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Correlation Plenoptic Imaging (CPI) is an innovative approach to plenoptic
imaging that tackles the inherent trade-off between image resolution and
depth of field. By exploiting the intensity correlations that characterize specific
states of light, it extracts information of the captured light direction, enabling the
reconstruction of images with increased depth of field while preserving resolution.
We describe a novel reconstruction algorithm, relying on compressive sensing
(CS) techniques based on the discrete cosine transform and on gradients, used in
order to reconstruct CPI images with a reduced number of frames. We validate the
algorithm using simulated data and demonstrate that CS-based reconstruction
techniques can achieve high-quality images with smaller acquisition times, thus
facilitating the practical application of CPI.
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1 Introduction

Correlation Plenoptic Imaging (CPI) [1–9], is a recently developed approach to
plenoptic imaging (also know as light-field imaging), which aims, by exploiting
correlations of light intensity, to overcome the strong tradeoff between image resolution
and maximum achievable depth of field that affects conventional techniques, based on direct
intensity measurements [10–18]. All plenoptic imaging techniques aim at reconstructing the
three-dimensional distribution of light in a scene by simultaneously encoding in optically
measurable quantities information on the intensity and the distribution of light in given
reference plane in the scene. Detection of the propagation direction of light offers several
advantages compared to conventional imaging, since it provides high-depth-of-field images
of the sample from different perspectives, thus enabling post-acquisition volumetric
refocusing without the need for scanning the scene of interest. While in conventional PI
spatial and directional information are encoded, usually by means of amicrolens array, in the
intensity impinging on a single sensor, in CPI they can be retrieved only by measuring
spatio-temporal correlations between intensities registered by pixels on two disjoint sensors.
In fact, the initial embodiments of CPI [1] were inspired by a previously established
correlation imaging technique, called Ghost Imaging (GI): here, a two-dimensional
image is obtained by correlating the total intensity transmitted (or reflected) by an
object, as measured through a single-pixel (known as bucket) detector, with the signal
acquired by a sensor with high spatial resolution that, conversely, collects light that has not
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interacted with the object [19–26]. The main difference between GI
and CPI lies in the much larger amount of information collected by
measuring light correlations on two space-resolving sensors,
compared with the single-pixel measurement performed in GI. In
GI, in fact, the object can be successfully reconstructed only when it
is at focus, whereas CPI can refocus the image over a much larger
axial depth.

Despite their promising application potentials, CPI and GI share
the main drawback of correlation imaging techniques, namely, the
need to accumulate statistics (i.e., independent intensity frames) in
order to reconstruct the desired correlation signal. In particular, the
signal-to-noise ratio (SNR) of CPI and GI images scales like the
square root of the number of acquired frames [27–29], but the
acquisition time increases linearly in the latter quantity, leading to a
necessary compromise between accurate and fast imaging. In the
case of GI, many efforts have been made to reduce the sampling rate
and enhance the acquisition speed without sacrificing the image
quality. Interesting attempts to model the problem of image
reconstruction as an optimization problem, following the
principles of compressive sensing (CS), have been successfully
applied to increase image quality in case of scarce statistics
[30,31]. The basic idea behind CS is to employ only a few
samples and exploit the sparsity of the acquired signal in some
specific domain to reconstructing a high-SNR image [32–35]. From
the theoretical point of view, CS is a convex optimization problem,
in which one looks for the sparsest signal that minimizes a given cost
function. As detailed in the following sections, the choice of a cost
function to optimize depends both on the structure of the problem
to be faced, and on specific requirements in the reconstructed image
(e.g., weighing data-fidelity or sparsity terms, or considering
additional noise-related effects).

In this paper, we investigate the feasibility of applying CS
inspired techniques to CPI, building on the promising results
achieved in compressive GI. We propose a CS-based algorithm
that incorporates a regularization term which exploits the sparseness
of image gradients as an alternative approach with respect to the
conventional correlation-based one. The algorithm, specifically
designed for Correlation Plenoptic Imaging, aims at 1) reducing
the number of frames necessary to achieve a target image quality, 2)
replacing the CPI cross-correlation computation with an
optimization process. The paper is organized as follows: in
Section 2.1, we recall the basic concepts of Correlation Plenoptic
Imaging; in Section 2.2, we introduce a formal description of the
proposed CS-based algorithm for CPI reconstruction; in Section 3,
the proposed method is investigated numerically; we summarize the
results and provide final remarks in Section 4.

2 Materials and methods

2.1 Fundamentals of correlation plenoptic
imaging

The CPI technique extends the potentials of GI by enabling one
to retrieve combined spatial and directional information without
scanning the scene. CPI substantially differs from GI in the fact that
both the detectors that register the intensities to be correlated are
characterized by spatial resolution. Such a feature has a relevant

implication in the evaluation of correlations, as we are going to
explain in the following. Though the results obtained in this work
can be generalized to any CPI setup, we refer for the sake of
definiteness to the setup that bears the closest analogy to GI,
namely, the first one to be proposed [1] and experimentally
realized [3], schematically depicted in Figure 1.

We consider a source emitting quasi-monochromatic light with
chaotic (pseudothermal) statistics, characterized by negligible spatial
coherence on its emission surface; the source is divided in two paths
by a beam splitter. One of the beams (the reflected one, in the case
depicted in Figure 1) follows path a and directly reaches the detector
Da, which is located at an optical distance za from the source,
without interacting with the object. The other beam (the transmitted
one in Figure 1) follows path b, where it first interacts with a sample,
placed at a distance zb from the source, and considered for simplicity
as a planar transmissive object; then, it passes through a lens L of
focal length f, placed at a distance zb′ from the sample, which focuses
on sensor Db, at a distance zb″ from L, an image of the source. Three
of the distances mentioned in the above description are related by
the thin lens equation 1/(zb + zb′) + 1/zb″ � 1/f. For simplicity, we
assume henceforth that the two sensors are square, with Na and Nb

pixels per side, respectively. The described CPI setup generalized
lensless GI [24] by replacing the “bucket” detector, that collects all
the light transmitted by the object in the latter case, with 1) a
detector Db endowed with spatial resolution, 2) a lens that sharply
focuses the source onDb. From the point of view of image formation,
each pixel of Db can be considered as a separate bucket detector: due
to the strong defocusing of the object with respect to Db, light from
the whole object contributes to the light intensity measured by each
angular pixel. Hence, the whole object contributes to light
fluctuations measured by a single pixel on Db, as would be the
case with a bucket detector in GI. In fact, unlike in conventional
imaging systems, where the sample is the effective source of chaotic
light, in our case the source is the optical element that is optically
conjugated (through the lens L) to DB. Because of this, the
correspondence between pixels and object points typical of
imaging is replaced, in the CPI scheme in Figure 1, by a
correspondence between pixels and source points, where the
object acts as a “disturbance” on the optical path. Hence, each
sub-ghost image of the object, as obtained by correlating a pixel on
Db with the whole Da, recovers a sub-image formed only by the light
emitted by the specific area of the source that is optically conjugated
to that pixel.

The correlation of the intensity fluctuations measured by the two
detectors can be expressed by the following formula:

Γ ρa, ρb( ) � 〈ΔIa ρa( )ΔIb ρb( )〉 (1)
where ρa and ρb are the planar coordinates of pixels on detector
Da and Db, respectively, while ΔIa and ΔIb are the temporal
intensity fluctuations recorded on the pixels specified in their
arguments. The statistical average 〈. . . 〉 can be reconstructed by
collecting M frames, in which the object is illuminated by
independent chaotic (speckle) patterns. Eq. 1 shows the main
difference between GI and CPI: in fact, whereas ghost imaging
retrieves the image of the object by measuring correlations
between Da and a bucket detector, CPI makes use of the
additional information originating from the spatial resolution
of Db to refocus. In other terms, CPI would reduce to GI if Db
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were composed by a single-pixel detector. Applying the
geometrical optics approximation, the correlation function can
be expressed in terms of the intensity profile of the chaotic source
F and amplitude transmission function A of the object [1]:

Γ ρa, ρb( ) ~ F −ρb
M

( )2

A
zb
za
ρa −

ρb
M

1 − zb
za

( )[ ]∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

. (2)

Therefore, in the geometrical approximation, the correlation
function, which is defined in the 4D space of the detector
coordinates, reduces to the product of the image of the source,
as retrieved by Db, with images of the object calculated as a
function of a linear combination of the coordinates on both
detectors. As anticipated, in fact, each image obtained by fixing a
value for ρb corresponds to an image of the object, scaled and
shifted according to the chosen value of ρb and the coefficients of
the linear combination. When the object is placed in zb = za, as is
the case in conventional GI, the sub-images are neither shifted
nor rescaled from one another, and integration over ρb (i.e., sum
of all sub-images) gives the standard ghost image. However, this
operation provides a focused image only when za = zb (more
precisely, when the difference of the two distances is smaller than
the depth of field defined by the light wavelength and the source
numerical aperture, as seen from the object plane [1,3]). The
situation changes if the object is displaced of an arbitrary
quantity from the focused plane. In this case, the operation of
integrating the Γ function over ρb to obtain a ghost image as in the
previous case is detrimental. This because being Γρb(ρa) (at fixed
ρb) a different perspective of the object, the out of focus condition
misaligns each of them and the integration gives a blurred image.
However, Eq. 2 provides a way to reconstruct (refocus) [36] the
object by exploiting spatial resolution on Db, which entails
knowledge of the source point −ρb/M from which the scene is

illuminated. Intuitively, refocusing is based on the geometrical
correspondence between points on the object plane and detection
coordinates ρa and ρb, as established by Eq. 2; such
correspondence can be inverted to apply a coordinate
transformation on Γ so that, in the transformed coordinate
system, all sub-images are properly aligned to avoid blurring
when they are summed together. Thus, the function

Σref ρa( ) � ∫ d2ρbΓ
za
zb
ρa −

ρb
M

1 − za
zb

( ), ρb[ ] ~ A ρa( )∣∣∣∣ ∣∣∣∣2. (3)

provides, in the geometrical optics limit, a faithful image of the
object, regardless of its position. In fact, as one can easily check, if
the coordinate transformation on the first argument of Γ is
applied on Eq. 2, the ρb-dependence is conveniently lost.
Finite wavelenghts, instead, set limits related to wave optics
[3]. It is worth noticing that, in order to get a properly
refocused image, one should know with sufficient precision
both the source-to-Da distance za and the source-to-object
distance zb. However, a likely situation is the one in which za
is precisely determined by the choice of the experimental setup,
while the value of zb is unknown: in this case, the parameter zb in
Eq. 3 can be adjusted in order to maximize sharpness of the
refocused image, thus also providing a way to estimate of the
object distance.

The extension to CPI of the CS-based reconstruction algorithms
designed for chaotic GI [30,31] is not trivial. The main difference lies
precisely in the presence of the linear transformation 3) to be applied
to the correlation function, and the subsequent integration over the
“directional” detectorDb. These algorithms rely on theminimization
of an objective function, whose formulation must incorporate in a
proper way the linear transformation of the Γ function in the
aforementioned equation.

FIGURE 1
Scheme of the setup employed for the first demonstration of CPI [1,3]. A lens L in interposed in the arm in which the object is located, to obtain an
image of the chaotic source on the spatially-resolving detectorDb. Bymeasuring second-order intensity correlations, a collection of images of the object
can be retrieved in correspondence of the other spatially-resolving detector Da, one for each pixel of Db.
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2.2 Compressive correlation plenoptic
imaging

Since the application of CS to CPI can be considered as a
generalization of its application to GI, we employ a notation that
makes the parallelism between the two imaging techniques more
evident. After defining as I(m)

j (xj, yj) the intensity registered in the
mth frame, with m ∈ [1, . . . ,M], by the pixel in position ρj = (xj, yj)
on the detector Dj (with j = a, b), we call

ΔI m( )
j xj, yj( ) � I m( )

j xj, yj( ) − 1
M

∑M
k�1

I k( )
j xj, yj( ) with j � a, b,

(4)
the corresponding intensity fluctuation, where the second term is an
estimate of the mean intensity. The correlation function Γ, estimated
after collecting m frames, thus reads

Γ xb,yb( ) x, y( ) � 1
M

∑M
m�1

ΔI m( )
a x, y( )ΔI m( )

b xb, yb( ). (5)

As already mentioned, the term ΔI(m)
b (xb, yb) plays the role of the

signal collected by a bucket detector: depending on the specific pixel
(xb, yb), different sub-images Γxb,yb are indeed obtained by cross-
correlating the same sensing matrix (as obtained by stacking
ΔI(m)

a (x, y), as better detailed in the following) with different
arrays of bucket signals. Based on the similarity with GI, we
employ the approach of differential GI [37], as already followed
in Ref. [7] in a slightly different CPI context, and perform the
replacement

ΔI m( )
b xb, yb( ) → ~ΔI m( )

b xb, yb( ) � ΔI m( )
b xb, yb( )

− ∑M
k�0ΔI m( )

b xb, yb( )ΔI k( )
a,TOT∑M

k�0 ΔI k( )
a,TOT( )2 ΔI m( )

a,TOT,

(6)
with ΔI(m)

a,TOT � ∑(xa,ya)ΔI
(m)
a (xa, ya). Differential GI, in fact, has the

well-known property of improving the signal-to-noise ratio of the
reconstructed image by employing a data-processing approach that
simply replaces the conventional bucket signal with an optimized
signal. The refocusing algorithm eventually realigns all images,
which contribute to the overall one in Eq. 3. The previous
considerations are at the basis of the CS generalization to CPI.
Let us consider a fixed pixel (xb, yb), which can also be
conveniently labelled with i ∈ {1, . . . , N2

b}, of the detector Db:
the corresponding image, consists in a linear superposition of
fluctuation patterns ΔI(m)

a (x, y), weighted by ~ΔI(m)
b (xb, yb).

Following the CS scheme, each of the M patterns ΔI(m)
a (x, y),

consisting in Na × Na matrices, is reshaped into a vector with
components I(m)

a [j], with j ∈ {1, . . . , N2
a} labelling the pixel. The

M × N2
a measurement matrix is constructed by stacking all the

vectorized light patterns:

A �
I 1( )
a 1[ ] . . . I 1( )

a N2
a[ ]

..

.
1 ..

.

I M( )
a 1[ ] . . . I M( )

a N2
a[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (7)

Similarly, the M × 1 measurement vector corresponding to the ith
pixel in position (xb, yb) is obtained by stacking all the bucket signals

Bi � ~ΔI 1( )
b xb, yb( ), . . . ~ΔI M( )

b xb, yb( )( )T (8)

Notice that while the measurement vectors depend on the particular
pixel of Db under analysis, the measurement matrix is independent
of such pixels. Therefore, the measurement process imposes a
generally different matrix constraint on each out-of-focus image.
If we indicate with γi the flattened version of Γ(xb,yb), these
constraints read

Aγi � Bi, for all i ∈ 1, . . . , N2
b{ }. (9)

In principle, at least M � N2
a measurements are required to

determine the solution of the above equation. In practice, since
the intensity patterns are not independent from each other, a
number M≫N2

a of measurements is needed to obtain a
satisfactory outcome. The standard linear reconstruction process
makes no assumptions on the target object, while any prior
information on its structure would significantly reduce the
number of measurements. For most natural images such
information exists, since natural images turn out to be sparse
when represented in specific domains (such as the discrete
Fourier transform, the discrete cosine transform, or the gradient
domain) [38], in the sense that the number of coefficients by which
they are determined is much smaller than the general case.

Before defining the objective function, and therefore the
complete minimization problem to be tackled, it is worth
noticing that the latter must keep track of the refocusing process
3), leading to the target image on which prior knowledge exists. On
the other hand, constraints are formulated in terms of the out-of-
focus images. Refocusing cannot be reduced to a matrix
multiplication, and depends on the coordinate of pixels on the
detector Db. To solve this issue and recast the problem into a more
tractable one, we reverse the standard workflow. Since refocusing
amounts to a reassigning the coordinates on detector Da based on
the values of (xb, yb), we perform such a remapping on top of the
cross-correlation step that we aim to replace. We start by defining
the “refocused Γ” as

ΓR x, y( ) � ∑
xb,yb( )

1
M

∑M
m�1

R m( )
xb,yb( ) x, y( )~ΔI m( )

b xb, yb( ), (10)

with

R m( )
xb,yb( ) x, y( ) � ΔI m( )

a

za
zb
xa − xb

M
1 − za

zb
( ), za

zb
ya − yb

M
1 − za

zb
( )( )

(11)
The updated workflow leads to a refactoring of the constraints
encoding the measurements. In particular, Eq. 9 is replaced by

AR
i γR � Bi, for all i ∈ 1, . . . , N2

b{ }, (12)
where the M × N2

a objects AR
i are obtained by stacking the M

flattened refocused light patterns R(m)
(xb,yb)(x, y), in the same way asA

is obtained from ΔI(m)
a (x, y). The possibility of expressing all the

constraints in terms of the same target image γR is earned at the
expense of having different sensing matrices for each pixel on Db.

The CS formulation in terms of an optimization problem, for
which efficient algorithms exist, involves the minimization of an
objective function given by the sum of two terms: a data fidelity term,
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encoding the constraints, and a regularization term, which expresses
prior information of the object to be detected. The solution of the
problem, representing the optimal reconstructed image, reads

γ̂iR � arg minγR

1
2
‖AR

i γR − Bi‖22 + λR γR( ){ }, (13)

with ‖v‖2 the square-rooted sum of the absolute squared vector
components. The parameter λ controls the balance between the
constraint and the regularization term R(γR). The choice R (γR) =
‖LγR‖0, with the quasi-norm ‖v‖0 counting the number of non-
vanishing elements of v, promotes the sparsity of γR in a given
transform domain L. In the CS framework, under certain conditions
(including sparsity of LγR and incoherence of L and AR

i ), one can
replace the ‖v‖0 with the its convex envelope ‖v‖1, namely, the sum of
the absolute elements of v norm, leading to the convex optimization
formulation

γ̂iR � arg minγR

1
2
‖AR

i γR − Bi‖22 + λ‖LγR‖1{ }, (14)

with L operator performing the transform in the domain where
the image is supposed to be sparse. The above optimization
problem can be recast in terms of the image transform ~γiR �
LγiR by absorbing the sparsifying matrix L in the sensing matrix,
to obtain

~̂γ
i

R � arg min~γR

1
2
‖ ~AR

i ~γR − Bi‖22 + λ‖~γR‖1{ }, (15)

with ~AR

i � AR
i L

−1. The procedure is schematically illustrated in
Figure 2. