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This work is motivated by the lack of publications on the direct application of
multimodal image registration with deep-learning techniques for the
enhancement of treatment planning in particle therapy. An unsupervised
workflow, which seeks to improve image alignment, was developed and
evaluated for computed tomography and magnetic resonance imaging scans
of the head. The scans of 39 paediatric patients with brain tumours were available.
The focus of the two-step workflow, including preprocessing of the scans for
normalisation, is deformable image registration (DIR) with a deep neural network,
which generates deformation vector fields (DVFs). To obtain a suitable
configuration of the network, parameter tuning is performed by varying its
parameters, e.g., layer size, regularisation (λ) of the DVF and learning rate (α).
Image similarity was determined with the Dice similarity coefficient, mDSC, using
segmented images and the mutual-information metric, mMI. The performance of
the deep-learningmodels was assessed with the inverse consistency,mIC, and the
Jacobian determinant,mJD. Inverse consistency is obtained formIC = 0 mm, while
the determinant of a deformed image is expected to be unity. The deep-learning
models passed both performance checks, indicated by the mean values �mIC �
(0.57 ± 1.00)mm and �mJD � (1.00 ± 0.07). Models with λ ≥ 1 yielded highermDSC

values than models with lower λ values. A small-architecture model with α = 10–4

was found to be most suitable for DIR, as improvement in image similarity of up to
12% was obtained in terms ofmMI. The direct application of deep-learning models
produced registered images improving image alignment between scans of
different modalities.
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1 Introduction

In radiotherapy, medical imaging techniques like computed tomography (CT), magnetic
resonance imaging (MRI) or positron emission tomography are used for treatment planning
to obtain images of the patient’s anatomy [1]. Each modality provides unique image contrast
of the tissue, e.g., high soft-tissue distinctness inMRI scans or high bone contrast in CT scans
[1]. As the treatment planning includes the contouring of target volumes and healthy tissue,
information on the enhanced soft-tissue contrast in MRI scans can improve the quality of
radiotherapy by a more precise delineation with images of multiple modalities [1–3].
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Treatment-planning systems used in particle therapy, e.g., proton
therapy, usually perform a rigid registration to superimpose scans of
differentmodalities [4]. However, the rigid registration does not include
the displacement of organs due to patient immobilisation or MRI scans
distorted by magnetic fields [1, 4]. Furthermore, physical changes of the
patient such as body growth or tumour response are challenging,
especially for paediatric patients. Deformable image registration
(DIR) with individual voxel displacements can address these
discrepancies [3, 4]. Since the integration of MRI into particle-
therapy techniques [5, 6] continues to progress, the importance of
multimodal DIR is growing as well. In the case of paediatric patients
with small geometric scales, the geometrical accuracy is required for the
irradiation with steep dose gradients in particle therapy. A current
practical limitation is that advanced image processing techniques such
as DIR [7, 8], generation of synthetic CT scans [9–11], and automated
contouring [12] have been established for adults and, thus, do not cover
the wider anatomical range of paediatric cases. This hampers the
efficiency gain in treatment planning for the patient group that
benefits most from proton therapy.

The research on deep-learning-based medical image analysis has
increased in recent years [3]. A variety of publications presented concepts
of unsupervised DIR for unimodal use [13–15]. Convolutional neural
networks (CNNs), for example, extract the features of images with
convolution operations for image deformation or recognition [3, 7]. The
U-Net [16] structure, which provides efficient learning of image features
on a small-sized data set [7], is often used in combination with CNN.
Balakrishnan et al. took advantage of this for fast atlas-basedDIRof brain
MRI scans [17]. Furthermore, reviews about medical image registration
stated that up to 70% of the publications focused on unimodal image
registration [7, 8]. Various studies have explored direct multimodal DIR
for different regions of interest and modalities. Some studies focused on
the registration of MRI and ultrasound scans[18], as well as the
registration of CT and MRI scans of the abdomen [18, 19]. In
contrast, other research efforts employed indirect deep-learning-based
techniques by synthesising CT scans from correspondingMRI scans as a
preliminary step, thereby making use of unimodal registration
techniques [9]. Nevertheless, an increasing number of recent
publications indicate a growing trend towards direct DIR for clinical
applications [7, 8].

