practical IoV scenario was considered,
and a matching game method was used to model the task allocation.
The simulation results show that the input data transmission delay
accounts for 73% of the total task processing time. In [11], the task is
assigned to the MEC and the SeVs for processing. The results show
that when the task size is 80 Mb, the input data transfer delay
accounts for 50%. The delay in uploading data can significantly
affect delay-sensitive applications. Therefore, several cars have an
integrated radar system to sense the surrounding environmental
data for local processing or assist connected vehicles in processing
task data to ensure safe driving [12]. Furthermore, RSUs use radar to
sense environmental data and use ecological data as input to reduce
the transmission delay [13]. In summary, instruction transfer and
environmental data sensing provide new possibilities for task
offloading. For the issue of transmission delay, consider perceived
environmental data and calculation instructions to reduce
transmission delay [14].

FIGURE 1
Intelligent architecture network of IoV.

TABLE 1 Parameter setting.

Parameter Value

The transmission path loss index α 3.4

The transmission power of noise σ2n/σ
2
N+1 10−13w

The wired transmission power from RSUs to MEC P′N+1 2w

The height of RSUs HN+1 20m

The distance from RSUs to the road center DN+1 6m

The strength of vehicle coordinate transformation Mtra 1000 cycles/bit
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Energy is currently a major concern worldwide, and the increase
in the number of IoV equipment will lead to increased energy
demand and higher energy costs. Therefore, reducing energy
consumption has become one of the issues that the IoV system
needs to resolve [15]-[16]. To tackle this issue, Cesarano et al.
designed a greedy heuristic algorithm to reduce the energy
consumption of the task [17]. Some scholars applied minimizing
of energy consumption and execution delay as the objective
functions and reasonably selected the task offloading strategies
[18]. In [19], the IoV system data transmission scheme adopts
the deep Q-network (DQN) method to reduce transmission
costs. Altogether, energy consumption is a key factor influencing
the task offloading strategy. The focus of future study will be the
proper selection of task offloading strategies to ensure delay and
energy consumption.

For the aforementioned issues, many studies have adopted
heuristic algorithms to solve them. For example, the author
considers the reliability of task offloading in the IoV scenarios
and uses heuristic algorithms to optimize the reliability [20].
Aiming at the issue of poor robustness of traditional heuristic
algorithms for continuous state and action space in the IoV
scenario [21], an offloading strategy-based method was studied to
learn the optimal mapping from constant input state to discrete
output and deal with continuous state space and action space
scenarios. Although the aforementioned algorithm can solve the
issue of the task offloading strategy in the IoV, the algorithm used
has poor robustness in ensuring the reliability of data
transmission [22].

DRL algorithms have significant advantages over heuristic
algorithms. First, DRL algorithms can automatically learn and
optimize decision strategies through large-scale data, eliminating
the need for manual design of complex rules. Second, DRL

algorithms can handle high-dimensional and complex state and
action spaces, making them suitable for solving complex real-world
problems. Additionally, DRL algorithms have the ability to
generalize learned knowledge to unseen environments, enabling
more intelligent and flexible decision-making. Given the more
significant potential and application value of policy-based deep
reinforcement learning (DRL) [23], this paper discusses task
offloading based on DRL. For sensitive applications with
environmental data as input, we proposed a task offloading
decision mechanism (TOMD) based on cooperative game and
DRL. This paper is based on cooperative game theory, considered
the overall task processing delay (OTPD) and overall task energy
consumption (OTEC), and constructed a joint optimization issue.
We transformed the joint optimization issue into a DRL issue and
used the PPO algorithm to solve the issue. The main contributions
are summarized as follows:

1. Considering dynamic wireless edge computing networks, a
framework for joint task offloading is designed. On this basis,
according to the wireless transmission requirements of SNs,
combined with the game theory and communication function,
a cooperative game and DRL-based TODM is proposed. The
joint optimization issue is derived to minimize the delay and
energy consumption.

2. DRL is more robust than the heuristic algorithm as it can make
real-time online decisions. Therefore, combined with DRL, the
designed joint optimization issues transformed into
reinforcement learning (RL) issues. This paper develops an
algorithm based on PPO to solve the aforementioned issues
and theoretically analyze the algorithm’s complexity.

3. Finally, we designed a simulation experiment to evaluate the
algorithm’s performance. The results show that the algorithm

FIGURE 2
Training curve of PPOTR.
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converges better than the soft actor-critic (SAC) algorithm, which
can achieve the goal of a reasonable choice of the task offloading
strategy. The proposed algorithm can reduce the task delay and
energy consumption cost while improving the performance of the
IoV system.

The remainder of this paper is arranged as follows: Section 2
presents relevant work. Section 3 presents the system model in
detail, expounds on the task offloading mechanism TODM, and
gives the issue formulation. Section 4 proposes a task offloading

algorithm based on DRL to solve the aforementioned issues. Section
5 proposes a simulation for evaluating the solution. Finally, Section 6
summarizes this paper.

2 Related works

This section summarizes the current study of the IoV, including the
connected study of task offloading, radar sensing and communication,
game theory, and DRL of the IoV edge intelligent system.

FIGURE 3
Convergence curve of PPOTR. (A) Unsmoothed convergence curve of PPOTR. (B) Smoothed convergence curve of PPOTR.
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2.1 Task offloading of IoV

With the advent of the 6G era, mission data volume has
experienced a blowout growth. With the intellectual development
of the IoV intelligent system applications, the requirements for
task data computation have also improved. Because the cloud is
relatively far from users, traditional cloud computing has
relatively high latency, which has become the focus of the task
offloading strategy [24]. Researchers considered MEC as an
effective technique to address the delay issue. Because the
MEC servers are closer to users than the cloud, they can
reduce the delay in task processing and enhance the user
experience [25].

