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The polarization state is described by a quantum mechanical two-level system,
which is known as special unitary group of degree 2 [SU(2)]. Polarization is
attributed to an internal spin degree of freedom inherent to photons, while
photons also possess an orbital degree of freedom. A fundamental
understanding of the nature of spin and orbital angular momentum of photons
is significant to utilize the degrees of freedom for various applications in optical
communications, computations, sensing, and laser-patterning. Here, we show
that the orbital angular momentum of coherent photons emitted from a laser
diode can be incremented using a vortex lens, and the magnitude of orbital
angularmomentum increases with an increase in the topological charge inside the
mode. The superposition state of the left and right vortices is described by the
SU(2) state, similar to polarization; however, the radius of the corresponding
Poincaré sphere depends on the topological charge. Consequently, we expect a
nested SU(2) structure to describe various states with different magnitudes in
orbital angular momentum.We have experimentally developed a simple system to
realize an arbitrary SU(2) state of orbital angular momentum by controlling both
amplitudes and phases of the left and right vortices using a spin degree of
freedom, whose interplays were confirmed by expected far-field images of
dipoles and quadruples.
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1 Introduction

Angular momentum is a generator of rotation for a quantummechanical state, such that
spin angular momentum and orbital angular momentum are manipulated upon the
application of angular momentum operators [1–4]. It is a fundamental principle
supporting the optical selection rule upon the absorption and emission of a photon that
the total angular momentum is conserved in a rotationally invariant system [5]. For an
electron in an atom, the Schrödinger equation for a wavefunction under spherical symmetric
Coulomb potential from a proton was solved analytically by an associated Laguerre function
for a radial (r) distribution and a spherical harmonic function (Ym

ℓ
) of degree ℓ and orderm

for polar (θ) and azimuthal (ϕ) distributions, which explains the periodic table by the orbital
quantum numbers, given by integers (Z) [2, 5]. It was especially successful in finding the
squared magnitude of orbital angular momentum (ℓ̂2) given by Z2ℓ(ℓ + 1), while the
magnetic angular momentum (ℓ̂3) along an easy axis aligned to the direction of a magnetic
field, which is given by Zm, where Z is the Dirac constant and m (∈ Z) is bounded (m = −ℓ,
. . . , ℓ). This means that the orbital wavefunction of the electron is a simultaneous eigenstate
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for the observable operators ℓ̂
2
and ℓ̂3. Therefore, if we consider the

expectation values of the orbital angular momentum in a three-
dimensional (3D) space, ℓ = (ℓ1, ℓ2, ℓ3), trajectories of states upon
incrementing or decrementing ℓ3 form a sphere (S2), with a fixed
radius of ℓ0 �

����������
ℓ
2
1 + ℓ

2
2 + ℓ

2
3

√
, similar to the Bloch sphere for

spin [1–3, 5].
Compared to the development of an electron during the

foundation of quantum mechanics, it was surprisingly recent for
a photon to recognize that the orbital angular momentum is
quantized to be ℓ3 = Zm, where m (∈ Z) becomes the topological
charge, if the beam is sufficiently collimated to validate the paraxial
approximation with cylindrical symmetry [6–26]. For a photon in a
Laguerre–Gaussian mode, the wavefunction is an eigenfunction for
ℓ̂3, while it is not an eigenfunction for ℓ̂

2
. Consequently, m is not

bounded against the radial quantum number of n. This means that
the magnitude of orbital angular momentum of a photon is not
conserved upon changingm. In fact, we have analytically found that
the average expectation value of the intrinsic squared magnitude of
orbital angular momentum is given by 〈ℓ̂2〉 �
(Zkw0)2(2n + |m| + 1)/2 + Z2(m + 1)(m − 1) for a
Laguerre–Gaussian mode, where k is the wavenumber, p = Zk is
the momentum, and w0 is the waist, and the origin-dependent
extrinsic contribution was subtracted [25]. On the other hand, it was
also analytically confirmed that the ladder operators, ℓ̂± � ℓ̂1 ± ℓ̂2, to
increment and decrement m, were defined properly, such that the
Laguerre–Gaussian mode maintains to be an eigenfunction ofm ± 1
after the application of the ladder operation [25]. It is noteworthy
that the aforementioned formula for 〈ℓ̂2〉 is preserved upon
changing the sign of m. Therefore, if the system has a chiral
symmetry between left- (m > 0) and right-twisted (m < 0)modes,
we expect the superposition state among these orthogonal states to
form SU(2) symmetry [18, 25, 27–35], similar to the Poincaré sphere
for polarization [9, 10, 28, 29, 36–44].

The SU(2) description of the orbital angular momentum state
and the corresponding SO(3) Poincaré spheres was already
discussed by several researchers [18, 25, 27–35, 45, 46]. After the
pioneering work of the Poincaré sphere for the orbital angular
momentum using a pair of cylindrical lenses [27], the vectorial
nature of the orbital angular momentum together with the spin
angular momentum was successfully demonstrated [28–30]. More
recently, the multi-dimensional nature of structured light was
extensively studied both theoretically and experimentally [18,
32–35, 45, 46]. In particular, amazing local control of trajectories
was achieved, and the corresponding SU(2) state with the orbital
angular momentum was established [18, 32–35, 45, 46]. Upon
understanding these intrinsic features, it was astonishing to
classically demonstrate the entangled
Greenberger–Horne–Zeilinger (GHZ) state [34]. Here, we focus
on the nested Poincaré spheres which are considered theoretically
[25, 32]. In particular, we observe that the radius of the Poincaré
sphere is increased upon the ladder operation to increase the
magnitude of the orbital angular momentum [25]. The larger
radius of the Poincaré sphere could be confirmed by the cyclic
symmetry of the far-field images of multi-poles, such as a dipole and
quadrupole, around the equator of the Poincaré sphere [25, 32].