The investigations of this study contribute to the research field by
developing an unsupervised image-registration workflow for head CT
andMRI scans using direct deep-learning-based DIR with a CNN. First,
the data sets as well as the properties of the scans are described in Section
2.1. After explaining the choice of image-similarity metrics in Section
2.2, the preprocessing, which is required for the deep-learning step, is
introduced in Section 2.3. Then, the deep-learning network (Section 2.4)
and its parameter tuning (Section 2.5) are presented. The results are
rigidly (Section 3.1) and deformably (Section 3.2) registered images
generated by the fast and direct application of the registration workflow.

2 Material and methods

2.1 Data

The data provided by the West German Proton Therapy Centre
Essen (WPE) consisted of 39 paired CT and MRI scans of patients
with a maximum age of 18. Each pair of images had been acquired to

initially plan the treatment of the patients with brain tumours. For
the parameter tuning of the deep-learning-based DIR, the data were
subdivided into a training and a testing data set. The former
contained the scans of 25 patients. The clinical protocol requires
a planning MRI if the most recent diagnostic MRI is older than
30 days or if anatomical changes were likely in this period. For the
25 patients, who were part of a cohort of the KiProReg register study
(DRKS00005363) [20], the acquisition of the planning scans was
performed subsequent to the respective X-ray CT scan. In addition,
the testing data set with 14 paediatric patients was used to assess the
workflowwith themost suitable parameter setting. TheMRI scans of
the testing data set had been acquired directly after the CT scans.
These patients were part of the KiAPT study [21], which is linked to
KiProReg. Both the KiProReg (18-9109-BO) and the KiAPT (18-
8320-BO) studies were approved by the Ethics Committee of the
University of Duisburg–Essen.

The CT scans were composed of slices containing 512 × 512
pixels. For MRI, the T2-weighted scans were used in this study. The
aspect ratio of these scans was not constant and varied from 230 ×
256 to 512 × 600. The numbers of CT and MRI slices were in the
ranges of 245 to 369 and 33 to 108, respectively. The latter numbers
are much smaller than the former ones because of the larger slice
thickness of MRI. The MRI scans had been conducted without
patient immobilisation. The head width of the patients varied
between 120 and 161 mm. Furthermore, the training data set
included the contour of the ventricular system for each patient
and modality, which had been outlined by a medical physicist.
Afterwards, all contours were validated by a senior clinician at WPE.

2.2 Image-similarity metrics and evaluation
techniques

A major challenge of multimodal approaches in DIR is the
variation of the intensity distributions associated with different
tissue types. The metrics have to be chosen with the intention of
measuring the alignment of image pairs [4]. Two intensity-based
metrics assessing image similarity are the normalised cross-
correlation [22], mNCC, and the mutual-information metric [23],
mMI. Another possibility to determine the image alignment is the
Dice similarity coefficient [24], mDSC. This feature-based metric
measures the overlap of segmented images. The range of mNCC and
mDSC is between 0 and 1, where higher and lower values refer to
agreement and disagreement, respectively. Moreover, higher mMI

values indicate an increase in image similarity.
Two approaches were chosen to assess the registration accuracy

by comparing the results of deformable and rigid registration.
Segmented images were used to calculate the difference in the
overlap between deformably and rigidly registered images,

ΔmDSC � mDSC,DIR −mDSC,rigid. (1)

The relative deviation,

ΔmMI � mMI,DIR −mMI,rigid( )/mMI,rigid, (2)

of themutual-informationmetric was additionally calculated. In both
cases, positive values indicate an improvement of the deformably
registered images with respect to the preprocessed images.
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Furthermore, two checks of the results of deep-learning-based
DIR were carried out to obtain information on the registration
performance [4]. The inverse-consistency method was performed by
adding the DVFs of both the MRI-to-CT and CT-to-MRI directions.
The sum, mIC, is expected to be consistent with zero. Another check
quantified the change of the voxel volume after registration by
calculating the Jacobian determinant, mJD, for each voxel of the
deformation vector field (DVF). The mean value for the deformed
image should be unity due to the diffeomorphic transformation.