In light of MEC characteristics, it will be widely used in the
future IoV system. In [26], the architecture of the vehicle
network was defined according to the properties of the MEC,
which can enhance the scalability of the network. In [27], an
SDN-enabled network architecture assisted by the MEC was
proposed to provide low-latency and high-reliability
communication. In [28], the optimal task offloading issue in
MEC was studied, which was transformed into two subproblems,
task offloading and resource allocation, to minimize the
delay.[29], considers an edge server and describes the
computing and physical resource problems as optimization
issues. In [30], a new offloading method was proposed to
minimize transmission delay while improving resource
utilization. In [31], a task offloading scheme fuzzy-task-
offloading-and-resource-allocation (F-TORA) based on
Takagi–Sugeno fuzzy neural network (T-S FNN) and game
theory is designed.[32] proposes a UAV-assisted offloading
strategy, which has been experimentally verified to reduce the
delay by 30%.

2.2 Radar sensing and communication in
the IoV

The integrated radar and communication design has great potential
in cost-constrained scenarios. For example, by combining radar and
communication functions, an IoV system can be designed to solve the
issues of high latency and energy consumption. Some scholars have
proposed a path estimation method to realize longitudinal and lateral
vehicles followed only by radar and vehicle-to-vehicle (V2V) [33]. This
paper introduces an intelligent real-time dual-functional
radar–communication (iRDRC) system for autonomous vehicles
(AVs) [34]. Obstacle detection is a very important part of the
realization of intelligent vehicles. To avoid the problem that metal
objects seriously block the millimeter wave, an active obstacle detection
method based on amillimeter-wave radar base station is proposed [35].
The radar and communication integrated system (RCIS) can overcome
the time-consuming problems of data format transfer and complex data
fusion across multiple sensors in autonomous driving vehicles (ADVs)
[36]. In summary, the integrated radar and communication design is a
promising direction for future autonomous driving technology
development.

2.3 Game theory in ToV

Game theory provides a framework for analyzing strategic
interactions among rational decision-makers, while optimization
techniques are designed to seek the most favorable outcomes. Some
scholars have proposed a dependable content distribution
framework that combines big data-based vehicle trajectory
prediction with coalition game-based resource allocation in
cooperative vehicular networks [37]. This paper proposes an

FIGURE 4
Training curve of SAC.
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energy-efficient matching mechanism for resource allocation in
device-to-device (D2D)-enabled cellular networks, which employs
a game theoretical approach to formulate the interaction among end
users and adopts the Gale–Shapley algorithm to achieve stable D2D
matching [38]. Some scholars have proposed a novel game
theoretical approach to encourage edge nodes to cooperatively
provide caching services and reduce energy consumption [39]. In
[40], the author has developed a two-player Stackelberg game-based
opportunistic computation offloading scheme, which can

significantly shorten task completion delay. In conclusion, game
theory holds significant and extensive application prospects within
the realm of the IoV.

2.4 DRL methods for IoV

Regarding resource optimization for the IoV, DRL has strong
sensing and decision-making capabilities compared to traditional

FIGURE 5
Convergence curve of SAC. (A) Unsmoothed convergence curve of SAC. (B) Smoothed convergence curve of SAC.
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heuristic algorithms and can analyze the long-term impact of
current resource allocation on the system. Many scholars have
applied DRL techniques to the study of the IoV. For example, in
[41], DRL technology was used to transfer vehicle tasks to the edge
server when facing the challenge of task delay. In [42], a UAV was

placed in the vehicle network to assist resource allocation, and the
deep deterministic policy gradient (DDPG) method was used to
reduce the task delay. In [43], an online computation offloading
strategy based on DQN was proposed, which takes the discrete
channel gain as input to minimize energy consumption and delay

FIGURE 6
Total delay under different policies.

FIGURE 7
Total energy consumption under different policies.
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and realize computation offloading and resource allocation. In [44],
a hybrid scheduling mechanism to reduce computation was
proposed for vehicle-to-vehicle communication in a specific area.
In [45], the author proposed a priority-sensitive task offloading and
resource allocation scheme in an IoV network to validate the
feasibility of distributed reinforcement learning for task
offloading in future IoV networks. In [46], the author proposed a
multi-agent deep reinforcement learning (MA-DRL) algorithm for
optimizing the task offloading decision strategy, while improving the
offloading rate of the tasks and ensuring that a higher number of
offloaded tasks are completed.

Given the preponderance of DRL techniques in the IoV system,
two metrics are considered: delay and energy consumption. This
paper aims to select the optimal task offloading strategy to save delay
and resource costs. Consequently, we propose a framework for task
offloading that uses a DRL-based algorithm to achieve optimal
solutions in the network.

3 System description and problem
formulation

In this section, Section 3.1 presents an edge computing network
of the IoV. Section 3.2 presents an optimization issue.

3.1 System model

3.1.1 TODM mechanism based on the cooperative
game

In light of the issue that the large amount of task data in the IoV
leads to significant overall task delay and energy consumption, we

build an intelligent system for the IoV by using the sensing
capabilities of SNs. To achieve a practical and distributed
solution, we realize that the task assignment problem in MEC
architectures can also be formulated as a cooperative game. The
cooperative game is applicable to the case of multi-node
cooperation, where multiple agents work together to formulate
resource allocation strategies to minimize overall delay and
energy consumption. First, this paper defines the participants of
the game, i.e., TaV, SeVs, and MEC. Second, it defines the strategies
for task offloading, decomposing tasks into multiple subtasks
assigned to different SNs, with the delay and energy
consumption for nodes completing the task as the criteria for
cooperative cost allocation. Finally, cooperative constraints are
introduced to construct a cooperative game theory model.

The intelligent architecture network of the IoV is featured in
Figure 1. A BS andMEC servers are deployed at the same location to
improve MEC computing power and save costs. For RSUs
reasonably deployed along the road, each RSU is equipped with
storage resources and radars for real-time sensing of ambient data.
The storage resources of RSUs support the storage of all sensed task
data and are periodically cleared to maintain usability. RSUs are
linked to the MEC via wired links. Each car is equipped with
computing, storage resources, and radars. The TaV is linked to
the SeVs and RSUs via wireless transmission. The communication
between nodes adopts frequency division multiplexing (FDM)
access technology, and the upload and feedback process adopts
the time division duplexing (TDD) mode. This paper assumes that
BS covers the entire IoV system, including all RSUs and vehicles.
The coverage of RSUs is tangential to each other, and the TaV is
always within the range of the nearest RSUs when processing the
task. The task can be divided into several subtasks. Each subtask is
independent and can be processed in parallel [47]. Considering the

FIGURE 8
Reward under different policies.
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impact of the delay and energy consumption on the offloading
strategy, the MEC sends the offloading decision to the TaV and then
offloads the task. In real-life scenarios, two-way roads are more
practical. However, the study is still in its infancy. This paper only
considers one-way lanes and ignores the car service in the opposite
direction to the TaV in our model.

