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China is a large oil-consuming country, and sharp fluctuations in oil prices are
bound to be detrimental to the stable growth of its economy. Therefore,
accurately grasping the impact of the oil market on China’s sectors is the key
to ensuring its healthy economic development. The article aims to explore the
extreme risk transfer link of the oil and China’s sectors system, focusing on
uncovering the risk spillover mechanism of the oil and providing early warning
on it. We apply the TENET method to discuss risk propagation relationships within
the oil and sectors system at three levels. The TVP-VAR model is brought in to
recognize the factors affecting risk spillover in the oil market from the network
correlation perspective. Finally, early warning of oil risk spillover is provided by
incorporating the influencing factors into a machine learning model. The
outcomes indicate that the risk connectivity of the oil and China’s sectors
system is highly correlated with extreme events. There are variations in the
spillover effects of oil market risk on different sectors, with Telecommunication
Services, Utilities, Financials and Major Consumer sectors being the main bearers
of the oil risk shocks. Overall, oil risk spillovers are mainly driven by economic
policy and geopolitics, but oil price uncertainty is found to have a persistent impact
on oil market risk spillovers in the dynamic analysis. Random forest model can
provide effective early warning of oil risk spillovers. In addition, the significance
analysis shows that oil price uncertainty and inflation are important factors
affecting oil risk spillovers and are nonlinearly correlated with them.
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1 Introduction

As an indispensable strategic energy source in today’s world, oil is an important support
for the stable operation and sustainable development of the national economy [1–3]. The oil
market is subject to fluctuations resulting from a variety of factors, including international
politics, economics and supply and demand. In recent years, successive crises in the oil
market have seriously affected the stable growth of the world economy [4]. The oil crisis due
to oversupply in 2014, the oil price plunge to negative value caused by the COVID-19
epidemic in 2020, and the soaring oil price caused by the impact of the conflict between
Russia and Ukraine have greatly impacted the stability of global economic development.
China is the world’s most prominent emerging market, and the smooth operation of its
economy is closely related to the global economic system [5, 6]. As one of the countries with
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the largest demand for oil in the world, China has a relatively high
dependence on oil. However, China does not have a high voice in oil
pricing, so it often can only passively receive the risk impact brought
by oil market fluctuations [7]. Fluctuations in energy prices can
affect firms’ output and profits through production costs, which in
turn can lead to volatility in share prices. In addition, with the birth
of oil derivatives, the continuous improvement of their financial
attributes makes the impact of the oil market fluctuations diffuse
from the real economy to the capital market [8]. The correlation
between energy markets and financial markets has increased
significantly, and volatility caused by shocks to energy markets
can easily trigger cross-market contagion of financial risks. And
the stock market occupies an important position in the financial
market, which largely reflects the overall economy of a country.
With this background, fluctuations in the oil industry will directly
affect the energy costs of various industries in China as well as the
country’s inflation level, and even threaten China’s energy security
[9, 10]. Therefore, exploring the influence of the oil market on
China’s sectors will help to make economic decisions and predict
risks, to improve the competitiveness and sustainable development
ability of various sectors in China. In this regard, this paper attempts
to examine the impact of risk shocks in the oil market from an
industry stock market perspective. This leads to a series of thought-
provoking questions: What kind of risk transfer exists between the
oil and China’s sectors? What factors will affect the risk spillover
from oil? Through what mechanism do these factors contribute to
the spillover from oil? Can effective early warning of risk spillovers
from oil be achieved through monitoring of risk drivers?

Much of the earlier paper has analyzed the role of the oil market
shocks on economies around the world [11–14]. The perspectives
mainly include the implications of oil volatility on micro-firms [15]
and macroeconomic indicators [16]. Notably, the various effects of
the oil shocks on the economy can be captured in the stock market as
it is an important predictor and indicator of macroeconomic trends.
Given this, scholars have gradually shifted their research focus to the
relation between oil and the stock market [17, 18]. [19] discuss the
implications of oil price volatility on the stock markets of
G7 countries from the viewpoint of supply and demand shocks,
respectively [20, 21]. Explore the different responses of oil importing
and exporting countries to oil price shocks. There is also literature
that explores the heterogeneous effects of oil price volatility from the
perspective of economies with different levels of development [22].
However, these studies generally focus on the linkages between a
region or country and the oil industry, ignoring the role of oil price
volatility in specific sectors. Given the different industrial chain
locations and cost structure and other factors of different sectors, it is
necessary to study the effects of oil movements on various industries
[23]. [24] points out that oil price volatility, except for its impact on
oil-related sectors, also affects those sectors that hardly use oil. Bouri
et al. (2023) considered the impact of crude oil volatility on different
sectors of the GCC under different market conditions [25]. It is
worth noting that China surpassed the U.S. as the world’s largest oil
importer for the first time in 2013. It was also in 2013 that China
undertook a reform of refined oil prices, which made the sector’s
stockmarket in Chinamore sensitive to adjustments in international
oil prices [26, 27]. In this context, scholars began to concern
themselves with the implications of the oil market volatility on
the Chinese industrial economy [28]. [9] found variations in the

responses of different sectors to the oil industry by exploring the
reliance between oil and China’s sectors. Nevertheless, the above
studies usually focus their research on the correlation between the
two, and considering the complex mechanism of interaction
between the oil and China’s sectors, there is a need to fully
elucidate the spillover effect. Unlike the literature above, this
paper takes the correlation network perspective to fully consider
the nonlinear interactions between oil and China’s sectors, capture
the extreme risk spillovers, and identify the correlation structure of
risk transfer. More importantly, we also discuss the drivers affecting
risk spillovers from oil and provide early warnings about them
through machine learning methods. The gap between previous
research on oil markets and industry stock markets regarding
this direction is bridged.