The purpose of this work is to prove the aforementioned
concepts for SU(2) symmetry of the orbital angular momentum
of photos in experiments. Due to the increased radius of ℓ0 upon

incrementingm, the sphere form + 1 should be larger than that ofm,
such that we expected nested Poincaré spheres. We have also
developed a many-body field theory to account for the orbital
angular momentum in a coherent state. Based on the theory, we
have experimentally demonstrated the arbitrary SU(2) operations as
a rotator and a phase-shifter for an SU(2) state of the orbital angular
momentum.

2 Theory

First, we will briefly discuss the theoretical aspect of coherent
photons with spin angular momentum and orbital angular
momentum [25, 26, 47]. Here, we consider coherent photons
emitted from a conventional laser diode (LD) [9, 10, 40–42]. The
rotational symmetry of photons emitted from LD is spontaneously
broken down upon lasing, and the spin of a macroscopic number of
photons is aligned to a direction with the minimum loss for
propagation in a cavity to form a coherent state [26, 48–51]. We
assumed a single-mode operation of LD [9, 41, 42] for simplicity. If
the beam propagates in vacuum, air, or a fiber with no polarization
dependence, the polarization state can be maintained and controlled
by various optical components, such as wave-plates, rotators, phase-
shifters, and polarizers [9, 10, 40–42]. We have previously
demonstrated, both theoretically [48] and experimentally [50],
that an arbitrary polarization state can be realized by a
combination of half-wave plates (HWPs) and quarter-wave plates
(QWPs) using the proposed Poincaré rotator. The idea was to realize
a proper rotator using two HWPs, of which one of HWPs is
physically rotated, while the other is fixed. This allows converting
the well-known pseudo-rotation behavior (a mirror reflection) of a
rotated HWP [41, 42] to a proper rotator, which constructs group
operations [48, 50]. By introducing QWPs before and after the
rotator, we could also realize a phase-shifter, whose phase is
determined by the rotation angle [48, 50]. Here, we will establish
the construction of a Poincaré rotator for the orbital angular
momentum.

We define field operators of ψ̂†
mσ � (â†mσ , â

†
−mσ) and ψ̂mσ in the

SU(2) spinor representation for the creation (â†mσ) and annihilation
(âmσ) of a photon with the quantum number of m for the orbital
angular momentum and the polarization state of σ, respectively. For
the polarization state, we can choose any two orthonormal bases,
such as horizontal–vertical (HV), diagonal–antidiagonal (DA), or
left–right (LR) states [48, 50]. For the orbital angular momentum, we
consider the SU(2) state among left (m) and right (−m) vortices,
such that we can assume m > 0 without the loss of generality. The
operators satisfy the quantum commutation relationship [25],
characterized by [âmσ , â

†
m′σ′] � δm,m′δσ,σ′ as Bose–Einstein

statistics, using the Kronecker delta δ.
The SU(2) state of the orbital angular momentum for a fixed

polarization state is described by a direct product state of |αmσ,
α−mσ〉 = |αmσ〉|α−mσ〉, where we have defined the coherent state [11,
26, 52, 53] as follows:

|αmσ〉 � e−
|αmσ |2

2 eâ
†
mσ αmσ |0〉, (1)

with the complex (C) parameters, given by αmσ �
��
N

√
e−iϕ/2 cos(θ/2)

and α−mσ �
��
N

√
e+iϕ/2 sin(θ/2) for the average number of photons N

passing through the cross section per second, and |0〉 is the
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wavefunction for the vacuum. It is well known [11, 26, 52, 53] that
the coherent state is an eigenstate for an annihilation operator,
âmσ |αmσ〉 � αmσ |αmσ〉.

We have previously derived the orbital angular momentum
operator [26] which is given as follows:

L̂
m

i � Zm∑
σ

ψ̂†
mσ σ̂ iψ̂mσ , (2)

where thesu(2) operator σ̂ � (σ̂1, σ̂2, σ̂3) and σ̂ i is the Pauli matrix
of the ith component for i = 1, 2, 3, corresponding to x, y, and z
components. We have also found that the helical component [26] of
i = 3 is locked to the direction of propagation z.