The delay and energy consumption are critical technical
indicators in the TODM design, and this paper aims to
minimize the OTPD and OTEC. The OTPD includes task
description delay, offloading decision delay, offloading
decision transmission delay, task upload delay, task processing
delay, and task feedback delay. In this paper, each variable is
represented by 64 bits, i.e., a double float. The task description
size is a few kilobits, and the delay can be disregarded. The
offloading decision comprises task allocation, transmission
bandwidth, transmission power, and transmission policy.
Compared with the amount of the task input data, the size of
the offloading decision is small, so the offloading decision delay
and transmission delay are disregarded. The amount of data after
the task is completed is smaller than the amount of data input,
and the task feedback delay can be disregarded. Thus, the OTPD
consists of the task upload and computation delays. Similarly, the
OTEC consists of the task upload energy consumption and the
task computation energy consumption. It should be noted that if
SNs perform other tasks, there will be waiting delays, and energy
consumption is possible. In this paper, it is assumed that only one
task needs to be processed, and the waiting delay and energy
consumption are neglected. Multi-tasking will be considered in
future study.

Due to the different perspectives of sensing environmental data,
the TaV coordinate in the calculation instruction is used for
coordinate transformation (CdT) preprocessing to eliminate
differences [48]. The TaV has two ways to transmit the task:
conventional data transmission (DaT) and instruction
transmission (InT) with cooperative environment awareness.
Different transfer methods offer new options for task offloading.
The delay and energy consumption constraints affect the task
upload mode, further affecting the task offloading strategy.
Therefore, the transmission strategy can be chosen adaptively
based on the objective function, traffic size, propagation
capability, transmission delay, energy consumption, etc.
Compared to the traditional offloading mechanism, TODM can
potentially reduce energy consumption and transmission delay
caused by the inputs. However, this mechanism incurs an
additional cost to the overall IoV system, which is ignored in this
paper.

3.1.2 Task model
The task of TaV is computationally intensive and delay-

sensitive. The total task data are denoted by SDaT and can be
arbitrarily divided into infinitely many subtasks. The task ratio is
denoted as xn(xn ∈ [0, 1]), n ∈ N ≔ {0, 1, 2, . . . , n,N + 1}.H is used
to denote the task, and the h-th subtask is denoted as h,
h ∈ N ≔ {0, 1, 2, . . . , n,N + 1}, where h ∈ H. Some subtasks select
local computations, while others select DaT or InT for SNs
according to the task ratio. Task offloading to SNs can satisfy
the delay and energy consumption constraints. Vn,
n ∈ N ≔ {0, 1, 2, . . . , n,N + 1}, is used to denote the SNs; the

wireless bandwidth ratio is denoted as bn(bn ∈ [0, 1]),
n ∈ N ≔ {0, 1, 2, . . . , n,N + 1}; and the transmission power is
denoted as Pn(Pn ∈ [0.5w, 1.5w]), n ∈ N ≔ {0, 1, 2, . . . , n,N + 1}.
TaV is denoted as V0, and the SeVs are denoted as Vn. The
computational resources of both TaV and SeVs satisfy all
computing tasks. RSUs and MEC are connected by wires,
denoted by VN + 1. The choice of the aforementioned three
variables ensures the optimal task offloading strategy.

3.1.3 OTPD and OTEC of the TaV
When a subtask is selected to perform a local computation on

V0, the OTPD of the subtask is the local computation. The OTEC of
the subtasks is the energy consumption computed locally and
uploaded without energy consumption. The delay is denoted as
Tcomput
0 , and the energy consumption is denoted as Ecomput

0 . The
Tcomput
0 and Ecomput

0 are given as follows [49]:

Tcomput
0 � tcomput

0 x0( ) � SDaTx0M

F0
, (1)

Ecomput
0 � ecomput

0 x0( ) � K0 f0( )2C0, (2)
C0 � SDaTx0M. (3)

Here, M (in cycles/bit) is the task calculation strength, which refers
to the computing resources required to input 1 bit of data. F0
represents the CPU cycles of V0. K0 is the effective switching
capacitance related to the chip structure in the car. f0 is the
computing capacity of the car itself. C0 represents the number of
CPU revolutions required for processing the subtasks h0.

3.1.4 OTPD and OTEC of the SeVs
When a subtask is offloaded to the SeVs for processing, data or

calculation instructions are transmitted wirelessly to the SeVs. For
DaT, it is essential to consider the upload delay. For InT, the
transmission delay is not considered, but it is essential to
consider the CdT delay.

Uploading delay model: Based on comparing the delays
between the two upload modes, the mode with the smaller delay
is selected as the upload mode. The DaT and InT upload methods
are considered, and an energy consumption model is built. The
energy consumption corresponding to different upload methods is
calculated. Tupload

1 is used to denote the uploading delay for V0

transmitting the task to Vn. The uploading rate from V0 to Vn is
given by

RDaT
V0→ Vn

t( ) � BToTbn log2 1 + Pn
~hn
∣∣∣∣∣ ∣∣∣∣∣2d−α

n t( )
σ2n

⎛⎜⎝ ⎞⎟⎠. (4)

Here, RDaT
V0→ Vn

(t) denotes the upload rate in time t. BToT denotes the
total bandwidth of the wireless transmission. bn denotes the
transmission bandwidth ratio. Pn denotes the transmission
power. σ2n denotes the noise power. ~hn denotes the channel
fading coefficient from V0 to Vn. dn(t) denotes the distance from
V0 to Vn in time t. d−αn (t) denotes the path loss from V0 to Vn. α
denotes the path loss index.

