
Identifiability of complex
networks

M. Zanin1* and J. M. Buldú2,3

1Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Palma de Mallorca, Spain,
2Complex Systems Group, Universidad Rey Juan Carlos, Madrid, Spain, 3G.I.S.C, Universidad Rey Juan
Carlos, Madrid, Spain

We discuss the core principles underpinning the concept of identifiability,
providing an overview of relevant literature concerning this phenomenon
within the domain of complex networks. We delve into the potentialities and
inherent constraints associated with the analysis of identifiability in real networked
systems. Through this exploration, we establish a comprehensive classification
scheme for network identifiability, distinguishing i) structural, ii) functional, and iii)
meta-identifiability categories. We explain the principal conceptual distinctions
characterising each category. Finally, we deliberate upon the contextual
frameworks where system identifiability can be achieved, also highlighting the
factors that impede structural, functional, and meta-identifiability.
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1 Introduction

The identifiability of complex systems stands as a foundational challenge in the realm of
scientific inquiry, spanning disciplines ranging from physics and biology, to engineering and
economics [1–4]. In this context, identifiability refers to the ability to uniquely determine the
parameters and characteristics of a system based on observed data. The concept holds
paramount importance as it directly influences the precision and reliability of modelling and
analysis efforts, ultimately shaping our understanding of the underlying mechanisms
governing complex phenomena. Generally speaking, a real system is said to be
identifiable when its parameters can be uniquely determined from observations of either
its structure or its dynamics. Therefore, identifiability is strongly related with the concept of
parameter identification, which consists on the estimation of a system’s parameters based on
the observation of its dynamics [5]. Certainly, the three key factors constraining the ability to
determine a system’s parameters are i) the complexity of the system’s dynamics, ii) the ability
of recording, with enough resolution, all variables describing the dynamical state of a system
and iii) the presence of noise in the observation [6]. In the field of nonlinear dynamical
systems, the challenge lies in automatically uncovering the governing equations of complex
systems [7]. Nonparametric methods that assume linearity or produce numerical models fail
to reveal the full internal structure of these systems [7]. However, by perturbing and
observing the system in intelligent ways, it is possible to uncover the function (s) governing
the dynamics of the system and even the parameters that univocally determine this function
[7]. An alternative methodology relies on the use of synchronisation phenomena as the proxy
to adjust adaptive parameter estimation. Under this framework, the output signal of the
observable system is used as an input of a receiver system whose parameters are modified to
maximise synchronisation until the dynamics of the receiver matches the one of the driver
[8]. More recently, the use of machine learning has been proposed as a successful tool to
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extract model parameters in spatiotemporal systems [9]. In this case,
an unsupervised learning method (variational auto-encoders) is
used to determine the relevant parameters of the system without
requiring information of its partial differential equations.

However, when the system consists of a complex network
connecting a diversity of dynamical units, identifiability goes
beyond the estimation of the single unit parameters, and focuses
on the quantification of the connections between the nodes of the
network. Under this framework, one can further distinguish
between i) structural (a priori) and ii) functional identifiabilities,
the former being an intrinsic (objective) property of the system
(i.e., its structure), while the latter depends on subjective criteria
based on the observable data or the behaviour of the system [10].

The analysis of if -and when-a complex network is identifiable is
still an open problem in the statistical physics community, since
complex networks present characteristics that make this analysis
challenging. For example, their structure and dynamics manifest
over multiple scales, with macro-scale dynamics emerging (in non
trivial ways) from the micro-scale interactions. As a consequence, in
order for a complex network to be structurally identifiable, we must
recover the whole connectivity structure, i.e., its complete adjacency
matrix. However, such reconstruction at the micro-scale level
usually has to be performed without having access to its fully
resolved dynamics and, frequently, macro-scale observables are
the only sources of information. Despite these limitations, there
is still space for complex networks to be identified when certain
system requirements are fulfilled and, on top of that, under the
presence of non-negligible levels of noise and complexity in the
networks, or without having access to all variables of the system. The
goal of this paper is to delve into the conceptual and methodological
intricacies of identifiability in complex networks. We aim to provide
a comprehensive survey of the theoretical underpinnings and
practical challenges associated with identifying the structure of
real networks from observed data. We begin defining three
different types of identifiability -functional, structural and

meta-identifiability (see Figure 1)- and continue discussing the
interplay between the identifiability of complex networks and
their underlying structures, seeking to shed light on the strategies
and techniques employed to address this pervasive issue.