2.3 Preprocessing

A neural-network-based registration requires preprocessing of
the input images. The procedure developed in this study runs
automatically on the data sets to get rigidly registered images
with the same image format. All image-processing steps were
devised with the CT scans as the reference images, R, and the
MRI scans as the moving images, M.

In a first step, the images, which contained many slices without
anatomical information and in some cases parts of the shoulder,
were removed to preserve memory for further computations. Then,
image segmentation was performed to enable computing mDSC for
an image pair. For this, segments of the eyes were derived from
intensity restrictions using the Hounsfield scale and thresholding
techniques for CT and MRI, respectively. For the training data set,
the outlined ventricular system was additionally converted from
contour to volume, complementing the segmented image.

The main part of the preprocessing is the reformatting of the
images. The adaptation of the image formats is essential for input
pairs of a neural network. This includes the pixel spacing, which
differs between modalities. Therefore, the scans were scaled to a
pixel spacing and a slice thickness of 1 mm, facilitating an equivalent
representation in the axial plane. After scaling, the images were cut
to an aspect ratio of 3 : 4 with 192 × 256 pixels since this format suits
the shape and the size of the head. Then, the spatial discrepancies
between CT and MRI scans were reduced by rigid registration. For

the transformation, three translation parameters and two rotation
angles were calculated with the centres of mass of the eye segments.
The third angle was determined with an iterative procedure of
applying rotations in steps of 1° until the highest mDSC value was
measured. Eventually, the number of slices was decreased to 64 for
all images.

For the deep-learning training process, the pixel values were
manipulated. The thresholds 1024 (0 HU) and 600 were chosen for
the CT and MRI scans, respectively. These cuts reduced noise coming
from low intensities by clipping lower values to 0. Furthermore,
intensities of CT scans higher than 300 HU were subtracted by
300 to maintain the morphology and to soften the highest intensity
difference between CT and MRI coming from bone tissue. Also, the
intensity ranges were standardised to 256 greyscale values.

2.4 Deep learning

This study employed a CNN for image registration of CT and
MRI scans. The training procedure is presented in Figure 1. The
input of the network consists of at least one pair of preprocessed
images to produce deformed images, D, with deformable
registration. If the training data set contains the image pairs of
several patients, the input can be grouped into batches, b, by
concatenating various reference and moving images. This
increases the possibility to generalise the model [25].

The network is formed according to U-Net [16], signifying an
encoder and decoder path for destruction and reconstruction,
respectively. Both paths are subdivided into several levels. In the
encoder path, each level consists of a specified number of
convolutions to gain feature maps depending on the kernel
weights. An activation function is then applied to the feature
maps. Subsequently, the level is terminated with a pooling
operation to reduce the size of the feature maps. Traversing the
encoder path yields the structures from the images, but the
information of their position is lost. The decoder path is
constructed to connect all feature maps in the respective level.

FIGURE 1
Schematic drawing of the training procedure including the CNNwith U-Net structure based on VoxelMorph [17]. The input consists of the reference,
R, andmoving,M, images. The CNN consists of several layers with convolution operations. Each layer produces a specific number of feature maps, which
can be set by the user. At the end, the deformation vector fields (ϕx, ϕy and ϕz) and the generated deformed image, D, are used in combination with R to
calculate the loss function for optimisation.
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Hence, the feature maps at the end of the encoder path are unfolded
to restore the size and to apply convolutions afterwards. Finally, a
deformation vector field, ϕ, is generated to predict the spatial
transformation of the moving image. To finish one iteration of
the training, a loss function is calculated with the aim of
minimisation, which necessitates a large number of epochs for
the described process to learn and improve the convolution
weights from previous iterations.