The expectation value of the orbital angular momentum in the
coherent state is calculated as follows:

〈L̂m

i 〉 � Zm∑
σ

αmσ* , αmσ*( )σ̂ i αmσ

α−mσ
( ), (3)

where * means a complex conjugate operation. This formula shows
that the Jones vector of (αmσ , α−mσ) ���
N

√ (e−iϕ/2 cos(θ/2), e+iϕ/2 sin(θ/2)) corresponds to an SU(2)
wavefunction for a macroscopic number of coherent photons due
to the nature of Bose–Einstein condensation for lasing [26, 48, 49].
Finally, we obtain the average orbital angular momentum as follows:

L � 〈L̂〉 �
L0

L1

L2

L3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � ZmN

1
sin θ cos ϕ
sin θ sin ϕ
cos θ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (4)

which can be shown as an extended Poincaré sphere [26–31, 54]
(Figure 1). The magnitude of the orbital angular momentum,

defined by L0 �
����������
L21 + L22 + L23

√
� ZmN, is proportional to both m

and N. A remarkable difference exists between a photonic state on
the Poincaré sphere and a spin state of an electron on the Bloch
sphere due to the statistics of elementary particles [1–3, 5, 9, 10, 40].
It is convenient to normalize by N to define the orbital angular
momentum per photon as (ℓ0, ℓ1, ℓ2, ℓ3) = L/N for coherent photons.

As shown in Figure 1, a standard Gaussian beam should correspond
to the state at the origin since there is no topological charge in the mode
profile, and thus, the orbital angular momentum must be zero. This is a
remarkable contrast with the Poincaré sphere for the spin angular
momentum since we cannot realize a state with a vanishing spin
expectation value for coherent photons with the full degree of
polarization. As the magnitude of the orbital angular momentum is
increased in the unit of Z, the radius of ℓ0 is quantized to have integer
values, as ℓ0/Z ∈ Z, such that the Poincaré spheres are nested for
describing the SU(2) states between the optical vortices withm and −m.

Next, we demonstrate that the many-body field operator of L̂
m
i

actually works as a generator of rotation for coherent states. For the
orbital angular momentum of m, we recognize that Z becomes
effectively larger to be Zm, corresponding to the larger radius of ℓ0,
such that we should renormalize Z → Zm. Then, the generator of
rotation for the SU(2) states is given by the exponential map from
the Lie algebra to the Lie group [3, 55–57],

D̂ n, δϕ( ) � exp − i

Zm
L̂
m · n δϕ

2
( )( ), (5)

where n is the unit vector (|n| = 1) for the rotational axis and δϕ is
the angle of rotation, measured for the anticlock-wise direction (δϕ >
0 for left rotation).

FIGURE 1
Nested Poincaré sphere for the orbital angular momentum per photon (ℓ1, ℓ2, ℓ3). (A) Theoretical calculations of mode profiles are shown. The phase
changes are shown by the color profile, while the intensities of modes are represented by brightness. The chirality is defined by the phase change,
observed from the detector side, such that the left-twisted state (eimϕ) is located at the north pole and the right-twisted state (e−imϕ) is located at the south
pole. The Gaussian beam without topological charge has no orbital angular momentum, and the state is located at the origin. The inner sphere for
SU(2) states with a topological charge of 1 has the radius of Z, and the outer sphere for SU(2) states with a topological charge of 2 has the radius of 2Z. The
nested spherical structure will continue to expand as themagnitude of the orbital angular momentum is increasedwith the step of Z. (B) Experimental far-
field images, shown by intensity profiles on the spheres. It is impossible to distinguish left and right vortices at north and south poles, but we can recognize
dipoles and quadrupoles around the equator, which rotates in the ℓ1–ℓ2 plane, similar to linear polarization.
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In order to prove the expected rotation for the SU(2) state by the
generator of rotation, we apply the operator to obtain

D̂ n, δϕ( )|αmσ , α−mσ〉
� e−

|αmσ |2
2 −|α−mσ |2

2

exp −iψ̂†
mσ σ̂ · nψ̂mσ

δϕ

2
( )( )eâ†mσ αmσ+â†−mσα−mσ |0〉

� e−
|αmσ′ |2

2 −|α−mσ′ |2
2 eâ

†
mσ αmσ′ +â†−mσ α−mσ′ |0〉,

(6)

where the SU(2) wavefunction

αmσ′
α−mσ′

( ) � D̂ n, δϕ( ) αmσ

α−mσ ,
( ) (7)

is transferred by the exponential map [3, 55–57] for the SU(2)
operation

D̂ n, δϕ( ) � exp −iσ̂ · n δϕ

2
( )( ). (8)

Therefore, L̂
m
i works as a generator of rotation, whose expectation

value is the orbital angular momentum. This also confirms that the
many-body field operator can change the SU(2) state of the orbital
angular momentum, regardless of the macroscopic number of
photons involved due to the coherence of a lasing beam. Our
theory justifies the use of the Jones wavefunction and
polarization matrices [2, 9, 10, 26, 28, 29, 36–44, 48, 49, 58],
developed for the spin angular momentum as well as for the
orbital angular momentum. It is worth noting that our theory
did not require detailed spatial dependence of the orbital
wavefunction, such that it is not restricted to Laguerre–Gaussian
modes. As far as the modes are orthogonal to each other 〈m|m′〉 =
δm,m′, we can apply our theory, which is based on the Lie group [3,
55–57], to other beams, such as Bessel–Gauss [59, 60] and
Ince–Gaussian beams [61, 62].