During the task data upload, the car’s motion causes changes in
dn(t). We assume that the coordinate of V0 is 0, and SDaTxn is Gn,
where Gn ≠ 0. The moving speeds of the cars are v0 and vn. The
formula for calculating dn(t) is given by
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dn t( ) �
��������������
Gn + vn − v0( )t| |2

√
, Gn ≠ 0, n ∈ N . (5)

The cars are running on the expressway, and the maximum
difference between their relative speeds does not exceed 30 km/h
[50]. Take 10 ms as an example; (vn − v0)t � 0.008 m. The relative
position changes are relatively small and do not affect the
optimization results. This paper ignores the change in position.
The calculation formula of dn(t) is given by

dn t( ) � Gn| | Gn ≠ 0 n ∈ N . (6)
For DaT, SDaTxn represents the amount of the task data allocated

to Vn. BToTbn represents the transmission bandwidth from V0 to Vn.
The upload delay Tupload

1a is given by

Tupload
1a � tDaT

1a xn, bn, Pn( ) � SDaTxn

RDaT
V0→ Vn

� SDaTxn

BToTbn log2 1 + Pn
~hn
∣∣∣∣∣ ∣∣∣∣∣2 Gn| |−α

σ2n
⎛⎜⎝ ⎞⎟⎠

. (7)

For InT, this paper needs to consider the delay of CdT. Assume
Vn stores the environmental data sensed by the radar and performs
CdT immediately after receiving the calculation instruction. The
delay of CdT depends on the amount of sensed data and the strength
of the CdT calculation. Tupload

1b is used to denote the upload delay;
Tupload
1b is given by

Tupload
1b � ttra1b xn( ) � SDaTxnMtra

Fn
, (8)

where Mtra represents the computation intensity of CdT. Fn
represents the CPU cycles of Vn.

Considering the TODM, DaT or InT with a lower delay is
chosen as the upload method to minimize the task upload delay. The
calculation formula of upload delay Tupload

1 from V0 to Vn is given by

Tupload
1 xn, bn, Pn( ) � min Tupload

1a , Tupload
1b{ }. (9)

Uploading energy consumption model: Given the selected
upload mode, the upload energy consumption model is built, and
the upload energy consumption Eupload

1a and Eupload
1b are calculated.

Eupload
1 is used to denote the upload energy consumption; Eupload

1 is
given by [51]

Eupload
1 �

Eupload
1a � eupload1a xn, bn, Pn( ) � PnT

upload
1a

or
Eupload
1b � eupload1b xn( ) � Kn fn( )2Cn1

⎧⎪⎨⎪⎩ , (10)

Cn1 � SDaTxnMtra, (11)
where Kn is the effective switching capacitor related to chip structure
in cars. fn is the calculation capacity of the car itself. Cn1 represents
the number of CPU revolutions required for processing the
subtasks hn.

Computing delaymodel: After the task is uploaded, the SeVsVn

start the parallel computation of the subtasks and obtain the
computation delay. Tcomput

1 is used to denote the computing
delay; Tcomput

1 is given by

Tcomput
1 � tcomput

1 xn( ) � SDaTxnM

Fn
. (12)

Computing energy consumption model: The computing
energy consumption model is designed according to the assigned
task. Cn2 is used to denote the number of CPU revolutions required
for processing the subtasks hn. Ecomput

1 is used to denote the
computing energy consumption; Ecomput

1 is given by

Ecomput
1 � ecomput

1 xn( ) � Kn fn( )2Cn2, (13)
Cn2 � SDaTxnM. (14)

3.1.5 OTPD and OTEC of MEC
When a subtask is offloaded to the MEC servers for processing,

the upload delay includes both wireless and wired transmission
delays. The upload energy consumption includes both wireless
transmission energy consumption and wired transmission energy
consumption.

Uploading delay model: The V0 transmits the subtasks’ data to
RSUs via wireless transmission. RSUs transmit the subtasks’ data to
the MEC servers via wired transmission. The uploading rate from V0

to VN+1 is given by

RDaT
V0→ VN+1 t( ) � BToTbN+1 log2 1 + PN+1 ~hN+1

∣∣∣∣∣ ∣∣∣∣∣2d−α
N+1 t( )

σ2N+1
⎛⎜⎝ ⎞⎟⎠, (15)

where RDaT
V0→ VN+1(t) denotes the upload rate in time t. bN+1 denotes

the transmission bandwidth ratio. PN+1 denotes the transmission
power. σ2N+1 denotes the noise power. ~hN+1 denotes the channel
fading coefficient fromV0 toVN+1. dN+1(t) denotes the distance from
V0 to VN+1 in time t. d−αN+1(t) denotes the path loss from V0 to VN+1.
During the upload of the task data, the movement of cars causes
changes in dN+1(t). We assume that the coordinate of V0 is 0, and
VN+1 is GN+1, where GN+1 ≠ 0. The moving speed of the car is v0; the
calculation formula of dN+1(t) is given by

dN+1 t( ) �
�����������������������
GN+1 − v0t| |2 +D2

N+1 +H2
N+1

√
, GN+1 ≠ 0, N ∈ N ,

(16)
where DN+1 is the distance from RSUs to the centerline. HN+1

represents the height of RSUs. Take t = 20 ms as an example;
when the speed of the car is 120 km/h, v0t = 0.67 m. The change
in position is ignored compared with tens of meters. The calculation
formula of dN+1(t) is given by

dN+1 t( ) �
�������������������
GN+1| |2 +D2

N+1 +H2
N+1

√
, GN+1 ≠ 0, N ∈ N . (17)

For DaT, SDaTxN+1 represents the amount of the task data
allocated to VN+1. BToTbN+1 represents the transmission
bandwidth from V0 to VN+1. The upload delay Tupload

2a is given by

Tupload
2a � tDaT

2a xN+1, bN+1, PN+1( ) � SDaTxN+1
RDaT
V0→ VN+1

� SDaTxN+1

BToTbN+1 log2 1 + PN+1 ~hN+1
∣∣∣∣∣ ∣∣∣∣∣2d−α

N+1 t( )
σ2N+1

⎛⎜⎝ ⎞⎟⎠
. (18)