The CNN, based on VoxelMorph [17, 26], used a kernel size of
3 × 3 × 3 for the convolution operations and the leaky rectified linear
unit [27] with a small gradient of 0.2 as activation function. For
pooling operations in the encoder path, the size of the feature maps
was halved by passing the maximum value of a 2 × 2 × 2 grid. A grid
with the same size was used to double the format of the feature maps
in the decoder path. The computation of D was performed by
exploiting the information of the DVF and applying linear
interpolation. The nearest-neighbour method was used for
segmented images to maintain the pixel values of the segments.
The loss function was defined as

L R,D, ϕ( ) � Lsim R,D( ) + λLgrd ϕ( ). (3)
Here, the term Lsim(R,D) � (1 −mNCC) was chosen to represent
similarity and dissimilarity between the images for values near zero
and unity, respectively. The termLgrd(ϕ), calculated from the spatial
differences of adjacent voxels in the DVF, was scaled with the
parameter λ for regularisation [17]. The Adam optimiser [28]
was implemented in this deep-learning network with a
customisable learning rate, α.

2.5 Parameter tuning

In this study, several models were trained and validated to find
an appropriate set of the CNN parameters. For this purpose, the
training data set was subdivided to apply a five-fold cross-validation
with 80% of the data set for training and 20% for validation. The
training of each model ran 200 iterations with a non-randomised
training sample and started with the same initial weights to assess
the impact of the parameters. The parameters of the most suitable
setting were chosen to train a model with the whole training data set
and to apply it to the testing data set afterwards.

Regarding the optimisation of the CNN, models were trained
independently by varying parameters related to the loss function, the
optimiser function, the CNN structure and the batch size. The
regularisation parameter in Eq. 3 and the learning rate of the
optimiser were part of the model variations, where the settings
λ = {0.01, 0.05, 0.1, 1, 2} and α = {10–5, 10–4, 10–3} were investigated.
The range of λ-values were chosen, since similar variations had been

TABLE 1 Variations of the CNN architecture regarding the number of feature
maps in each layer of the encoder and decoder paths.

Name Encoder Decoder

Small [8 − 16 − 16 − 16] [16 − 16 − 16 − 16 − 16 − 8 − 8]

Medium [16 − 32 − 32 − 32] [32 − 32 − 32 − 32 − 32 − 16 − 16]

Large [24 − 48 − 48 − 48] [48 − 48 − 48 − 48 − 48 − 24 − 24]

FIGURE 2
Results of the preprocessing of the planning CT and T2-weighted MRI scans for the training data. (A) The green circles highlight the similarity
between Slice 20 of Image pair 1. (B) The green lines facilitate size comparison of Slice 30 of Image pair 1. (C) For Slice 40, the segmented images
containing both eyes and the ventricular system are overlaid with the images of Image pair 1. Sagittal planes of the Image pair 4 (D) and 16 (E) illustrate the
effect of the preprocessing with the green lines.
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used in unimodal registrations [17]. Moreover, the size of the
network architecture was varied three times by means of the
number of resulting feature maps in the levels of the encoder
and decoder paths. These variants are listed in Table 1. Models
with a batch size of b = 4, which splits the training data set into
groups of four image pairs, were trained besides models with b = 1.

3 Results

3.1 Preprocessed data

In Figure 2, images with two patient orientations exemplify the
outcome of the preprocessing. The unified image format of 192 ×
256 pixels is shown for selected slices of one patient in Figures 2A–C,
where equivalent structures are located in the same CT and MRI
slice with similar positions. The image alignment is also
corroborated with the segmented images, which display the eyes
and the ventricular system. The MRI slices appear magnified in
transversal directions compared to the CT scans. In addition, the
selection of the 64 slices regarding the head area can be inferred from
the sagittal planes of two preprocessed image pairs in Figures 2D, E.