As described previously, the many-body operator of the orbital
angular momentum works as the generator of rotation for the SU(2)
states, and the expectation values of the orbital angular momentum
become real numbers (R) with SO(3) symmetry [63]. More
generally, if we are dealing SU(n) states, we have n2 − 1
generators of rotation, whose expectation values become real
numbers, such that they are represented on a hypersphere with
SO(n2 − 1) symmetry [63], whose radius is determined by Casimir
operators [3, 55–57, 63].

3 Experiments

3.1 Poincaré rotator for orbital angular
momentum

In order to realize an arbitrary SU(2) state for the orbital angular
momentum, our experimental challenge is to realize an SU(2)
rotational operator [2, 26, 48, 49, 58].

D̂ n, δϕ( ) � 1 cos
δϕ

2
( ) − iσ̂ · n sin δϕ

2
( ), (9)

which corresponds to an extension of Euler’s formula for 2 × 2
complex matrices. We have previously realized the SU(2) operator
for the spin angular momentum by using the HWPs and QWPs [50].

In order to apply the same technique for the orbital angular
momentum, we need HWPs and QWPs for the orbital angular
momentum [64], together with beamsplitters [65–69] to separate
left- and right-twisted components from the mixed SU(2) state.
These optical components for the orbital angular momentum are
certainly very important for SU(2) manipulations, but they are not
widely available, compared with the polarization components for the
spin angular momentum. In our previous scheme [50, 70], if we use
the pair of cylindrical lenses (Cyls) [64] as the half-wave phase
shifter (HWPS) for the orbital angular momentum, similar to a
HWP for polarization, we need to rotate the paired HWPS, while
another HWPS must also be employed to realize the genuine
rotation rather than the mirror reflection [48, 50, 70]. Moreover,
we also need two pairs of QWPs [48, 50, 70], which require mode
matching to control Gouy phases at the waist [64], such that it is
difficult to manipulate the SU(2) state while keeping the collimation.
Therefore, we have considered an alternative approach to
maximizing the use of commercially available polarization
components, and only one HWPS was used.

The proposed experimental setup is shown in Figure 2. We used
a green LD, operated at the wavelength of 532 nm with the output
power of ~ 1 mW. We used a collimation lens (CL) to collimate a
Gaussian beam (shown by green) with the diameter of 200 μm, and
we used a polarizer (PL) for using vertical (V) polarization, only as
an input. Then, the beam is passing through a vortex lens (VL) [6,
20, 27, 29–31, 43, 65, 71–73] to generate a left vortex. We used two
VLs to generate optical vortices with the topological charge of 1 and
2, respectively. The chirality of the vortex was changed every time
upon mirror reflections [9, 10, 40–42, 74], such that we have both
left (red) and right (blue) vortices in the system. We have used a
commercially available VL [65], which is made of a chiral structure
with the circular step-wise profile with the thickness of a refractive
material. The thickness of VL is controlled to have a difference of
1 wavelength between the thick region and the thin region upon
propagation of light to generate a vortex with the topological charge
of 1. As a result, the vortex is generated if the Gaussian beam is
inserted. We have also employed a VL to generate the topological
charge of 2, where the difference in thickness corresponds to
2 wavelengths of the refractive material. By the simple flip-flop
exchange of VL, we can generate both the left and right vortices [65].

We used non-polarization beamsplitter (NPBS1) to convert the
input of the left vortex to the right vortex, and the other output
(through-port, the beam is not shown) was used for the alignment.
Then, the beam passes through HWP1, which was used to rotate the
polarization to control the amplitude at the polarization
beamsplitter (PBS). The vertically polarized component is
reflected toward the HWPS, made of two paired cylindrical
lenses (Cyl1 and Cyl2). HWPS works as the σ̂3 operator for the
orbital angular momentum to convert the chirality of the left vortex
to the right vortex, following a reflection at mirror 1 (M1) to be the
left vortex, and the complementary metal-oxide semiconductor
(CMOS) camera is used to take the far-field images.

On the other hand, the beam reflected at M2 was phase-shifted
at the series of HWPs and QWPs. We have aligned the fast axis (FA)
of QWP1 to the antidiagonal (A) direction, which is rotated 45° to
the clockwise direction from the horizontal (H) direction [48, 50]
(insets of Figure 2). The FA of HWP2was aligned horizontally, while
HWP3 was rotated to control the phase [48, 50]. Then, the FA of
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QWP2 was aligned to the diagonal (D) direction, which is rotated
45° to the counter-clockwise direction from the H-direction [48, 50].
Consequently, QWP1, HWPs, HWP3, and QWP2 worked as a
phase-shifter for H-polarization [48, 50], and we have brought
the H-polarized state back to the V-polarized state by HWP4,
whose FA was aligned to the D-direction. Then, the beam was
reflected at NPBS2, such that the beam became the right vortex at
CMOS. The beams from the path from M1 and the path from
M2 were combined at NPBS2, and the combined beam became the
superposition state between the left and right vortices under
V-polarization.