After the task data are uploaded to RSUs, RSUs will transmit the
data to MEC via wired transmission. Tupload

2R is used to denote the
wired upload delay. Rwired is used to denote the wired transmission
speed. The wired upload delay Tupload

2R is given by
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Tupload
2R xN+1( ) � tupload2R xN+1( ) � SDaTxN+1

Rwired
. (19)

Thus, let Tupload
2aR be the total upload delay, which is equal to the

sum of Tupload
2a and Tupload

2R . Tupload
2aR is given by

Tupload
2aR � Tupload

2a + Tupload
2R . (20)

For InT, this paper assumes CdT is carried out immediately after
the MEC servers receive the calculation instruction. Let Tupload

2b be
the CdT delay. The calculation formula of Tupload

2b is given by

Tupload
2b � tRtra2b xN+1( ) � SDaTxN+1Mtra

FN+1
, (21)

where FN+1 denotes the CPU cycles of the MEC. Tupload
2bR denotes the

total upload delay, which is equal to the sum of Tupload
2b and Tupload

2R .
The Tupload

2bR is given by

Tupload
2bR � Tupload

2b + Tupload
2R . (22)

Similarly, DaT or InT with a lower delay is chosen as the upload
method. The formula for the upload delay fromV0 toVN+1 is given by

Tupload
2 xN+1, bN+1, PN+1( ) � min Tupload

2aR , Tupload
2bR{ }

� min Tupload
2a , Tupload

2b{ } + Tupload
2R .

(23)

Uploading energy consumption model: In light of the selected
upload mode, build the upload energy consumption model and
calculate the upload energy consumption Eupload

2a and Eupload
2b . Each

transmission mode shall transmit data from RSUs to the MEC via
wired mode, using Eupload

2R to denote the energy consumption of
wired transmission. The Eupload

2R is given by

Eupload
2R � eupload2R xN+1( ) � PN+1′ Tupload

2R , (24)
where PN+1′ denotes the wired transmission power. Eupload

2 denotes
the total upload energy consumption. Eupload

2 is given by

Eupload
2 �

Eupload
2aR � Eupload

2a + Eupload
2R

or
Eupload
2bR � Eupload

2b + Eupload
2R

⎧⎪⎨⎪⎩ , (25)

Eupload
2 �

eupload2a xN+1, bN+1, PN+1( ) + eupload2R xN+1( )
or
eupload2b xN+1( ) + eupload2R xN+1( )

⎧⎪⎨⎪⎩
�

PN+1T
upload
2a + PN+1′ Tupload

2R

or
KN+1 fN+1( )2C1

N+1 + PN+1′ Tupload
2R

⎧⎪⎨⎪⎩ ,

(26)

C1
N+1 � SDaTxN+1Mtra, (27)

where KN+1 is the effective switching capacitor related to chip
structure in the MEC. fN+1 is the calculation capacity of the
server itself. C1

N+1 represents the number of CPU revolutions
required for processing the subtasks hN+1.

Computing delay model: After the task is uploaded, the MEC
servers start the parallel computation of the subtasks and obtain the
computation delay. T2

comput is used to denote the computing delay;
T2

comput is given by

Tcomput
2 � tcomput

2 xN+1( ) � SDaTxN+1M
FN+1

. (28)

Computing energy consumption model: The computing
energy consumption model is created according to the assigned

task. Let C2
N+1 be the number of CPU revolutions required for

processing the subtasks hN+1. Let E
comput
2 be the computing energy

consumption; Ecomput
2 is given by

Ecomput
2 � ecomput

2 xN+1( ) � KN+1 fN+1( )2C2
N+1, (29)

C2
N+1 � SDaTxN+1M. (30)

3.2 Problem formulation

This paper aims to solve the issue of joint task offloading based
on the edge computing network of IoV, that is, to minimize the task
delay and energy consumption under the constraints of limited
system resources. The payoff function is the weighted sum of task
processing, energy consumption, and delay. The additional weight
balances the effect of energy consumption and delay on the payoff
function. Ttotal is used to denote the total delay, which is given by

Ttotal � Tcomput
0 + Tupload

1 + Tcomput
1 + Tupload

2 + Tcomput
2 . (31)

Etotal is used to denote the total energy consumption, which is
given by

Etotal � Ecomput
0 + Eupload

1 + Ecomput
1 + Eupload

2 + Ecomput
2 . (32)

The payoff function StotalR is expressed as

StotalR x, b, P( ) � ζTtotal x, b, P( ) + 1 − ζ( )Etotal x, b, P( ). (33)
The payoff function is transformed into the total objective function

of the joint optimization issue. The optimization problem can be
described as minimizing the delay and energy consumption under
task allocation, transmission bandwidth allocation, and transmit
power control constraints. Thus, the optimization issue can be
formulated as

P1( ): minimize
x,b,P

StotalR x, b, P( ) :� min
n�0,1,......,N+1

StotalR xn, bn, Pn( ){ }
s.t. C1: ∑N+1

n�0
xn � 1

C2: ∑n+1
n�1

bn ≤ 1

C3: 0≤ xn ≤ 1, n � 1, 2, . . . . . . , N + 1
C4: 0≤ bn ≤ 1, n � 1, 2, . . . . . . , N + 1
C5: 0.5≤Pn ≤ 1.5, n � 1, 2, . . . . . . , N + 1
C6: 0≤ ζ ≤ 1

.

(34)
In problem P1, constraint C1 represents the task allocation ratio,

and the sum of the ratio is 1. C2 denotes the allocation ratio of wireless
bandwidth. The sum of the wireless bandwidth allocation ratios is less
than 1. C3 and C4 represent the value range of the task allocation ratio
and wireless bandwidth ratio, respectively. C5 limits the transmit
power of the uplink transmission rate. C6 represents the weight value.

4 DRL-based algorithm for task
offloading

Section 4.1 presents DRL techniques and the Markov decision
process (MDP). Section 4.2 proposes the conversion of the
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optimization issues in the model into DRL issues. Section 4.3
proposes a PPO-based approach to address the task offloading issue.