3.2 Deformable registration with deep
learning

The parameter tuning, described in Section 2.5, led to
90 registration-model configurations. For each configuration, the
results of the cross-validation method were combined in the
evaluation process. In the following, the investigation of registration
accuracy, performance and qualitative comparison of the registered
images, aiming at finding an appropriate parameter setting, is presented.

3.2.1 Accuracy
The evaluation of the registration accuracy was performed with a

feature-based metric and an intensity-based metric (Section 2.2).

Both metrics were determined and compared to the rigidly
registered images to highlight improvements or deteriorations
achieved by the deep-learning-based DIR.

The ΔmDSC values of the small-architecture models with the
batch size b = 1 are shown in Figure 3 and listed in Table 2. The
distributions of the other configurations showed similar tendencies.
In general, a decreasing trend of the accuracy was visible for lower
values of the regularisation parameter. Models yielded better
accuracy for λ ≥ 1. The variation of the learning rate showed
that models with α = 10–3 mostly achieved lower accuracy than
models with α = 10–4 or α = 10–5. A comparison between the results
of the training data in Figure 3A and the validation data in Figure 3B
illustrated the same tendencies, e.g., low values of λ led to a decrease
in accuracy.

As the ΔmDSC values indicated configurations with higher
registration accuracy based on the segmented images, the mutual
information is additionally used to assess the image similarity based
on statistical information of the images. The results are listed in
Table 3. The same tendencies observed with ΔmDSC were obtained
with mutual information. Consequently, the most suitable CNN

FIGURE 3
Registration accuracy for the small-architecture network and the batch size b = 1 with the Dice similarity coefficient. The difference ofmDSC before
and after applying DIR to the segmented images was determined. The results are shown for the training (A) and validation (B) data. Each plot contains the
variations of λ and α, regulating the smoothness of the deformations and the step size of the optimiser, respectively. The red lines inside the boxes
represent the medians.

TABLE 2 Difference of the Dice similarity coefficients, ΔmDSC, for the parameter
tuning with the small-architecture model and batch size b = 1.

α λ = 0.01 λ = 0.05 λ = 0.1 λ = 1 λ = 2

Training

10–5 −0.04 ± 0.02 −0.02 ± 0.02 −0.01 ± 0.01 0.00 ± 0.01 0.00 ± 0.01

10–4 −0.07 ± 0.02 −0.05 ± 0.02 −0.04 ± 0.03 0.00 ± 0.01 0.00 ± 0.01

10–3 −0.10 ± 0.03 −0.08 ± 0.03 −0.06 ± 0.03 −0.02 ± 0.02 0.00 ± 0.01

Validation

10–5 −0.04 ± 0.02 −0.02 ± 0.01 −0.01 ± 0.01 0.00 ± 0.01 0.00 ± 0.01

10–4 −0.07 ± 0.02 −0.05 ± 0.03 −0.04 ± 0.03 −0.01 ± 0.01 0.00 ± 0.01

10–3 −0.10 ± 0.03 −0.07 ± 0.03 −0.06 ± 0.03 −0.03 ± 0.02 0.00 ± 0.01
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configuration is the small-architecture model with the parameters
b = 1, λ = 2 and α = 10–4, achieving the highest improvement in
image similarity according to both metrics. The average increase of
12% was yielded with ΔmMI.

3.2.2 Performance
The inverse consistency and the Jacobian determinant were

determined individually for each voxel, which led to a high scatter.

Since the results were similar between the variations of the network
architectures and the batch sizes, the outcome of the parameter tuning is
illustrated in Figure 4 for the small-architecture network and b = 1. The
mean values for each parameter setting were calculatedwith the 100 and
the 20 image pairs of the five-fold training and validation data,
respectively. In addition, the model performance of the most
suitable configuration was measured with the testing data set.

The inverse consistency indicated that the results of the
validation data (Figure 4B) and the testing data (Figure 4C) were
compatible with the training data (Figure 4A). Interestingly, a slight
shift towards positive values wasmeasured for all parameter settings.
This means that the deformations differed regarding the registration
direction. However, the results were still consistent with zero, as
evidenced by �mIC � (0.57 ± 1.00)mm for the testing data set. The
evaluation with the Jacobian determinant pointed out that all
parameter variations yielded determinants close to unity, which
was indicated by �mJD � 1.00 ± 0.07 for the testing data set. The
deviation of the Jacobian determinant was larger for low-λ models,
which hints at unstable registration performance.