In the aforementioned explanations, the changes of states for both
polarization and orbital angular momentum might not be obvious.
Therefore, we have included the schematic images of the input state,
states during the propagation, and the output state in Figure 1. In order
to explain complementary, we describe how the state is changed upon
propagation. After passing through VL, the input state is characterized
by the left vortex with V-polarization, while the component of the
horizontal polarization vanishes. Then, the beam is reflected by NPBS1,
which converts the input state to the right vortex with V-polarization
upon reflection. Then, the rotated HWP1 works as an amplitude
controller, which rotates the polarization state to have a

H-polarization component together with a V-polarization
component, depending on the rotation angle. Here, it is important
to recognize both polarization states are based on the right vortex. Then,
the beam is split at PBS, the V-polarization state is reflected to be the left
vortex due to the reflection, while the H-polarization state passes
through the PBS without changing the right vortex state. For the
reflected beam with V-polarization, the beam passes through
HWPS, which works to convert the vortex state while maintaining
the polarization state. Therefore, after passing throughHWPS, the beam
becomes the right vortex, which is reflected at M1 to finally become the
left vortex with V-polarization. On the other hand, when the beam
passes through M2, it is passing through a series of waveplates (QWP1,
HWP2, HWP3, QP2, and HWP4) to control the phase. It is a
straightforward calculation of Jones matrices, as shown in our
previous papers for the polarization state [48, 50]. After passing
through theses waveplates, the beam reaches the V-polarization
state, while the left vortex is maintained throughout the phase
control. Finally, the beam is reflected at NPBS2 to become the right
vortex while V-polarization is maintained. Consequently, the input of a
left vortex with V-polarization was converted to be a superposition state
of the left and right vortices with variable amplitudes and phases while
V-polarization was maintained.

FIGURE 2
Poincaré rotator to realize an arbitrary SU(2) rotation for a beam with the orbital angular momentum. HWP1 was physically rotated to control the
relative amplitudes for left and right vortices. Half-wave phase shifter (HWPS) was used to change the chirality of the orbital angular momentum among
beams for the paths alongmirror 1 (M1) (left vortex at the CMOS camera) andM2 (right vortex). Quarter-wave plates (QWPs) andHWPs after M2were used
to control the phase, and HWP3 was physically rotated to change the phase between left and right vortices. The insets show the orientations of fast
axis (FA) and slow axis (SA) in QWPs and HWPs, and the phase profile of the far-field images during the propagation are also shown. LD, laser diode; CL,
collimator lens; PH, pin hole; PL, polarizer; HWP, half-wave plate; QWP, quarter-wave plate; FA, fast axis; SA, slow axis; PBS, polarization beamsplitter;
NPBC, non-polarization beam combiner; NPBS, non-polarization beamsplitter; M, mirror; PM, polarimeter; CMOS, complementary metal-oxide
semiconductor; HWPS, half-wave phase shifter for the vortex; Cyl, cylindrical lens.
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3.2 Topological charge of 1 for dipoles

First, we used a VL for generating the left vortex with a
topological charge of 1, which corresponds to the rotation of
states on the inner Poincaré sphere, as shown in Figure 1. We
examined the rotator operation for the vortex to see the expected
dipoles rotating in far-field images (Figure 3), which correspond to
rotate the SU(2) states along the equator of the Poincaré sphere [25,
27, 29, 43, 47]. We set the rotation angle of FA of HWP1 at 22.5°

from the H-direction along the clockwise direction, which

corresponds to the 90° rotation on the Poincaré sphere for
changing V-polarization to D-polarization, since the physical
rotation angle of ΔΨ induces the rotation of 4ΔΨ on the
Poincaré sphere [9, 10, 40–42, 48, 50]. This allowed splitting the
beam with the ratio of 50:50 at PBS, and the extra phase-shift was
induced for the path along M2. Consequently, we expect the SU(2)
operation.

D̂ n3, δϕ( ) � 1 cos
δϕ

2
( ) − iσ̂3 sin

δϕ

2
( ), (10)

FIGURE 3
Rotator operation for the dipole made of left and right vortices with a topological charge of 1. (A) Theoretical calculation, (B) experimental results,
and (C) corresponding trajectories on the Poincaré sphere, shown by the blue curve. (A1–A19) and (B1–B19) Far-field images of the dipole after rotating
HWP3 from 0° to 180° at the step of 10°. This rotation corresponds to the counter-clockwise rotation along the equator in the ℓ1–ℓ2 plane with the axis of
ℓ3. The dipole was rotated 90° from (B1) the horizontal dipole to (B11) the vertical dipole. Another 90° rotation brings the vertical dipole (B11) back to
(B19) the horizontal dipole. The horizontal dipole (B1) was rotated 180° to be (B19) in images, which corresponds to the 360° rotation on the Poincaré
sphere.
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� e−i
δϕ
2 0

0 ei
δϕ
2

⎛⎝ ⎞⎠, (11)

where n3 = (0, 0, 1) corresponds to the rotation along ℓ3. In fact,
D̂(n3, δϕ) obviously rotates the SU(2) state at the polar coordinate
of (θ, ϕ):

|θ, ϕ〉 �
e−i

ϕ
2 cos

θ

2
( )

e+i
ϕ
2 sin

θ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (12)

to change ϕ→ ϕ + δϕ/2. Here, we must be cautious for the factor of
2 in δϕ = 2ΔΨ against the amount of rotation of HWP3 instead of
the previous factor of 4 [9, 10, 40–42, 48, 50] because only
H-polarization mode for the path along M2 was affected by the
phase-shifter, while the V-polarization mode for the path along
M1 was not affected. Therefore, the physical rotation of 180° for