To clarify the link between oil and the stock market, scholars
have adopted many approaches to explore the risk correlation
between the two [24, 29]. [1] investigated whether there are
volatility spillovers between the European and U.S. oil industry
and the sector stock markets through a GARCH model. However,
these studies only focus on the overall risk between them and neglect
to discuss the extreme risk. Nevertheless, extreme risk tends to be a
more realistic measure of risk exposure in times of crisis [30]. [31]
measured both positive and negative extreme risk spillovers between
the stock market and oil through VAR. However, the method is
difficult to reveal the complex nonlinear correlation of risk between
markets. For this reason [29, 32], introduce the VMD method and
Copula function to examine the effect of oil shocks on stock market
risk, which makes up for the shortcomings of previous studies that
ignored nonlinear correlations [33]. However, the Copula method is
sensitive to outliers and limits the flexibility of the marginal
distribution [34]. The TENET model (Tail Event-driven
Network) presented by [35] effectively bridges the gap between
the above approaches. The method considers macro factors in the
model and uses semi-parametric quantile regression to calculate the
extreme risk. It also combines the LASSO regression method to
eliminate redundant variables and construct a directed weighted
network. In addition, the impact of various macro market indicators
on the risk output of the oil industry has been less mentioned in
previous studies. In this paper, the TVP-VARmodel (Time-Varying
Vector Autoregression) is adopted to determine the factors affecting
risk spillover, which has better data fitting ability than the traditional
VAR model and has the nature of time-varying parameters to fully
capture the dynamic characteristics of the volatility spillover
relationship. For risk early warning, we introduced the Random
Forest model. Compared to traditional forecasting models, random
forests are integrated models and therefore have high accuracy when
dealing with complex datasets [36]. In addition, the method can
assess the importance of variables and reveal nonlinear associations
between variables.

This paper attempts to explore the extreme risk spillovers
between the oil market and China’s sectors, and to reveal the risk
spillover mechanisms in the oil market in order to provide early
warning. It complements studies on extreme risk spillovers from oil
to China’s sectors. The main contributions are as follows: 1)
Previous studies have tended to ignore extreme risk spillovers
between the oil market and sector stock markets [37], or the
nonlinear correlations that exist in risk transmission [24, 31]. In
contrast, this paper introduces the TENET methodology to
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construct extreme risk networks of the oil and 13 China’s sectors
system to explore the nonlinear risk spillover relationship. In
contrast to traditional models, this approach uses a
nonparametric mono-exponential model instead of a traditional
linear model to model uncertain functional relationships between
variables, which satisfies the need for nonlinearity and time-varying
nature of the extreme risk contagion between the oil market and the
stock market. We discuss the time-varying characteristics of risk
spillovers across the system and the risk transfer between the oil and
sectors, and further examine the variability in the performance of
different sectors concerning oil risk spillovers. Unlike the sectoral
heterogeneity derived from a previous study [24], our research
found that the oil market’s risk correlation with related energy
and commodity sectors is not significant, possibly due to
government controls and supply chain stability. Moreover, we
account for the effect of extreme event shocks on the system’s
risk-transfer relationship, which compensates for the shortcomings
of previous studies in this direction. 2) Using the TVP-VAR model,
this paper explores the factors affecting oil extreme risk spillover
from a network perspective and calculates the contribution of each
risk factor to oil risk spillover under static and dynamic conditions.
Compared with the conventional measurement methods [7, 18],
analyzing the contribution of influencing factors using the network
approach does not require assumptions about the intrinsic
relationship between variables, and provides a new way of
thinking for related research. In addition, the TVP-VAR model
has the advantages of avoiding loss of observations and being
insensitive to outliers compared to the traditional DY model
[38]. Through this research methodology, we found that the
influencing factors exhibit different mechanisms of action, with
some having short-term effects and others having long-term effects.
3) After analyzing the drivers, we further incorporate these factors
into a random forest model for risk warning. The importance of the
influencing factors is then explored and the nonlinear relationship
between the factors and risk spillovers is discussed. Unlike
traditional linear prediction algorithms [39], the Random Forest
algorithm has the advantage of avoiding overfitting. The risk
warning provided in this paper, along with the analysis of
variable importance and demonstration of nonlinear
relationships, can aid in identifying critical risk factors. This
provides a solid foundation for implementing effective measures
to mitigate potential risks posed by oil to various industries in China.

The remainder of the article is organized as follows. Section 2
explains the empirical methodology. Section 3 describes the data
sources and statistical descriptions. Section 4 first analyzes the
extreme risk spillovers between the oil and China’s sectors at
different levels; then explores the risk factors that affect the value
of spillovers in the oil market and provides risk warnings; and finally
conducts a robustness test. Section 5 contains the conclusions of this
paper and makes policy proposals.

2 Methodology

2.1 CoVaR estimation based on TENET

To characterize the risk transfer relationship between oil and
China’s sectors, we constructed extreme risk spillover networks

using the TENET methodology and estimated the risk spillover
level. Unlike previous methods for measuring risk spillovers, this
method focuses on the nonlinear characteristics of risk contagion. In
addition, it incorporates a mono-exponential model to compute tail
risk between the oil market and sector stock markets on a high-
dimensional nonparametric basis. Specifically, the TENET method
is organized into three steps:

In the first step, VaR for individual i is calculated using linear
quantile regression:

Xi,t � φi + γiK t−1 + εi,t, (1)
V̂aRi,t,τ � α̂i + γ̂iK t−1, (2)

where Xi,t is the logarithmic return of the individual
i(i � 1, 2, ...,k) at time t, K t−1 is an n-dimensional column
vector representing the macroscopic state variables lagged by
one period, γi is an n-dimensional row vector that indicates the
degree of influence of the state variable on i. V̂aRi,t,τ is the
regression result of VaR of i for macro variables, and τ ∈ (0, 1)
represents the quantile level.

In the second step, the CoVaR is calculated using a single index
model (SIM) to capture the extreme risk spillover effects among the
variables. Equations 1 and 2 represent the return rate and risk of
individual i. When we put individuals into the whole system,
individual j is affected by other individuals in the system in
addition to macro variables. The CoVaR of j is estimated by
conditioning on its information set.

Xj,t � g β⊤j|Πj
Πj,t( ) + εj,t, (3)

̂CoVaRTENET
~∏ j

,t,τ ≡ ĝ β̂
⊤
j ~Πj| ~Πj,t( ), (4)

where Πj,t � X−j,t,K t−1{ } , Πj,t represents a set of information,
X−j,t denotes the logarithmic returns of the k−1 individuals
except j(j� 1, 2, ...,k) at time t. Define the parameters as
βj|Πj

� βj | −j, βj|K{ }⊤. g(·) denotes the nonlinear interaction
effect of the other k−1 individuals on j. ̂CoVaR

TENET
~∏ j

,t,τ is
obtained by carrying out a τ� 5% quantile regression of VaR
into Eq. 2. ~Πj,t � V̂aR−j,t,τ ,K t−1{ }, where
V̂aR−j,t,τ � V̂aR1,t,τ , V̂aR2,t,τ , ...V̂aRk−1,t,τ{ }, stands for the VaR
estimate of the return of all individuals except j. ̂CoVaR

TENET
~∏ j

,t,τ

represents the risk of the tail event-driven network, covering the
influence of all other individuals on j and the mapping of the
connectivity function g(·) nonlinearly.