Moreover, the values of the Jacobian determinant of one slice are
presented in Figure 5A. The strength of the deformations increased
towards the outer region of the head. In Figure 5B, the |1 − �mJD|
distribution was calculated for the radius r, which started at the
isocentre. This indicated deformations of up to 10% on average at
the outer region of the head.

TABLE 3 Relative deviation, ΔmMI, of the mutual-information metric for the
parameter tuning with the small-architecture model and batch size b = 1.

α λ = 0.01 λ = 0.05 λ = 0.1 λ = 1 λ = 2

Training

10–5 −0.09 ± 0.02 −0.05 ± 0.01 −0.01 ± 0.03 0.06 ± 0.04 0.08 ± 0.05

10–4 −0.12 ± 0.02 −0.05 ± 0.02 0.01 ± 0.03 0.09 ± 0.04 0.12 ± 0.05

10–3 −0.08 ± 0.02 −0.05 ± 0.02 −0.03 ± 0.02 0.03 ± 0.02 0.04 ± 0.02

Validation

10–5 −0.09 ± 0.02 −0.05 ± 0.01 −0.01 ± 0.02 0.06 ± 0.03 0.07 ± 0.03

10–4 −0.10 ± 0.02 −0.05 ± 0.01 0.01 ± 0.02 0.07 ± 0.03 0.10 ± 0.04

10–3 −0.08 ± 0.02 −0.06 ± 0.01 −0.04 ± 0.02 0.03 ± 0.02 0.03 ± 0.02

FIGURE 4
Registration performance for the small-architecture network and the batch size b = 1. Themetrics were calculated individually for each voxel, which
leads to large error bars. Left: The inverse consistency (A) and the Jacobian determinant (D) are shown for the training data. Center: The results of the
inverse consistency (B) and the Jacobian determinant (E) are also presented regarding the validation data. Right: The model with α = 10–4 and λ = 2 was
applied to the images of the testing data set. The average over all voxels (solid lines) and the uncertainties (filled areas) of the inverse consistency (C)
and the Jacobian determinant (F) are shown.
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3.2.3 Qualitative evaluation
The images in Figure 6 served to evaluate the outcome of the

parameter tuning. The impact of a DIR with λ < 1 was studied
with the middle image in Figure 6A, which shows the results of
the deformation of a medium-architecture model with the
parameters b = 1, λ = 0.01 and α = 10–5. The registered image
includes many spiky distortions, which makes it impractical. The
smoothness increases with higher values of λ. This confirms that
models should be trained with λ ≥ 1. The result of the most
suitable setting is presented with the right image in Figure 6A.
The largest volume deformation happened at the back of the head
as also visible in Figure 5. The position of the tissue in the MRI
slice differed from the skull in the CT slice. This misalignment
was mainly reduced. Therefore, the model with the most suitable
setting was applied to the testing data set, as visualised in
Figure 6B. The same effects are noticeable, which means that
the application of DIR reduces the spatial discrepancies in the
back of the head.

4 Discussion

Direct multimodal DIR is a challenging and poorly explored
research field due to the difficulties concerning the discrepancies
in image representation of different modalities. The unsupervised
and fully automated workflow for head CT and MRI scans takes
several minutes to produce registered and deformed images based
on rigid and deformable registrations. The preprocessing
designed as the first workflow step showed the efficacy of
generating rigidly aligned images. The eyes were chosen as the
reference structure for the rigid registration, which caused larger
distortions in the back of the head. These dislocations could be
reduced by conventional existing rigid-registration methods.
However, anatomical distortions due to patient positioning or
distortion effects, which appear in the MRI scans with a radial
degradation towards the outer regions of the body [29–32], would
still be present. Therefore, deep-learning-based DIR is a
promising approach to correct these distortions.