HWP3 was required to realize the whole 360° rotation on the
Poincaré sphere. The expected rotation of the dipoles in far-field
images was observed (Figures 3A–C), and the dipoles rotated in the
counter-clockwise direction as we rotated HWP3 to the same
direction. Here, it is worth noting that two peak intensities of left
and right portions of the dipole, shown in Figure 3B1, were
exchanged to be right and left portions of the dipole, shown in
Figure 3B19, respectively, after one continuous circulation on the
Poincaré sphere. As shown in Figure 3A1, the left and right portions
of the dipole have the opposite phase, and the phase difference is π.
This can be confirmed by the phase factor of D̂(n3, 2π) � −1,
corresponding to the two-fold coverage of SU(2) against SO(3)
[48, 50, 54]. The difference in phase cannot be identified from the
images shown in Figure 3B, but it could potentially be observed by
combining beams with and without the phase-shift [54]usinga
polarization interferometer.

Next, we confirmed the phase-shifter operation for SU(2) states
of the orbital angular momentum (Figures 4A–C). This was

FIGURE 4
Phase-shifter operation to rotate in the ℓ3–ℓ1 plane along the ℓ2 axis. (A) Theoretical calculation, (B) experimental results, and (C) corresponding
trajectories on the Poincaré sphere, shown by the green curve. The rotation axis was adjusted by rotating HWP3. (A1–A19) and (B1–B19) Far-field images
after rotating HWP1 from 0° to 90° at the step of 5°. The left vortex (B1) was rotated to (B5) the horizontal dipole, (B10) the right vortex, (B14) the vertical
dipole, and back to (B19) the left vortex.
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achieved simply by rotating HWP1 to change the splitting ratio for
left and right vortices, while the rotation angle of HWP3 was
adjusted through the images of the dipole to realize the rotation
in the ℓ3–ℓ1 plane along the ℓ2 axis. The phase-shifter along n2 = (0,
1, 0) is set the same as a standard rotation matrix in SO(2) [9, 10,
40–42, 48, 50] to obtain

D̂ n2, δθ( ) � 1 cos
δθ

2
( ) − iσ̂2 sin

δθ

2
( ), (13)

�
cos

δθ

2
( ) −sin δθ

2
( )

sin
δθ

2
( ) cos

δθ

2
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (14)

where δθ = 4ΔΨ against the amount of rotation of HWP1 [9, 10,
40–42, 48, 50], since beams in both paths were affected by splitting.
The experimental far-field images are shown in Figure 4. We
demonstrated that the left vortex was transferred to the right

vortex and vice versa through horizontal and vertical dipoles in
between during the transformation. This means that we can
continuously rotate SU(2) states of the orbital angular
momentum simply by mechanical rotations of HWPs, as we
previously demonstrated for polarization [50].

We have demonstrated both rotator and phase-shifter
operations of SU(2) states of the orbital angular momentum,
such that we can realize any state on the Poincaré sphere by
combining these operations. As for completeness, we have also
demonstrated the phase-shifter operation along the ℓ1 axis in the
ℓ3–ℓ1 plane, as shown in Figures 5A–C. The operation principle is
exactly the same as that for the rotation along the ℓ2 axis.

3.3 Topological charge of 2 for quadrupoles

In the previous subsection, we have realized an optical dipole,
whose symmetry is characterized by a cyclic group of degree 2, C2,

FIGURE 5
Phase-shifter operation for left and right vortices with a topological charge of 1 to rotate in the ℓ3–ℓ2 plane along the ℓ1 axis. (A) Theoretical
calculation, (B) experimental results, and (C) corresponding trajectories on the Poincaré sphere, shown by the red curve. (A1–A19) and (B1–B19) Far-field
images after rotating HWP1 from 0° to 90° at the step of 5°. The left vortex (B1)was rotated to (B5) the antidiagonal dipole, (B10) the right vortex, (B14) the
diagonal dipole, and back to (B19) the left vortex.
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which means that we require two steps upon one circulation of the
dipole and the rotation of 180° brings the dipole back to the one with
the same intensity profile. Then, we proceed to explore an optical
quadrupole, whose symmetry is described by C4, which means that
the intensity profile of the quadrupole is not changed upon the
rotation of 90° due to the 4-fold symmetry. Obviously, this symmetry
argument is valid for higher-order topological charge, and if we
consider the topological charge of 3, the six-fold symmetric
multipole is expected in far-field images with C6 symmetry. In
general, for the topological charge of m, we expect 2m-fold
symmetric multipole in far-field images, which are symmetric
under C2m operations.