In the third step, the risk contagion intensity is calculated:

D̂j|~Πj
≡
∂ĝ β̂

⊤
j|~Πj

Πj,t( )
∂Πj,t

∣∣∣∣∣Πj,t�~Πj,t
� ĝ′ β̂

⊤
j|~Πj

~Πj,t( )β̂j|~Πj
, (5)

where D̂j|~Πj
� D̂j|−j, D̂j|K{ }⊤, which is the marginal effect measured

in terms of the gradient at Πj,t � ~Πj,t. D̂j|−j represents the intensity
of risk contagion to j from individuals other than j. From this, a
weighted directed risk association network can be built. Individuals
are the “points” in a network of associations, and the inter-
individual tail risk associations are the “edges” of the network.
These points and directed edges form the network topology of
the system. The l × l weighted neighbor matrix for the s-th
window is constructed below with D̂j|−j as an element:
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, (6)

where |D̂s
j|i| is the absolute value of D̂s

j|i and denotes the level of tail
risk spillover from i to j.

In the adjacency matrix As, each row is the risk input (the degree
of influence by other individuals) of that individual and each column
is the risk spillover (the degree of influence on other individuals) of
that individual. As a result, we can determine TRSI (Total Risk
Spillover Index) to measure the total risk spillover level of the
system:

TRSI � ∑N
j�1
∑N
i�1

D̂
s

i|j
∣∣∣∣∣∣ ∣∣∣∣∣∣. (7)

In addition, we define two metrics, RI (Risk Input) and RO (Risk
Output), to measure the risk incoming and risk outgoing from each
node in the system:

RI � ∑N
j�1

D̂j|i
∣∣∣∣∣ ∣∣∣∣∣, (8)

RO � ∑N
j�1

D̂
s

j|i
∣∣∣∣∣∣ ∣∣∣∣∣∣. (9)

2.2 TVP-VAR spillover index model

Having constructed a risk transmission network for the oil and
sectors system, a question of interest is which factors may influence
the risk spillover from oil. Considering the time-varying effects of
the factors, we use the TVP-VAR model to reconstruct a connected
network containing oil risk spillover (OUT) and its possible
influences in order to study the contribution of each risk driver
to the change in OUT. We draw on [40] to construct a time-varying
volatility spillover index by combining the TVP-VAR model with
the volatility spillover index [41]. Compared with the traditional DY
model, this model is able to more accurately measure the nonlinear
and heteroskedastic relationship between the influences and OUT.
In addition, it does not need to calculate the dynamic results by
setting the size of the rolling window, which avoids the loss of
observations.

First, the TVP-VAR model is constructed:

yt � ∑p
l�1
Γtlyt−l + εt, (10)

where yt is an N-dimensional column vector; Γtl denotes a N × N
dimensional lag coefficient matrix; p represents the lag order; and εt
refers to the random errors, satisfying εt ~ N(0,Σt). When the TVP-
VAR model meets the stationary condition, it can be transformed
into an infinite-order time-varying vector moving average form:

yt � ∑p
i�1
Γi,tyt−i + εt � ∑∞

j�1
Πj,tεt−j, (11)

where Π0,t refers to an identity matrix.
It follows from Eq. 11 that we can calculate the generalized

variance decomposition of variable j on variable i in prediction
period H:

θijt H( ) � σ−1jjt∑H−1
h�0 e′iΠhtΣtej( )2

∑H−1
h�0 e′iΠhtΣtΠht

′ ei( ) , (12)

where ei is a N-dimensional vector whose i-th element is 1 and the
remaining elements are 0; Σt denotes the covariance matrix of εt; and
σjjt refers to the j-th diagonal element of Σt. For the sake of
standardization,

~θijt H( ) � θijt H( )∑N
j�1θijt H( ), (13)

where ~θijt(H) is the spillover effect of variable j on variable i in
period t.

Finally, based on the results of the generalized variance
decomposition the volatility spillover index of the system can be
calculated. The total volatility spillover index for the TVP-VAR system is:

R H( ) � ∑N
i,j�1,j ≠ i

~θijt H( )
N

× 100. (14)

The spillover effect from variable j to variable i can be
expressed as:

Ri←j,t H( ) � ~θijt H( ). (15)

2.3 Random forest

To achieve effective early warning of oil risk spillover, we
incorporate risk drivers into the random forest system and assess
important risk factors. The basic idea of the random forest model is
to construct combined multiple decision trees using the Bagging
algorithm and random sampling. In the model from the training
samples and training feature set randomly selected part of the subset
for training and construction of decision trees, and finally formed a
combination of multiple decision trees. Random forest model can
cope with the data fitting of nonlinear relationships, and has the
automation ability for feature selection. It remains robust even in the
face of problems such as more noise or missing data.

For the regression problem, the output of the random forest is:

Y � 1
N
∑N

n�1fn x( ), (16)

where fn(x) denotes the output result of the n-th decision tree and
N represents the number of decision trees.

To judge the prediction accuracy, MAE (Mean Absolute Error)
and MSE (Mean Square Error) are selected here as the evaluation
indexes. The smaller the value of these two indicators, the closer the
prediction result of the model is to the real value, indicating that the
prediction effect of the model is more ideal, and the specific
calculation formula is as follows:

MAE � 1
K
∑K
i�1

q̂i − qi
∣∣∣∣ ∣∣∣∣, (17)
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MSE � 1
K
∑K
i�1

q̂i − qi( )2. (18)