4.1 DRL-based framework

4.1.1 DRL techniques
Deep learning (DL) has strong perception ability but lacks specific

decision-making abilities; RL has decision-making abilities but does not
address the solving of perception issues. DRL integrates DL’s perception
ability and RL’s decision-making ability, which solves the perceptual
decision issue of complex systems. DRL is an end-to-end sensing and
control method with strong generality. Its learning process can be
described as follows: (i) at each moment, the agent interacts with the
environment to get a high-dimensional observation and specific state
characteristics. (ii) The current state is mapped to the corresponding
action through the strategy, and the value function of each action is
evaluated. (iii) The environment gives feedback to the action to obtain
the next observation object. The optimal policy is obtained by successive
cycles of the aforementioned procedure.

4.1.2 Markov decision process
Almost all issues can be formulated as MDP in the formal

description of RL environments. MDP refers to the decision-maker
who periodically or continuously observes the stochastic dynamic
system with Markov properties and makes decisions. It includes the
environmental state, action, reward, state transition probability matrix,
and discount factor. The process is given a state. The agent obtains the
new state by performing actions based on the state transition probability
matrix. Each strategy is rewarded for its implementation.

4.2 Problem transformation

The IoV scenario has continuous state and action space, which will
increase the issue’s complexity. So, it is a challenge to find the best task
offloading strategy. Traditional optimization algorithms require
significant iterations to achieve an approximate solution when solving
such issues, which does not meet the requirements of time-varying
systems. However, DRL algorithms can meet real-time decision-making
requirements. Therefore, this paper adopted the DRL algorithm to solve
the aforementioned issues. Get the optimal task offloading strategy
through continuous interaction with the IoV environment.

Problem P1 is a complex issue with continuous real variables,
which have strong coupling. Task allocation, transmission power, and
transmission bandwidth are all continuous real variables. Therefore,
P1 is a non-convex combined issue that cannot be solved directly
through mathematical calculation. In light of this, this paper turns the
optimization issue into a DRL issue and proposes adopting the DRL
algorithm to solve the global optimization issue. Thus, the
optimization issue (34) is established as follows:

P2( ): minimize
x,b,P

~S
total

R Δ� E lim
|T|→∞

1
|T| ∑t∈T StotalR

⎡⎣ ⎤⎦
s.t. C1 − C6

, (35)

where E(·) represents the mathematical expectation.

In the IoV system, the cars are moving, and the vehicle status,
edge server status, wireless transmission channel status, and RSU
status are changing. The system needs to make different decisions to
minimize delay and energy consumption and meet the reasonable
allocation of resources. The transmission bandwidth and computing
resources allocated by the IoV system to cars and RSUs are
continuous values. Traditional DQN is mainly for discrete space.
The DDPG is mainly for constant action space. The SAC and PPO
can be applied to discrete and continuous spaces. Therefore, this
paper designs a PPO-based method to find the optimal task
offloading strategy. Next, the paper delves into the environmental
state, action space, and reward function of Markov games.

4.2.1 Environment state
The environment state S(t) reflects the impact of the channel

condition information and agent behavior on the environment [52].
The state information includes the state of the cars, BS, and RSUs. The
state of the car consists of the vehicle coordinates, transmission
bandwidth, transmission power, and task allocation. The state of BS
and RSUs includes the task size, transmission power, and transmission
bandwidth. Each agent observes that the environment state is

S t( ) � Un t( ), Nn t( ), Rn t( ){ }, (36)
where Un(t), Nn(t), and Rn(t) denote the status of vehicles, BS, and
RSUs, respectively.

4.2.2 Action space
Although the computational complexity of DRL is relatively low

in large-scale network scenarios, the spatial dimension changes as
the number of agents increases. The high-dimensional space will
make the system calculation difficult and affect the best decision.
The algorithm’s performance will suffer from dimension disaster
due to the high-dimensional action and state space [53]. The agent
takes actions according to the currently observed state to avoid the
high computational complexity, that is, jointly optimize the task
allocation, transmission bandwidth allocation, uplink power
control, and offloading decision. Hence, the action is

a t( ) � xn t( ), bn t( ), Pn t( ){ }. (37)

• xn represents the task allocation policy.
• bn represents the uplink transmission bandwidth.
• Pn(t) represents the uplink transmission power.

The agent selects the offloading decision based on the present
state. If the agent sets local computing for the task, the computing
resources must meet the requirements. However, if the agent selects
to calculate the task on the SeVs or MEC, the transmission
bandwidth and computing resources must meet the needs.

4.2.3 Rewards
This paper should strictly follow constraints C1–C6 in the design

of state space, action space, and reward function to optimize the task
offloading strategies. The sum of the reward functions of nodes in all
states is constant, and there is a competitive and cooperative
relationship between nodes. Therefore, the paper sets the reward
value as the opposite of the objective function. In optimization issue
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P2, the agent maximizes the interests through action selection to affect
the system’s state. The reward function is

Rt � −StotalR . (38)

4.3 PPO-based algorithm framework

This paper proposes a PPO-based task offloading and resource
allocation (PPOTR) algorithm to obtain stable performance in the
actual changing network. The agent chooses the action to interact with
the environment according to the policy, thus affecting the environment
state and updating the environment parameters. Next, according to the
new policy, the agent chooses actions to interact with the environment.
Let rt(θ) denote the action probability ratio of new and old strategies.

rt θ( ) � πθ at, st( )
π′θ at, st( ). (39)

When rt(θ) > 1, it indicates that the current strategy is more inclined
to select the sampling action. Otherwise, it is not. The PPO
algorithm improves the original policy gradient (PG) algorithm,
and the formula of the new objective function is given by

L θ( ) � Et
πθ at, st( )
π′θ at, st( ) · At[ ]. (40)

4.3.1 Training algorithm
PPO uses a new objective function to control the change in the

strategy in each iteration, which is uncommon in other algorithms.
The objective function is

Lclip θ( ) � Et min rt θ( )( )At, clip rt θ( ), 1 − ε, 1 + ε( )At)[ ], (41)
where θ denotes the policy parameters. Et denotes the empirical
expectation of the time step. rt denotes the probability ratio under
the new and old strategies. At represents the estimated advantage. ε
denotes the hyperparameter. The value is usually 0.1 or 0.2. clip
(rt(θ), 1 − ε, 1 + ε) is given by

clip rt θ( ), 1 − ε, 1 + ε( ) �
1 − ε, ifrt θ( )≤ 1 − ε
1 + ε, ifrt θ( )≥ 1 + ε
rt θ( ), otherwise

⎧⎪⎨⎪⎩ . (42)

4.3.2 Replay buffer
The static data in the DL differ from the data in the DRL, which is

obtained according to machine learning. At each time step, the agent
observes the current environment state and saves the state, action, reward,
andprediction data datat � (st, at, rt, st+1) of the following environment
state to the replay buffer [54]. In particular, in our model, the data of the
training network will be aggregated after 1,000 time steps.We can see the
data changes in the training process and avoid the correlation in the
observation state sequence to reduce the update variance. Moreover, the
data of each experiment can be used continuously in otherweight updates
to improve the efficiency of data use.

4.3.3 Algorithm steps
In the aforementioned architecture, the agent is the car, MEC is the

policy decision center, and the SeVs and RSUs are the intermediaries of

perception information. The algorithm’s input is the environment state
information, and the output is the optimal offloading policy and target
value. Algorithm 1 presents the pseudo-code.

Input: initial policy parameters and initial value

function parameters ϕ0

1: for k = 0,1,2 . . . do do

2: Collect a set of trajectories Dk � τi{ } by running

policy πk = π(θk) in the environment.

3: Compute rewards-to-go Rt
4: Compute advantage estimates, At (using any method

of advantage estimation) based on the current

value function Vθk.

5: Update the policy by maximizing the PPO-clip

objective, normally via stochastic gradient

ascent with Adam.

θk+1 � argmax
θ

1
|Dk |T ∑

τ∈Dk

∑t�0
T

m · ( πθ(at |st )
π′θk(at |st)A

π′θk(st ,at),g(,Aπ′θk

(st ,at)))
6: Fit value function by regression on the mean-squared

error, normally via some gradient descent

algorithm.

ϕk+1 � argmin
ϕ

1
|Dk |T ∑

T∈Dk

∑t�0
T

(Vϕ(st) − Rt)2
7: end for

Algorithm 1. PPO-based algorithm for task offloading and resource
allocation.

The following illustrates the steps of the proposed PPOTR
algorithm. First, enter the initial policy parameter θ0 and the
value function parameter ϕ0. Second, start iteration and collect a
set of trajectories Dk � τi{ } by running policy πk = π(θk) in the
environment. Then, in the fourth and fifth steps, calculate the
reward value Rt and use the advantage estimation method based
on the current value function Vθk to calculate the advantage
estimation At. Then, in the sixth and seventh steps, update the
strategy θk+1 through PPO-clip objective function Lclip(θ) and the fit
value function ϕk+1 through mean square error regression. Finally,
the algorithm iteration is ended.

Complexity analysis: The algorithm’s main computational
costs include the interaction with the environment, the action,
and evaluation under the old and new strategies. In the process of
interacting with the environment, the agent determines the input
state according to the policy. Furthermore, the agent calculates the
probability ratio of the action under the new and old policies
through the transmission between the action network and the
critic network. The time complexity of the training process
interacting with the environment is given by [55]

C1
PPOTR � O N rN ed

max ∑X
x�0

ΩA
xΩA

x+1⎛⎝ ⎞⎠. (43)

The time complexity of policy updates is given by

C2
PPOTR � O N rN s ∑X

x�0
ΩA

xΩA
x+1 + ∑Y

y�0
ΩC

yΩC
y+1⎛⎝ ⎞⎠⎛⎝ ⎞⎠, (44)

where x, y are the quantities of full connection layers of the network,
respectively. ΩA

x represents the unit of the x-th actor network, and
ΩC

y represents the artificial neuron of the y-th critic network. Then,
the total time complexity of Algorithm 1 is given by
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CPPOTR � O N r N s +N ed
max( )∑X

x�0
ΩA

xΩA
x+1⎛⎝ ⎞⎠

+O N rN s ∑Y
y�0

ΩC
yΩC

y+1⎛⎝ ⎞⎠. (45)

The space complexity of the algorithm [56] is given by

Cspace
PPOTR � O N r N s +N ed

max( )∑X
x�0

ΩA
xΩA

x+1⎛⎝ ⎞⎠

+O N rN s ∑Y
y�0

ΩC
yΩC

y+1⎛⎝ ⎞⎠ +O N( ), (46)

where N is the space complexity of the experience replay buffer in
the algorithm.

5 Simulation results

In this section, a series of simulation experiments to verify the
performance of the proposed algorithm have been proposed. The
simulation results of different algorithms under the same network
settings are given to compare the characteristics of different
algorithms. This paper analyzes the convergence curves of delay,
energy consumption, and objective function under the offloading
strategy and shows that the algorithm is reasonable. This paper
adopts four benchmark schemes from the perspective of
convergence, and the effectiveness and efficiency of the algorithm
are verified through the analysis of energy consumption and delay.
The four schemes are as follows:

• Actor critical (AC) algorithm based on SAC [57]: Under the
same environmental settings, this paper uses the AC algorithm
with a soft update mechanism to solve the issue.

• Local computing policies for all the tasks (AllLocal): All the
tasks are performed locally, and the local computing resources
meet the requirements of task calculation. Calculate the
corresponding delay, energy consumption, and objective
function value.

• All-edge server-only execution policy (AllEdge): Offload all
the tasks to the edge server, and the edge computing resources
and transmission bandwidth meet the task’s requirements.

• Random offloading policy (Random): Offload the task
randomly and allocate resources randomly.

5.1 Simulation setup

This paper evaluates the performance of the proposed algorithm
through multiple simulation experiments. We assume that four
RSUs are set at the roadside, the coverage diameter of each RSU
is 160 m, and the coverage is tangential to each other. For the sake of
driving safety, we assume that there is one TaV and ten SeVs within
the coverage of RSUs. The TaV and SeVs are always within the
coverage of RSUs. Assume the input data SDaT size is 25 Mb (one
frame with a resolution of 1920*1080, 12 bits per pixel), and the total
transmission bandwidth BToT is 100 MHz [58].