Experimentally, we used a VL [6, 20, 27, 29–31, 43, 65, 71–73]
for the topological charge of 2, and the rest of the experimental
setup was the same as described previously. The rotator operation
for the quadrupole is shown in Figures 6A–C. We define the
rotational origin of the quadrupole (ϕ = 0) to be the mode

profile shown in Figures 6A1, B1 and call it to be horizontal,
corresponding to the SU(2) state for (ℓ1, ℓ2, ℓ3) = (2, 0, 0)Z
(Figure 1). The mode, which is orthogonal to the horizontal
mode, is the vertical profile shown in Figures 6A10, B10,
corresponding to the state for (ℓ1, ℓ2, ℓ3) = (−2, 0, 0)Z. As we
can confirm that the dipole rotated in the counter-clockwise
direction, we rotated HWP3 in the same direction. We can also
observe that the 90° rotation shown in the far-field image was
enough to perform one rotation along the equator on the outer
shell of the nested Poincaré spheres, as shown in Figure 1. It is also
true that the phase difference between horizontal and vertical
portions in the quadrupole is π, such that the phase factor of
D̂(n3, 2π) � −1 is expected upon the 90° rotation in far-field
images, similar to the rotation of the dipole. This results from
the isomorphic mapping of SU(2)/S0 � SO(3), where S0 � {−1, 1},
upon the manipulation of the wavefunction in SU(2) for the
corresponding expectation values in SO(3) [50, 63].

FIGURE 6
Rotator operation for the quadrupole made of left and right vortices with a topological charge of 2. (A) Theoretical calculation, (B) experimental
results, and (C) corresponding trajectories on the Poincaré sphere, shown by the blue curve. (A1–A19) and (B1–B19) Far-field images of the quadrupole
after rotating HWP3 from0°–180° at the step of 10°. This rotation corresponds to the counter-clockwise rotation along the equator in the ℓ1–ℓ2 planewith
the axis of ℓ3. The horizontal quadrupole (B1) was rotated to (B5) diagonal, (B10) vertical, (B14) antidiagonal, and back to (B19) horizontal
quadrupoles. The horizontal quadrupole of (B1) was rotated 90° to be (B19) in images, which corresponds to the 360° rotation on the Poincaré sphere.
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Next, we have examined the phase-shifter operation for vortices
with the topological charge of 2 (Figures 7A–C; Figures 8A–C). We
could change the rotation axes from the ℓ1 axis to the ℓ2 axis, as
shown in Figures 7A–C and Figures 8A–C, respectively, by rotating
HWP3, while the amplitudes for the left and right vortices were
controlled by rotating HWP1 for both cases to change the splitting at
PBS. We confirmed continuous changes in far-field images from the
left vortex to the right vortex and vice versa through tilted
quadrupoles in between.

We can realize an arbitrary SU(2) rotation [2, 26, 47–50, 58, 63]
by combining the rotator and the phase-shifter to realize

|θ, ϕ〉 � D̂ n3, ϕ( )D̂ n2, θ( )|Left 〉, (15)
where |Left 〉 = (1, 0) is the SU(2) state for the left vortex. We have
previously demonstrated the SU(2) rotation of the polarization state
and proposed the device “Poincaré rotator” since we can realize an
arbitrary rotation on the Poincaré sphere [47, 50]. Here, we have
demonstrated the operation of the Poincaré rotator for the orbital
angular momentum.

4 Discussion and conclusion

We have theoretically shown [25] that the ladder operators of
the orbital angular momentum worked properly for the
Laguerre–Gaussian modes to increase and decrease the helical
component in the orbital angular momentum along the direction
of the propagation (ℓ3) in the unit of Z. This work was conducted to
confirm the theoretical expectations in experiments, while we have
also developed a Lie group theory for coherent states to control the
SU(2) state of the orbital angular momentum. The proposed
Poincaré operator successfully rotates the SU(2) states, which was
confirmed by far-field images, and we could observe the expected
behaviors as phase-shifters and rotators simply by rotating the
waveplates. We found the rotations of dipoles and quadrupoles
by changing the phase between the left and right vortices. It is a
simple theoretical consequence that the magnitude of the orbital
angular momentum is increased upon the application of a vortex
lens to increase the topological charge, such that the radius of the
Poincaré sphere must be increased, while the standard Gaussian

FIGURE 7
Phase-shifter operation to rotate in the ℓ3–ℓ1 plane along the ℓ2 axis. (A) Theoretical calculation, (B) experimental results, and (C) corresponding
trajectories on the Poincaré sphere, shown by the green curve. The rotation axis was adjusted by rotating HWP3. (A1–A19) and (B1–B19) Far-field images
after rotating HWP1 from 0° to 90° at the step of 5°. The left vortex (B1) was rotated to (B5) the horizontal quadrupole, (B10) the right vortex, (B14) the
vertical quadrupole, and back to (B19) the left vortex.
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beam without the topological charge has vanished the orbital
angular momentum. Therefore, the Poincaré spheres have a
nested structure. It is worth noting the fact that the orbital
angular momentum is observable and has a dimension of [Z] =
[J · s]. The radius of the Poincaré sphere takes integer values in the
unit of Z, and we can distinguish the spheres for states with different
topological charges. Another important aspect was the nature of
Bose–Einstein condensation for coherent states of photons emitted
from a laser. The coherent states contain a macroscopic number of
photons degenerated at the same state due to the Bose–Einstein
statistics. Regardless of the macroscopic number of photons
involved, we only need to consider two relevant states for the left
and right vortices to consider the SU(2) states. We have both
theoretically and experimentally proved that the SU(2) states
could be controlled simply by manipulating amplitudes and
phases for these two states, and the many-body operator for the
orbital angular momentum worked properly as a generator of
rotation to change the SU(2) states through the exponential

mapping of the SU(2) operators. The underlying mathematical
principle was the structure of Lie algebra and Lie group [3, 26,
48, 55–57, 63], and the many-body nature of photons did not
impede to realize the quantum mechanical superposition state
due to the Bose–Einstein statistics. Consequently, we can realize
the arbitrary SU(2) states of the orbital angular momentum [6, 20,
27, 29–31, 43, 65, 71–73], similar to the polarization states [2, 9, 10,
26, 28, 29, 36–44, 48, 49, 58]. This is also consistent with the recent
theoretical demonstrations that spin angular momentum and orbital
angular momentum can be split into two independent observables
[24, 26], such that we can safely discuss the expectation values of the
orbital angular momentum at least for beams propagating in a
waveguide or in vacuum under finite mode fields.