3 Data sources and description

In this paper, the stock indices of 13 Chinese Shanghai Stock
Exchange (SSE) sectors, namely, Commodity Equity (CE),
Telecommunication Services (TC), Industrials (IND), Utilities
(UL), Financials (FN), Consumer Discretionary (CD), Energy
(EN), Emerging Industries (EI), Information Technology (INT),
Healthcare (HC), Materials (MT), Consumption Staples (CS) and
Natural Resources (NR), are selected to be a proxy for China’s
sectoral stock markets. We adopt the closing price of theWest Texas
Light Crude (WTI) futures contract to represent the price of oil. This
is because WTI has become the global benchmark for oil pricing,
and futures prices are less affected by short-term supply and demand
than spot prices [42]. WTI price data are from FRED (Federal
Reserve Economic Data). Considering that large economic and
public health events such as China’s refined oil price reform,
China’s stock market crash, the COVID-19 epidemic and the
Russia-Ukraine conflict are highly informative about the extreme
risk transmission between oil and China’s sectors, this paper selects a
sample interval from 3 July 2011, to 23 July 2023. In addition, this
paper adopts weekly yield data as the research object to avoid the
problems of unsynchronized trading date of daily data and the time-
accumulation effect of monthly data [43]. The sector index data are
from Investing, and the WTI price data are from FRED (Federal
Reserve Economic Data). Table 1 presents descriptive statistics for
the log-returns of the WTI and the 13 sector indices. As can be seen
from the table, most of the sectors have positive returns, with the

largest sector being CS (0.0018) and the smallest being EN
(−0.0010). This indicates a significant difference in returns across
sectors. The standard deviation of the oil and sector indices is less
volatile. All the series show negatively skewed distributions, and the
ADF and Jarque-Bera tests indicate that all the series are smooth and
reject the assumption of normal aggregates.

Apart from sectoral and oil data, we have selected several
major stock market indices to represent macroeconomic
conditions. These are the Hong Kong Hang Seng Index, the
Dow Jones Industrial Average, the S&P 500 Index, the
German DAX (DAX), the Eurostoxx 50 and the Nikkei 225.
When exploring the influences of aggregate spillovers from the
sectors and oil system, we selected six variables: 1) CPI
(Consumer Price Index) describes the consumer price index,
which to some extent reflects the degree of inflation or
contraction in China. CPI may affect supply and demand and
economic expectations by influencing the energy market and
China’s sectors’ risk. 2) OVX (CBOE Crude Oil Volatility)
measures the volatility of oil prices and represents uncertainty
in the energy market [44]. 3) MSCI China Index is an index of
securities compiled by Morgan Stanley Capital International that
reflects the volatility of China’s sectors. 4) GPR (Geopolitical Risk
Index) stands for the geopolitical risk index, and it has previously
been shown in the literature that as geopolitical risk increases, the
level of risk in the energy market and the stock market increases
[45]. 5) EPU (Economic Policy Uncertainty) describes China’s
economic policy uncertainty. It affects economic agents’
expectations of the future and thus the economic situation. 6)
TPU (Trade Policy Uncertainty) refers to the uncertainty of
China’s trade policy. Its volatility could lead to trade frictions
and trade restrictions, which would contribute to pressure on
China’s sectors from the oil industry.

TABLE 1 Descriptive statistics of the log returns for WTI&Sectors.

WTI&Sectors Mean Std.dev Skewness Kurtosis Jarque-Bera ADF

CE −0.0003 0.0363 −0.4947 2.6511 208.8188*** −8.071***

TC 0.0008 0.0412 −0.6419 4.0596 471.8236*** −8.0521***

IND 0.0001 0.0346 −0.4123 5.1964 720.0432*** −7.5832***

UL 0.0005 0.0297 −0.7156 5.9688 979.3488*** −7.9691***

FN 0.0006 0.0320 0.2909 2.6500 192.0932*** −8.5462***

CD 0.0004 0.0332 −0.5953 2.2357 167.3416*** −7.3836***

EN −0.0010 0.0352 −0.2472 2.3745 153.649*** −8.7352***

EI 0.0003 0.0352 −0.7492 3.4300 364.7438*** −7.9551***

INT 0.0005 0.0429 −0.3822 1.5055 74.6169*** −7.8821***

HC 0.0010 0.0339 −0.5063 1.0268 54.3717*** −8.0969***

MT −0.0002 0.0366 −0.5547 2.6141 210.2728*** −7.9868***

CS 0.0018 0.0336 −0.5688 1.3046 78.2617*** −7.5823***

NR −0.0005 0.0365 −0.4906 2.7125 216.9678*** −8.1394***

WTI −0.0005 0.0533 −0.5167 6.2008 1027.279*** −8.0245***

Note: *** indicates that the result is significant at the 1% level.
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4 Results and discussion

Along with China’s rapid economic development, the demand
for oil has continued to grow. As a major consumer of oil, China is
highly dependent on oil imports. Oil is an indispensable ingredient
for modern industrial operations. Drastic fluctuations in oil prices
will inevitably have an implication on China’s related sectors.
Therefore, measuring the risk transmission path from the oil to
China’s sectors can help effectively prevent and control risk
contagion. In this paper, the oil market and 13 China’s sector
stock indices are included in the same system, and the risk
spillover relationships are discussed at three levels, the extreme
risk level of the system as a whole, the input and output level and the
extreme risk network. Further, we analyze the factors affecting the
level of risky outputs in the oil market and build a random forest
early warning system to investigate the significance of the factors as
well as the nonlinear relationships. Finally, the empirical outcomes
are tested for robustness.

4.1 Overall level of extreme risk connectivity

In this paper, we calculate TRSI of the system based on Eq. 7 and
adopt the rolling window method to catch the dynamic
characteristics of the extreme risk spillover from the oil to
China’s sectors. Here, the TRSI of the system is used to measure
the overall risk level of the system. Referring to [35], we set the
window period as 48 weeks Figure 1 describes the TRSI of the system
consisting of the oil market and China’s sectors.

It is not difficult to find that the TRSI of the system has a
significant time-varying trend and its volatility is highly correlated
with the outbreak of major extreme events. This confirms the
conclusion that the occurrence of extreme events affects the risk
profile of the oil market and China’s sectors [46]. We can see several
major peaks in the figure, which occur in 2013, 2015, 2020 and 2022,
respectively, corresponding to the four crisis events: China’s refined
oil pricing reform, China’s stock market crash, the COVID-19 and