2 Structural identifiability

The first type of identifiability is related with the interplay
between structure and dynamics. The structural identifiability of
a complex network refers to the capacity of correctly recovering the
existence (and weight) of all links connecting its nodes. In general
terms, it implies the reconstruction of the network adjacency matrix,
no matter if it is weighted or unweighted. The most extended
approach is to recover the structural adjacency matrix from the
functional adjacency matrix, the latter being extracted from
evaluating the amount of coordination between nodes thanks to
the analysis of their dynamics. Therefore, the most desirable
situation would imply to have access to the dynamics of all
variables describing the dynamical state of the nodes and, then,
quantifying the level of coordination between each pair and
assigning the probability of link existence accordingly. A diversity
of methodologies have been proposed to infer the network structure
from its dynamics. In [11], the author proposes a method based on
response dynamics, where the response of a node to different
perturbations is used to infer the connectivity patterns. The study
demonstrates the effectiveness of this approach in inferring network
connectivity in various types of networks, including random, scale-
free, and modular ones. The method is shown to outperform
traditional correlation-based approaches in certain scenarios.
When a prior understanding of the functional form of the
dynamical components and the coupling functions between them
is at hand, it is also possible to reconstruct a network’s connection
topology from the observation of the collective dynamical
trajectories [12]. This approach eliminates the need for external
interventions or driving forces, and it accommodates diverse types
of dynamics with minimal constraints, with successful results when
dynamics exhibit various characteristics, including complexity,
stationarity, invariance, transience, synchronicity, asynchronicity,
chaos, or periodicity. Statistical similarity analysis of time-series to
infer the connectivity of coupled oscillators has also been tested as a
way to recovery the structure of a network from the observation of
its dynamics [13]. Introducing a Kuramoto oscillator into each node
of a complex network and analysing the resulting synchronisation
properties of the whole system allows, under certain conditions, to
accurately infer the network links given an appropriate choice of the
observed variables, the interaction strength, and thresholding of the
similarity matrix [13]. Interestingly, the performance of linear
statistical similarity measures can overcome, in many cases, the
nonlinear ones [13]. Furthermore, it is also possible to determine the
existence of unidirectional links in the network structure using
statistical similarity measures, such as cross-correlation (CC) and
mutual information (MI) [14].

It is worth noting that structural identifiability is a concept
strongly connected to reproducibility [15, 16]. Supposing the
underlying system’s structure does not change, one can only
recover the same or similar networks if such reconstructions are
accurate; reproducibility is thus a necessary condition for achieving

FIGURE 1
Graphical representation of the three types of identifiability
discussed in this paper.
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structural identifiability. On the contrary, if the dynamics is not
reproducible, the resulting reconstructed networks will not be the
same and systems may not be identifiable. One can also adopt a
more macroscale perspective, and assess the identifiability of
topological metrics. This is especially relevant in the case of brain
networks, for which it is accepted that individual links have a high
degree of variability. The question then becomes whether the
topology of the networks is identifiable; or, in other words,
whether the values of the topological metrics from them
extracted are constant, and do not depend on the individual
measurement [17].