In this work, we have considered a superposition state among
left and right vortices with the same topological charge to form the
SU(2) states. This is a natural expectation for propagation under
chiral symmetry, such as multi-mode or a few-mode fibers [9, 26, 41,
42], where refractive indices could be different for modes with

FIGURE 8
Phase-shifter operation for left and right vortices with a topological charge of 2 to rotate in the ℓ3-ℓ2 plane along the ℓ1 axis. (A) Theoretical
calculation, (B) experimental results, and (C) corresponding trajectories on the Poincaré sphere, shown by the red curve. (A1–A19) and (B1–B19) Far-field
images after rotating HWP1 from 0° to 90° at the step of 5°. The left vortex (B1) was rotated to (B5) the antidiagonal quadrupole, (B10) the right vortex,
(B14) the diagonal quadrupole, and back to (B19) the left vortex.
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different topological charges but the refractive indices for left and
right vortices with the same topological charge are the same. In this
case, we can control the phase and amplitudes for the SU(2) states
during the propagation. On the other hand, we can also envisage
considering a superposition state among beams with different
topological charges in vacuum or in air, where the refractive
indices are the same for modes with different topological charges.
Then, we can consider a superposition state among orthogonal states
with a larger number of orthogonal states. We have recently
considered the SU(3) states for mixing a Gaussian beam and
beams with the left and right vortices with topological charge
[63, 70]. For these orthogonal modes, we can assign effective
color charge, such that we can employ the theory of quantum
chromodynamics (QCD) for elementary particles [3, 4, 55–57,
75–77] to explore photonic QCD [63, 70]. For the SU(3) states,
Gell-Mann showed that eight generators of rotation are required to
describe quarks. Similarly, we expect eight real values to characterize
the SU(3) state, whose expectation values can be described on the
hypersphere. We have proposed to call it a Gell-Mann hypersphere,
whose rotation can be considered by a rotation in SO(8) [63]. We
can extend our experimental system to explore the SU(3) states or
even larger Hilbert space using the coherent states of photons.

In the present proof-of-concept (PoC)-level experiments, we
admit the observed far-field images are not clear enough to allow
quantitative analysis. Our experimental apparatus only has an
accuracy of ~ 1 − 2° in the angle of a mechanical rotation. We need
six waveplates such that accumulations of uncertainties in angles
were significant. If we are targeting one particular vortex state with
one specific polarization state, we can compensate these
uncertainties by adjusting angles, but we need to check the
overall trends by continuously rotating the waveplates,
especially for HWP1 and HWP3. It is worth noting the fact
that we induced twice and four times of changes in rotation
angles on the Poincaré sphere, compared with the physical
angle of rotation, for the rotator operation and the phase-
shifter operation, respectively [41, 42, 48, 50]. As a result, we
expected uncertainties of ~ 10° in the angle, such that our
experimental results could only be considered qualitatively. In
future, it would be better to employ active electrical controls, such
as the use of LiNbO3 optical modulators [51] or liquid crystals [41,
42], to avoid the mechanical rotations. It would be even more
interesting to add a capability to tuning a trajectory [45] or to
multiplexing the orbital angular momentum states [60, 68, 78].

In this work, we have focused on generations of various
superposition states with SU(2) symmetry upon changing
amplitudes and phases of coherent-twisted photons. In future, we
need to establish the detection scheme, as proposed by several
researchers [46]. This is very important since convenient
experimental schemes are not completely well established as
compared with the polarimetry for polarization states [41, 42]. In
the polarimetry, Stokes parameters are easily measured using
polarization beamsplitters, HWPs, QWPs, polarizers, and
detectors [41, 42]. On the other hand, the corresponding tools
are not widely available for the orbital angular momentum states.
In the present case, we would like to measure (ℓ0, ℓ1, ℓ2, ℓ3)
quantitatively, but to the best of our knowledge, we cannot
quantitatively measure these parameters at least using
commercially available apparatuses. It is on our agenda for future

work to establish a procedure to accurately characterize these
parameters.

In conclusion, we have shown that the superposition states of the
left and right optical vortices are described by the coherent states
with SU(2) symmetry, whose orbital angular momentum is shown
on the Poincaré sphere, similar to polarization. The radius of the
Poincaré sphere depends on the topological charge, such that the
trajectories of states are described on the nested Poincaré spheres
with the quantized radius in the unit of Z per photon. We have
proposed a Poincaré rotator to realize arbitrary rotations of SU(2)
states on the Poincaré sphere and successfully demonstrated the
operations as rotators and phase-shifters, which will be useful to
manipulate quantum states of macroscopically coherent photons.
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