The calculation strength is 2,640 cycles/bit [59]. The CPU
frequency of each car is randomly selected within the range of
0.3 × 1012 ~ 0.6 × 1012 cycles/s, and the CPU frequency of the MEC
servers is randomly selected within the range of 1 *1012 ~ 2*1012

cycles/s [60]. The effective switching capacitor of the vehicle and
MEC is 10–27. The transmission rate Rwired for RSU wired
transmission to the MEC is 100 Gb/s [50]. The calculation
capacity of cars and MEC is set to 1.4 Gr/s and 2.8 Gr/s,
respectively Song et al. [51].

This paper considers the effect of small-scale fading on
transmission performance; the channel fading coefficients |~hn|2
and |~hN+1|2 are 1 [61]. The simulation experiment is completed
in the environment of Pytorch 1.11.0 using Windows 10 system and
Python 3.10 software. Other system parameters used in simulations
are shown in Table 1.

5.2 Results

The learning curve of the PPOTR algorithm is shown in Figure 2,
including the training losses of the action and criticism network. In
the simulation experiment, if the value function of training loss does
not tend to 0 for the action network, it proves that the whole action
space has many places not explored, and there are still differences
between the new and old action space. For the critic network, if the
value function of training loss does not tend to 0, it proves that the
critic network cannot perfectly predict the value of the state space. The
simulations show that starting from the 50th training set, the value
function fluctuates in a small range, and the gradient of the loss value
decreases gradually. This indicates that the algorithm begins to
converge and can quickly learn the optimal strategy.

Figures 3A, B show the convergence curves of the delay, energy
consumption, and objective function of the PPOTR algorithm to
solve the aforementioned issues. Figure 3A shows the unsmoothed
curve of the training process, illustrating the total delay sum_OTPD
in seconds, the total energy consumption sum_OTEC tin joules, and
the reward value. Figure 3B is the convergence curve after smoothing
in Figure 3A; the smooth curve is obtained by averaging the data
under each training step with the previous 999 data. The simulations
show that, although the curve fluctuates, the whole process tends to
be flat and the algorithm converges.

The learning curve of the SAC algorithm is shown in Figure 4,
including the training loss of the action and critic networks. It can be
seen from the simulation results that the convergence speed of the
loss function of the SAC algorithm is fast. Therefore, the algorithm
can quickly learn the optimal strategy.

Figure 5A, B show the convergence curves of the delay, energy
consumption, and objective function of the SAC algorithm to solve
the aforementioned issues. Figure 5A shows the unsmoothed curve of
the training process, illustrating the total delay sum_SAC_OTPD in
seconds, the total energy consumption sum_SAC_OTEC in joules,
and the reward value. Figure 5B is the convergence curve after
smoothing in Figure 5A. The simulations show that the SAC
algorithm converges quickly and can solve the aforementioned issues.

The aforementioned two algorithms can solve the issue in this
paper. The SAC algorithm has a fast convergence rate because it
scales the state characteristics before inputting data parameters into
the model. There is no difference in orders of magnitude between
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variables, which is conducive to optimizing the initial model.
However, the convergence effect of the PPOTR algorithm is
better because the algorithm is trained based on dynamic fitting
data parameters. In this paper, the simulation is set to train once
every 2,048 steps, so the convergence speed of the PPOTR algorithm
is slow, but the convergence effect is good.

5.3 Performance comparison

In this part, this paper compares the PPOTR algorithm with the
four benchmark algorithms in terms of delay, energy consumption,
and reward value to verify the proposed algorithm’s performance.

As shown in Figure 6, it represents the total delay of different
policies under the same task data. Each scheme will converge to the
optimal value with increased training times. Under the same computing
task, the SAC algorithm converges faster, but the PPOTR algorithm
converges better. When the task volume increases to 25 Mb, the
proposed algorithm saves approximately 17.33%, 32.74%, 56.63%,
and 32.63%, respectively, compared with the SAC algorithm, local
computing, edge execution, and random computing of the time cost.
This shows that the algorithm proposed in this paper can achieve better
performance in terms of task processing delay.

Figure 7 illustrates the total energy consumption corresponding
to different policies under the same task data. When the task data
volume is 25 Mb, the energy consumption cost of edge execution
calculation is about 2.3 times that of the PPOTR algorithm. The
simulations show that the PPOTR algorithm saves approximately
25.79%, 77.53%, and 63.31%, respectively, compared with SAC,
AllLocal, and Random of the energy consumption. The proposed
algorithm achieves the lowest energy consumption cost.

Finally, this paper normalizes the delay and energy consumption
and converts the objective function value into the reward value in
DRL, as shown in Figure 8. The reward value is composed of delay and
energy consumption, with these variables being highly coupled and
interactive. Under the constraint conditions, the reward value is
minimized to obtain the best task-unloading strategy. The reward
values of the proposed algorithm in this paper were improved by 15%,
28%, 30%, and 44% compared to four baseline algorithms. Numerical
comparative analysis provides strong evidence for the reliability of the
algorithm and approach proposed in this paper. Compared with the
four benchmark algorithms, the algorithm proposed in this paper is
superior in terms of delay, energy consumption, and reward value.
Therefore, this scheme can guarantee to minimize the energy
consumption cost under the tolerable delay.

6 Conclusion

This paper investigates a joint optimization strategy for task
offloading in the IoV edge computing network. In the IoV scenario,
while considering the timeliness of task data and resource
constraints, we constructed a model based on cooperative games

and transformed it into a joint optimization issue. This paper
models the optimization issue as a Markov game based on
intelligent edge, game theory, communication, and DRL. The
reward function is devised as the sum of delay and energy
consumption. We adopted the PPO-based algorithm to solve
the previously mentioned issue. Finally, the performance of the
algorithm is verified using the simulation experiments. The
numerical results show that, compared with SAC and other
baseline schemes, this scheme can achieve stable convergence in
the system environment and obtain the optimal reward value. This
scheme minimizes the system cost and meets the development
needs of the future IoV.
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