FIGURE 5
Volume changes of one slice of the testing data for themost suitable parameter setting. (A) The Jacobian determinant is shown for each voxel. While
mJD = 1 represents no volume change, values above or below unity indicate volume expansion or contraction, respectively. (B) The term |1 − �mJD| (blue
line) depending on the radius r is determined from the isocentre. The uncertainties are illustrated as the blue area.

FIGURE 6
Visualisation of overlaid planning CT (blue colours) and deformed T2-weighted MRI (greyscale) slices. The blue structures represent the skull in the
CT slice. The ellipses indicate distinct differences from low (yellow) to high (green) image alignment. (A) The overlay of the preprocessed CT and MRI
slices (left) as well as the results after the DIR (center, right) are depicted for the training data set. Besides the outcome of the most suitable parameter
setting (right), MRI slices registered with a low-λ model (center), mentioned in Section 3.2.3, are shown. (B) The overlay slices of the preprocessed
images (left) are shown to compare the effect of DIR (right) on the testing data set with the most suitable parameter setting.
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A difficult task in multimodal DIR is the choice of image-similarity
metrics to be used in the loss function and to quantitatively validate the
outcome. Considering the reduced bone intensities in the CT scans,
mNCC had proven to be most suited. For evaluation, the Dice similarity
coefficient, used to assess the registration accuracy, was inefficient due
to the uneven distribution of segments. Therefore, the mutual-
information metric was used for more accurate evaluation. In
addition, the registration performance of the CNN was measured
with the Jacobian determinant of the DVF, which also included the
volume changes outside the head. Thus, the mean value is
mathematically expected to be unity for a proper diffeomorphic
registration. Models with the setting λ < 1, for example, yielded
�mJD < 1 (see Figure 4D), indicating registration errors, which are
visible in the middle image of Figure 6A. To assess the physical
volume changes after the registration, the Jacobian determinant has
to be determined within the body contour. Then, the expected value of
�mJD is supposed to deviate from unity due to distortion effects in the
MRI scans [4].

The large variety of deep-learning algorithms for DIR provides
the potential for further work since this study only covered one
possible CNN application. Compared to the direct application,
artificially generated images based on deep learning can avoid
multimodal registration problems. A related work [9] showed
that the artificial-based procedure achieved results superior to
direct multimodal DIR using splines with the software elastix
[33]. Therefore, the deep-learning-based results obtained in this
study need to be compared with common DIR approaches, which
should be investigated in further work. The comparison of different
procedures provides the advantages and disadvantages of the deep-
learning approach. One advantage, for example, is the fast
application of deep neural networks. These can cope with
challenges such as physical growth or changes in brain morphology.

Multimodal DIR is an application barely supported in practice. The
clinical integration of the proposed registration workflowwould require
simple application through clear instructions for the clinicians [4]. As
the workflow is an unsupervised method, the application would still
require supervision by trained clinicians, especially for quality
assessment. In this study, the data sets contained scans of patients
under the age of 18, which led to a variation in the head width of up to
40 mm. This is useful for DIR with deep learning. As the shape and
morphology of the head vary from age to age especially for children,
scans of each age group provide more information, such as anatomical
structures and intensity distributions, for the CNN. Future work should
deal with data expansion and loss-function variation. One option is to
vary the similarity part of the loss function by considering othermetrics.
To the best of our knowledge, little is known about the influence of the
high anatomical variability of paediatric cancer patients on the
performance of deep-learning-based patient modelling,
i.e., registration and contouring. As this impacts the quality and
efficiency of treatment planning of a large patient fraction in proton
therapy centers, more research and development should be carried out.

Ultimately, this study focused on the implementation of direct
multimodal DIR with deep learning for head CT and MRI scans of
paediatric patients. The registration method compensated
distortions, which remain after rigid registration, by improving
image alignment with unique deformation vector fields. The
current study is a first step to facilitate treatment planning of
paediatric cases with small geometric scales.
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