the conflict between Russia and Ukraine. Total systemic risk
connectivity reached its first peak in 2013, which was mainly
influenced by China’s further improvement of refined oil product
price reform in 2013 [47]. China is among the world’s major oil
importers, and the reform of the refined oil product pricing
mechanism has increased the correlation between Chinese oil
prices and the oil market. In addition, the reformed pricing
mechanism has changed from government-guided pricing to a
market-based pricing mechanism. This means that oil price
impacts will negatively affect the profitability of related sectors
and stock market performance through the impact on China’s oil
prices. The next high point in system connectivity occurred in 2015,
which may be related to China’s 2015 stock market crash. Our
findings are coherent with [48], who also noted that the crisis events
in the Chinese stock market in 2015 amplified the risk shift between
the oil and China’s sectors. The stock market underwent a “roller-
coaster” situation of surges and crashes in 2015. The extreme stock
market boom in the first half of the year masked hidden risks such as
excess liquidity, so when the Securities and Futures Commission
started regulating the stock market in June 2015, the previously
accumulated risks hit the fan. Uncertainty about economic growth
due to the stock market crash amplified the level of extreme risk of
the oil and sectors system [31]. The risk associations for the
2020 system rose again, and our findings support the conclusions
of [33]. This trend is highly correlated with the COVID-19 outbreak.
The worldwide economic slowdown led by the epidemic had huge
implications on oil demand, while at the same time, the breakdown
of the OPEC production cut agreement left the oil market with an
imbalance between supply and demand, and the price of oil fell into
negative values for the first time. The pandemic has also hurt China’s
sectors, causing the stock market to experience dramatic volatility.
The downturn in the economy and the collapse in oil prices have
increased the extreme risk of the system in both directions. The last
peak in the sample period occurs in 2022, and the occurrence of this
peak can be attributed to the Russia and Ukraine conflict. Global risk
aversion due to geopolitical conflicts has led to higher oil prices. As
one of the top importers of oil, China’s energy-sensitive sectors, such

FIGURE 1
The overall connectivity between the oil and sectors. Note: Ⅰ corresponds to the reformof oil product pricing; Ⅱ corresponds to China’s stockmarket
crash; Ⅲ corresponds to the COVID-19 epidemic; Ⅳ corresponds to the Russian-Ukrainian conflict.
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as petrochemicals, aviation and transportation, will inevitably be
affected by rising oil prices. This will result in increased risk
connectivity in the system.

4.2 Extreme risk transmission levels

To examine the extreme risk contagion effect between oil and
China’s sectors, we calculate the total risk input (IN) and output
(OUT) levels of WTI and each sector according to Eqs 8, 9 without
considering the time dimension. Further, the net output level (NET)
is obtained based on the difference between IN and OUT, and the
importance ranking of oil and each sector in the system is derived
according to the NET. The results are displayed in Table 2.

From Table 2, three sectors, CE, NR and INT, are in the top three
in terms of NET. It is worth noting that these three sectors are
among the top three in terms of risk input and output levels. This
suggests that these three sectors, as important nodes in the system,
are not only sources of risk transmission in the system but also
vulnerable to risk spillovers from other sectors or the oil. The CE
sector encompasses a large number of commodities such as energy
and metals, and China is among the world’s leading importers of oil
and consumers of metals, making it more sensitive to the external
economic environment [49]. Commodity supply, demand and price
fluctuations have a direct implication on China’s economy, and risks
are transmitted through the supply chain to other related sectors and
markets in China. The NR sector is an essential foundation for
China’s economic growth and real industrial production [50]. On
the one hand, the real economy depends on the availability of raw
materials from the natural resource sector. On the other hand,
natural resources may also put pressure on sectors that are more
externally dependent, such as trade and logistics, by affecting the
cost of imports and exports. As an important driver of China’s
economic transformation and innovative development, the INT

sector has become more and more prominent as a key position
in the entire economic system. It supports the business activities of
many traditional sectors through technology analytics, digital
transformation and software services, making its risk
transmission closely linked to other sectors. It is worth noting
that the CE and NR sectors are directly related to the oil market,
which makes them closely linked to the oil market in terms of risk
transfer. In line with [51], they also pointed to the more pronounced
risk transmission in the energy-related sector as a result of instability
in the global oil market.

We calculate the dynamic risk transfer value for each sector
and sum the input and output levels of the 13 sectors to obtain the
dynamic risk transfer relationship between oil and China’s sectors
as shown in Figure 2. From the figure, we find that since sectors
make up a large fraction of our system, the trend of risk input and
output for sectors is roughly the same as the trend of total risk
connectivity of the system as described above. Overall, the trend of
risk transfer between oil and sectors remains highly correlated with
the occurrence of extreme events. In addition to the several
extreme event points mentioned above, the risk transfer value
of oil also peaked in 2017, suggesting that the impact of oil on
China’s sectors at this time cannot be ignored. This may have been
influenced by fluctuations in oil supply. OPEC agreed to its first
output curbs in 8 years in November 2016 and then extended them
in July 2017 when 11 non-OPEC producers led by Russia declared
they would cooperate with the cuts. According to [52], they
pointed out that fluctuations in the supply side of oil have
occurred as a result of the OPEC production cut agreement.
This could lead to the operation of China’s macroeconomy and
the business conditions of the relevant sectors being affected, and
the level of risk from the oil industry to various sectors in China
rising.

This paper further analyzes the pairwise risk contagion
relationship between oil and each sector, and presents the
results of the relationship between oil and each sector in
Figure 3. From the figure, it can be seen that there is
heterogeneity in the extent of risk spillover from the oil to
different sectors. This is consistent with [9], who also pointed
out that the impact of volatility in the oil market varied
considerably across sectors. Except for TC, UL, FN and CS, oil’s
risk spillover to other sectors is relatively small. The telecom
business sector requires large energy inputs to power and
operate telecom equipment and infrastructure, and therefore
has a higher energy demand and is vulnerable to the risk from
the oil market [29]. UL is a fundamental sector of society and,
equally, a high-energy user. Uncertainty in the oil market could
directly increase utility operating costs, which in turn could
adversely affect the sector. The emergence of oil derivatives
marks the trend of financialization of the oil market, so there is
a connection between it and financial real estate that cannot be
ignored [53]. The level of risk in oil-related financial products (e.g.,
hedging products) is bound to change in response to oil price
movements. For the CS sector, increased risk in the oil market
could lead to higher prices for the chemical raw materials
associated with it. Higher raw material costs will further expose
the CS sector to market risks. Interestingly, we observe that the risk
connection from the oil market to the related EN and CE sectors is
not significant. This may be due to the relatively stable supply

TABLE 2 Risk input and risk output of Sectors&WTI.

WTI&Sectors IN OUT NET

CE 432.3229 717.9541 285.6312

NR 444.9840 638.7072 193.7233

INT 475.6499 655.8592 180.2093

EI 303.4873 472.7351 169.2478

TC 359.8087 503.6389 143.8302

FN 118.7002 74.1889 −44.5114

IND 265.9647 212.3969 −53.5678

CD 175.7256 115.8183 −59.9073

EN 295.8669 195.4256 −100.4413

MT 343.7214 224.6650 −119.0564

CS 235.1418 108.9794 −126.1624

HC 241.0021 109.8013 −131.2008

WTI 152.9739 21.0936 −131.8803

UL 246.3591 40.4451 −205.9140
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chain and pricing mechanism of China’s energy sector, which can
mitigate the shock of fluctuations in the oil market to some extent.
Moreover, the Chinese government has a greater capacity to
intervene in the energy market and stronger regulatory tools,
and this control capacity can mitigate the negative impact of
fluctuations in international energy markets [47]. Similar to the
energy sector, China’s commodity sector has been insulated from
the adverse effects of large fluctuations in the oil market by
government controls. Moreover, China’s commodity market is
more diversified, and its risks are influenced by a variety of factors
not limited to the oil market.

4.3 Extreme risk spillover networks

To present a more intuitive picture of the role played by the oil
and China’s sectors in the system, we use a network diagram to
analyze the individual correlations in the system. The tail risk
contagion of individuals in the network is represented by
directed weighted connectivity between nodes, with weights
representing spillover strength and arrows indicating spillover
direction. Figure 4 gives the extreme risk transfer relationships
within the system throughout the sample period. We observe
that the overall network density of the system is large, suggesting

FIGURE 2
Risk transfer relationship for WTI & Sectors. Panel (A) shows the Risk In for WTI and sectors, and panel (B) shows the Risk Out for WTI and sectors.

FIGURE 3
Risk spillover from WTI to China’s sectors. The different color areas represent WTI’s risk spillover to different sectors.
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a strong risk transfer relationship between the oil and sectors.
Similar to the results above, the network diagram shows that NR,
CE and INT, as the core nodes in the overall extreme risk network,
are the three most systemically important sectors. Moreover, the
figure shows that the two-way spillover between the NR sector and
the CE sector is the most pronounced. This suggests a strong
correlation between the two sectors, which is consistent with
[54]. This is due to the fact that the natural resources sector
encompasses areas such as energy, metals and agricultural
products, which are also major components of commodities. The
two sectors are affected by common factors such as supply and
demand and price volatility, and this correlation makes them highly
risk-correlated. Similarly, there are TC and INT sectors.
Telecommunications and information technology are
interdependent, with telecommunications providing the
communications infrastructure and network services required by
the information technology sector, and the information technology
sector providing technical support and innovation to

telecommunications [55]. The two operate inextricably, making
the two-way spillover between them more pronounced. In
addition, the oil exhibits a significant risk premium to the IT,
CS, TC, UL, FN and EN sectors over the entire sample interval.

To characterize the risk spillover from oil to each sector at
different crisis events in more detail, referring to [30], we select two
local risk extreme points based on the risk spillover trend of oil to all
sectors in Figure 2, andmap the risk spillover network in that period.
As shown in Figure 5, these two points are 25 June 2017 and 3 July
2022, respectively. At the 25 June 2017 point in time, we find that the
oil has a more pronounced risk transmission mainly to the TC, IND,
UL and EN sectors. At the time point of 3 July 2022, the oil mainly
affects the CE, TC, UL and EN sectors. Comparing the network
graph at both points in time, we can see that the TC, UL and EN
sectors are always affected by the oil market. These are also the
sectors we identified in the previous section as being vulnerable to
the oil market. In addition, comparing the two graphs reveals a
significant impact on the CE sector in 2022. The possible reason for
this is that the Russian-Ukrainian conflict escalated in 2022, the
military conflict and related sanctions exacerbated the global supply
chain conflicts in the aftermath of the epidemic, and oil saw a
significant price increase. From one aspect, an increase in the price
of oil will directly increase the costs of the commodity sector. From
another aspect, an increase in oil prices will indirectly reduce the
competitiveness of the commodity sector by affecting the cost of
Chinese imports. This finding implies that different crisis events lead
to changes in sectors affected by risk spillovers from the oil market.
Our finding is consistent with [45], who show that the recipient
sectors of risk spillovers from the oil market can vary depending on
the turbulent environment.

4.4 Risk spillover mechanisms in the oil
market

After describing the risk spillover relationship between oil and
sectors, we further analyze which factors have an impact on this
spillover relationship. OUT is used to measure the risk spillover

FIGURE 4
Network of extreme risk spillovers over the full sample period.

FIGURE 5
Network of the extreme risk spillovers in typical periods. Panel (A) shows the extreme risk network for 2017-06-25 and Panel (B) shows the extreme
risk network for 2022-07-03.
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from the oil market. Referring to the studies of [38, 45], we select
CPI, OVX, MSCI, GPR, EPU and TPU as the factors that may have
an impact on OUT. First, the data is smoothed using logarithmic
differencing of the OUT and factors. Next, we incorporate OUTwith
these factors into the TVP-VAR model to expose the mechanism of
each risk driver on OUT.

Table 3 reports the association between OUT and each risk-
influencing factor. The FROM columns (TO rows) denote the
intensity of spillovers that the corresponding variable receives
(outputs) from the other variables. The NC value corresponds to
the difference between FROM and TO and indicates the level of net
spillover for that variable. To visualize the link between the total risk
spillover and its influence factors, Figure 6 shows a chord diagram of

the linkages based on Table 3, where the width of the bars indicates
the level of influence between variables, and the arrows indicate the
direction of influence. From the figure, CPI has the largest
contribution to OUT in terms of the total contribution, implying
that OUT is more sensitive to changes in CPI. This finding supports
[56], who stated that a rise in CPI expands risk from the oil market.
The possible reason for this is that fluctuations in the CPI often
imply price instability. Oil is a necessary part of production in many
sectors, and volatility in its price level can put pressure on the cost of
production in many sectors, which increases the risk for each sector.
Apart from CPI, EPU and GPR are the main factors that influence
the variation of OUT. This result ties well with previous studies
wherein [57], who argued that shocks from these two indicators have
time-varying effects on oil market risk. In contrast, OUT has almost
negligible interference with the drivers in the system. Combined
with the NC line in Table 3, OUT is the net affected party in the
system, while EPU is the main net spillover, followed by GPR and
then TPU [58]. Also pointed out that changes in EPU can have an
impact on risk spillovers in the oil market. Changes in China’s EPU
could affect Chinese oil demand, resulting in supply and demand
imbalances and oil price volatility in the oil market. This would
affect the production costs of the related sectors, affecting their
profitability and share prices. For GPR, its increase may represent an
increase in geopolitical tensions, and the spread of such tensions
may affect the stable supply of oil-producing countries, triggering
concerns about energy security and supply disruptions [45]. As a
major importer of oil, China relies on steady supplies from the oil
industry for a number of sectors, including EN and UL. Therefore,
the instability of geopolitical risks can contribute to the risk transfer
from oil to China’s sectors. Changes in TPU can drive risk spillovers
from oil by altering China’s import and export policies [59].

Considering that a static analysis would ignore extreme trends of
factors during crisis events, we adopt the rolling window method to
obtain the dynamic total connectivity of the system to examine the
dynamic link between OUT and its driving factors. Figure 7 shows
the trend of the total connectivity of the system consisting of OUT
and factors. From the figure, it can be noticed that the total
connectivity of the system fluctuates widely, with a range of
[8.87%, 72.09%], which indicates that the impact of each risk

FIGURE 6
Relationship betweenOUT and risk factors. The different colored
arrows represent the impact of different indicators on other indicators,
and the thickness of the arrows refers to the size of the impact.

FIGURE 7
Trends in the dynamics of total connectedness in the OUT and driver system.
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driver on the OUT is characterized by time-varying characteristics.
It is not difficult to find that the up and down trend of the volatility
spillover index is closely related to the occurrence of extreme events.
This suggests that OUT is more sensitive to the impact of each driver
during periods of turbulence. This is in accordance with [53], who
stated that crises significantly increase the driving effect of the
factors on risk spillover in the oil market. There are several
distinct peaks in the chart, corresponding to the European debt
crisis in 2012, the oil price crisis in 2014, the trade dispute in 2018,
the COVID-19 pandemic in 2020, and the Russia-Ukraine conflict
in 2022. Crises such as financial market crises, major public health
events and geopolitical conflicts affect risk spillovers in international
oil markets in a number of ways, including their impact on energy
markets and economic stability.

To explore the dynamic link between each driver and OUT, we
further calculate the dynamic trend of the contribution of each factor
to the OUT through the rolling window method, as shown in
Figure 8. From the figure, we can see that the contribution value
of each driver to OUT is characterized by time-varying
characteristics. It is worth noting that the main influencing
factors CPI, EPU and GPR, as pointed out earlier, played a
major driving role for OUT in 2012–2014. This may be due to
the impact of the European debt crisis on global economic stability
during 2012–2014, and the significant volatility of the CPI index in
the face of high economic uncertainty, adding to the uncertainty in
the oil market. At the same time, the volatile political situation in the
Middle East and North Africa region affected the stability and oil
supply of some oil-producing countries, also exacerbating risk

FIGURE 8
Dynamic contribution relationship of drivers to OUT. Panels (A–F) represent the dynamic contribution of CPI, OVX, MSCI, GPR, EPU & TPU to OUT,
respectively.
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spillovers in the oil market [45]. While in the previous section, we
identified EPU as having the largest impact on oil market risk
production, in the dynamic trend analysis it is found that EPU does
not always play the role of a major contributor. In contrast, OVX,
although found to be the second lowest contributor to OUT in the
static analysis, in the dynamic analysis it contributes to OUT for
most of the sample period. The findings support those of [56], who
also pointed out that changes in OVX amplify the risk contagion
effect in the oil market. On the one hand, the risk aversion of

investors can contribute to the transmission of extreme risk from the
oil market to the Chinese sub-index. On the other hand, investors’
pessimistic expectations about oil price volatility could raise the risk
of supply disruptions, which in turn could negatively impact stocks
in crude-related sectors.

4.5 Early warning of oil risk spillovers

We have confirmed above that the risk transmission from oil to
China’s sectors cannot be ignored. Risk early warning is an effective
means of preventing and resolving major risks. Compared to
traditional econometric models, machine learning models have
significantly improved predictive capabilities [60]. Among them,

FIGURE 9
Learning results of random forest model. Panel (A) represents the fit of the training set of the random forest model and panel (B) represents the fit of
the test set of the random forest model.

TABLE 3 Connectivity between OUT and its drivers.

OUT CPI OVX MSCI GPR EPU TPU FROM

OUT 81.38 6.16 2.64 1.57 2.96 4.06 1.23 18.62

CPI 3.14 70.76 2.15 2.61 11.01 6.66 3.67 29.24

OVX 2.48 2.99 78.34 7.96 2.92 3.47 1.83 21.66

MSCI 1.92 2.59 7.99 74.96 4.58 5.28 2.67 25.04

GPR 1.42 9.67 2.22 1.94 73.96 4.95 5.85 26.04

EPU 1.71 3.22 2.68 3.94 7.1 75.79 5.55 24.21

TPU 0.91 4.02 2.05 2.01 4.01 6.94 80.06 19.94

TO 11.59 28.64 19.73 20.03 32.58 31.36 20.81 27.46

NC −7.03 −0.6 −1.93 −5 6.54 7.15 0.87

FIGURE 10
Importance of variables.

TABLE 4 Learning error.

Error Training set Test set

MAE 0.0115 0.0336

MSE 0.0003 0.0032
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the random forest model has the advantages of a low probability of
overfitting, strong out-of-sample predictive power, and the ability to
reveal nonlinear correlations among variables. Against this
background, in this section, we combine the previously selected
risk indicators with the Random Forest algorithm to construct an
early warning model of risk transmission from oil to China’s sectors.

In the previous section, we have confirmed the driving
relationship of each risk indicator on oil risk spillover (OUT).
Here we construct an early warning system by using risk factors
as input indicators to the early warning system and OUT as output
indicators to be warned, and incorporating them into a random
forest model. We set the ratio of the training set to the test set to 5:

1 after debugging. Considering the large sample size, we select
25 sample results as a demonstration. Figure 9 shows the
learning results for the training and test sets. It can be seen that
the Random Forest Early Warning System fits the training set well,
but nearly 10 out of 25 samples in the test set show deviations from
the true values. Considering that this may be due to the influence of
sample randomness, it was decided to further examine the accuracy
of the early warning system. We calculated the learning errors MAE
and MSE, which are shown in Table 4. As shown in the table, both
MAE and MSE are relatively small in both the training and test sets.
This suggests that the risk drivers we choose can be used as early
warning indicators for extreme risk in the global energy system, and

FIGURE 11
Variable partial dependency results. Panels (A–F) represent the partial dependencies between CPI, OVX, MSCI, GPR, EPU and TPU and OUT,
respectively.

FIGURE 12
The overall connectivity between the oil and sectors. (Brent).
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also indicates that the random forest model constructed in this paper
has strong generalization and prediction capabilities.

After assessing the accuracy of the random forest model, we next
calculated the importance of each indicator to examine the
explanatory power of different variables in the risk warning
system. The importance of the variables is shown in Figure 10.
Consistent with the previous results, OVX and CPI are confirmed to
be important indicators affecting OUT. This implies that OVX and
CPI play an important role in risky output warning in the oil market.
Our findings are consistent with those of [61, 62], who argued that
changes in OVX and CPI affect the risk profile of the oil market to
some extent. For OVX it may be due to the fact that changes in OVX,
as a measure of oil price volatility expectations, can reflect the
uncertainty of future risks in the oil market. Fluctuations in the CPI,
on the other hand, can trigger market concerns about future
inflation, which in turn affects the oil market.

To gain insight into how these factors affect OUT, we discuss the
association between predictor variables and OUT using partial
dependency plot analysis. Figure 11 shows the partial dependency
plot constructed based on the random forest model. It can be found
that the nonlinear effects of all variables are very obvious, which
verifies the nonlinear relationship between each variable and OUT.
Combining the results of variable importance, we focus on analyzing
OVX and CPI. There is a complex nonlinear relationship between
OVX and OUT until a critical value (around 40) is reached. After
reaching the critical value, the positive effect of OVX on OUT starts
to come to the fore and eventually tends to a steady state. Overall,
OVX has a promoting effect on OUT. This finding supports [63]
that an increase in OVX enhances risk transmission in the oil
market. The rise in OVX reflects increased market concerns and
uncertainty about the oil industry, which could lead to higher oil
prices and thus increase risk spillovers by affecting costs in China’s
sectors. Unlike OVX, we find a first negative and then positive
relationship between CPI and OUT. When CPI increases are small,
they may reflect economic growth and increased consumer demand.
In this case, market concerns about oil would diminish, the oil
market would stabilize and its risk spillover impact would be
reduced. However, when the CPI grows to a certain level (about
2), the OUT increases as the CPI continues to rise. The possible

reason for this is that when the CPI is too high, the country adopts a
tight monetary policy to curb inflation, which may have a negative
impact on the oil market, thus leading to an increase in its risk
spillover.

4.6 Robustness analysis

In the above, we have used WTI to represent the oil market to
portray the extreme risk of the oil and China’s sector system. We
replace the oil price data with the Brent oil price data to check the
robustness of the empirical results. The overall connectivity of the
Brent and sectors system is shown in Figure 12. We find little change
in the trend of the total system connectivity after replacingWTI with
Brent. We further recalculate the risk incoming and outgoing values
of Brent with China’s sectors, and Figure 13 shows the risk input and
output plots. From the figure, we can see that the trend of risk
transfer after replacing oil data is more consistent with the original
results, which indicates that the empirical results of this paper are
robust.

5 Conclusion and suggestions

The aim of this paper is to examine the extreme risk contagion
effect of oil on China’s sectors. We select WTI and 13 China’s sectors
as the research objects and use the TENETmodel, a high-dimensional
network analysis method, to portray the risk contagion relationship
between the oil and sectors. We analyze the overall risk, input and
output levels, and network relationships at three levels to identify
sectors in the system that are susceptible to oil market risks. We then
further explore the factors affecting spillover risk in the oil market
through the TVP-VAR model under both static and dynamic
conditions. Next, the Random Forest model is used to construct
an early warning system for oil market risk spillover and analyze the
nonlinear correlation between variables. Finally, the robustness test is
performed by replacing the oil representing the oil market.

Our empirical results show that: 1) Changes in the connectivity
between the oil and China’s sectors are highly correlated with the

FIGURE 13
Risk transfer relationship for Brent & Sectors. Panel (A) shows the Risk In for Brent and sectors, and panel (B) shows the Risk Out for Brent and sectors.
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occurrence of major extreme events. China’s refined product pricing
reform, the Chinese stock market crash, the COVID-19 pandemic
and the Russia-Ukraine conflict have significantly increased the
extreme risk spillover between oil and the sector’s equity markets. 2)
Commodity Equity, Natural Resources and Information Technology
are important nodes in the system. There is heterogeneity in the risk
spillovers from the oil to different sectors, with Telecommunication
Services, Utilities, Financials and Consumption Staples being more
affected by oil market shocks. Sectors exposed to market risks vary
depending on the crisis event. 3) Risk spillover from the oil market is
influenced by a set of drivers. The static analysis reveals that EPU
and GPR are themain drivers, while the dynamic analysis shows that
OVX has a continuous impact on risk spillover from the oil market.
4) The Random Forest model can effectively achieve early warning
of risk spillover in the oil market. Importance analysis shows that
OVX and CPI are the main indicators affecting oil risk output, in
which OVX has a positive impact on oil risk spillover, while CPI
shows a first negative and then positive effect.

Based on the results of the empirical study, we offer the following
proposals for reference. First, the risk correlation between the oil and
sectors is high and closely related to the occurrence of extreme
events. International oil futures price movements should be
considered as an important risk factor for investors. Risk
regulators need to pay close attention to the international
situation as well as the price trend in the oil market. They can
guide investors to invest rationally by publicly releasing risk
assessment reports and other means to avoid the uncontrollable
impact of risk spillover from the oil industry during the crisis.
Second, considering the heterogeneity of the impact of oil price
fluctuations on different sectors, the government and related
departments can timely introduce supportive policies to prevent
excessive fluctuations in the stock market of oil-related industries.
And by optimizing the industrial structure, the linkage impact of oil-
sensitive industries can be reduced. For investors, it is appropriate to
include some stocks in sectors with a low correlation to the oil
market when building a portfolio, or to use oil-related derivatives
when investing for the purpose of reducing portfolio risk. Finally,
our empirical results show that risk spillover in the oil market is
affected by changes in EPU, GPR, OVX and CPI. Relevant
departments should establish a monitoring and early warning
platform to capture the changes in the relevant macroeconomic
variables in the oil market and the risk events that may have an
impact on time, and issue risk monitoring reports on a regular basis.
At the same time, relevant organizations need to establish a scientific
and reasonable risk early warning system, set up a case base of risk
plans, and formulate contingency plans for corresponding risk
events.
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