3 Functional identifiability

We can also identify systems without paying attention to their
structural connectivity. Functional identifiability refers to the ability
of distinguishing the “owner” of a functional network without
necessarily recovering the underlying structure of connections.
This would be the case, for example, of functional brain
networks: if they were identifiable we would be able to know
which person generated a given functional network just by
analyzing its dynamics and without reconstructing the underlying
anatomical connections. Importantly, to assess which system is
behind a given functional network, we require previous
observations of the functional network, which, in turn, should be
univocally assigned to its underlying complex system—i.e., it has to
be labelled. In other words, in the context of brain networks, we first
need to know that a given functional network G1 was generated from
the brain activity of a given individual. Next, we should be able to
decide whether a functional network G2 is also generated by the same
individual or not. Therefore, we need to start from a subset of N
complex systems -or networks- {Gi}, with 1 ≤ i ≤N, whose functional
networks have already been observed. Then, we need to carry out a
second observation of their functional networks and ask ourselves
whether is it possible to recognise the original complex systems by
comparing the “test” and “re-test” functional networks [18, 19].
Note that, in this way, functional identifiability relies on two
fundamental properties of the complex systems: i) consistency
and ii) uniqueness. On the one hand, functional networks must
be consistent [20], i.e., their topology needs to be independent of the
initial conditions and maintain the same organisation despite the
moment of the observation. On the other hand, they have to be
different from any of the functional networks generated by other
complex systems or, at least, from the subset of complex systems
which the functional network is going to be compared to. If we relax
the second condition, i.e., the uniqueness of the functional network
generated by a complex system, we can distinguish between two
types of functional identifiability within the subset of complex
systems under analysis:

• Classification identifiability [21], i.e., when the complex
system behind a functional network can be associated with
one or more predefined groups -or profiles-of functional
networks.

• Recognition identifiability [21], i.e., when a unique functional
network can be associated to each complex system belonging
to the subset of functional networks being compared.

In this way, classification identifiability is responsible for the
success in the classification of complex systems by means of the
analysis of their corresponding functional networks. For example,
functional brain networks are used to discriminate between healthy
controls and patients suffering from a neurological condition thanks
to the fact that the class of their functional networks is identifiable.
Uncountable examples are available in the literature, as such
identifiability is the basis of any diagnostic application [22–26].
Additionally, the capacity of discriminating between two sets of
subjects has been used as a way of validating the usefulness of a given
network representation [27]. Note that classification identifiability is
equivalent to the classification tasks in machine learning [28], where
the starting point is the network structure.

Under the same framework, recognition identifiability refers to
the ability of detecting when a set of networks are describing the
same object, being this an individual, if we are dealing with brain
networks, or any other complex system in a more general context. It
is thus one step beyond classification identifiability, since a unique
label is assigned to each system or, in other words, where each group
is composed of only one system. In the case of brain networks, this
implies being able to discriminate one person from another by
analysing their functional networks, and it is conceptually similar to
the problem of identity assurance [29]. In recent years, it has been
shown that such recognition identifiability can be achieved by
observing characteristics of either the connectome [18, 30] or
functional networks [31–34]. The same concept can also be
applied to other contexts. To illustrate, one can assess the
identifiability of football teams by analyzing the passing networks
between their players, i.e., recognition identifiability can evaluate
how unique the passing patterns of a given team are, and therefore
how easy it is to differentiate the playing styles of one team from
another one [35, 36]; identify account identities in crypto-currency
transaction networks [37]; or identify users across multiple social
networks [38].

4 Meta-identifiability

Finally, meta-identifiability refers to how unique a class of
complex systems is with respect to other classes. Let us consider
the scale-free network structure of some complex systems to
illustrate the specificities of this kind of identifiability. It is well
known that functional brain networks organise according to scale-
free topologies [39–41]. Scale-freeness [42] is nevertheless not
unique to the brain, but has instead been observed in a plethora
of natural and man-made systems, from cells [43] to earthquakes
[44] or air transportation networks [45]. Therefore, we can then
conclude that brain networks are not identifiable (from other classes
of complex networks) with regard to their scale-free organisation.
From a practical perspective, if we observe a scale-free topology in a
network of unknown origin, little to no information can be derived
on the type of system it is describing. This also applies to other
fundamental complex network concepts, as e.g., small-worldness or
modularity [46].

The lack of meta-identifiability of complex systems may in
principle be due to two causes. On one hand, it may be the
unavoidable result of describing a system through -only- its
observed macro-scale dynamics; its individuality may be lost in
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this coarse-graining. On the other hand, this may be the result of a
bias, as the scientific community has hitherto considered more
relevant to identify what are the universal properties of a system
complex, than describing what makes a complex system different
from its peers [47].

Why should the scientific community be interested in meta-
identifiability? We here argue that such level of identifiability
can be used to assess the relevance of a (macro-scale)
representation of a complex system. Following the previous
example, the human brain is unique in several aspects, as it is,
e.g., the only intelligent and self-aware system we know. On the
other hand, air transport is clearly neither intelligent nor self-
aware. If we mix a group of brain networks with a group of air-
transportation network and the resulting network
representations are not meta-identifiable, they do not
represent the uniqueness of each system, indicating that we
are disregarding key aspects of the underlying complex systems
such as, in this example, the level of intelligence and self-
awareness. This is something well known when studying
diseases and conditions: if a given brain network
reconstruction yields the same brain networks for, e.g., a
group of control subjects and a second group of Alzheimer’s
patients, clearly such procedure is ill-design to describe the
effects of the disease [27].

5 Discussion

We have seen that identifiability emerges as a fundamental
precondition for sound scientific inquiry, raising questions
about the uniqueness, stability, and robustness of parameter
estimates in the face of inherent uncertainties and limitations in
measurement. Structural identifiability of a complex system
relies on the extraction of the structural pattern of
connections of its individual components from the
observation of the system dynamics and it is akin to classical
parameter estimation. Importantly, structural identifiability
can be defined for a single system without comparing it to
other ones. On the contrary, functional and meta-
identifiabilities imply having a subset of complex systems
and comparing a single system (or a class of systems) to the
rest. Consequently, identifiability becomes a pairwise or relative
characteristic, contingent on both the specific complex system
under consideration and its counterparts within the group. In
essence, a complex system may be (functional and meta)
identifiable when scrutinized within a designated subgroup of
other complex systems, yet this identifiability might not persist
within a different subgroup.

Given the context of group comparison, functional and meta-
identifiabilities are intertwined with how differences are
computed, akin to a classification task. This poses the question
of which methodologies are most suitable for discerning
disparities between functional networks and which network
parameters encapsulate the distinct attributes of the
underlying complex system. In addition, the underlying
system may evolve with time at multiple time scales, as is the
case of the human brain [48]; and may be further be represented
through interactions boing beyond pair-wise ones, giving birth to

multiplex [49], multilayer [50, 51] or higher-order networks
[52–54]. At present, there is no solution that can universally
be applied across diverse complex networks, and, to the best of
our knowledge, the problem of the identifiability of higher-order
networks has never been tackled. Each analysis must then
systematically compare different approaches to identify the
most effective discriminants between complex systems. With
this regard, deep learning is expected to offer a valuable tool
in determining optimal indicators tailored to each specific study.
Concerning the value of N, i.e., the size of the group of systems to
be identified, there are no studies analyzing the system size.
Intuitively, one may think that the larger the value of N, the
higher of the probability of finding similar systems in the group
and, as a consequence, to reduce identifiability. However, the
heterogeneity of the group seems to be more relevant than the
system size, since the more heterogenous the group is, the more
identifiable its units will be. Therefore, further analysis should
focus on the interplay between the system size N and the
heterogeneity of the group.

On the other hand, it is pertinent to note that both the
diversity within the group of complex systems under
comparison and the presence of noise play a pivotal role in
determining identifiability [19]. While comparing functional
networks within a group of complex systems, the need for
divergent behaviour requires distinct patterns of functional
connections. Hence, the degree of coordination among
individual components assumes significance. As elucidated in
(19), the ability to identify a complex system based on its
functional networks is hindered when these networks are
fundamentally random (due to minimal coordination) or
excessively regular (due to high coordination). Intermediate
levels of coordination between complex network units have
demonstrated to enhance system identifiability, even in the
face of moderate noise levels [19]. Notably, the intrinsic noisy
perturbations inherent to real systems do not preclude
identifiability, as evident in various contexts [19, 55].

Lastly, the interplay between the consistency of a complex
system and its identifiability merits emphasis. Consistency
quantifies a system’s ability to exhibit uniform behaviour
under identical circumstances, irrespective of initial
conditions. Evidently, a complex system displaying different
functional networks for the same task could be characterised
as non-identifiable. However, this issue introduces potential
applications of functional and meta-identifiability. In cases
where a complex system lacks consistency, could we raise the
question of what are the features of its corresponding functional
networks that change and what are being maintained? We believe
that adaptations of the identifiability framework could be used to
evaluate a system’s consistency level, facilitating the
identification of essential conditions governing a system’s
behaviour.
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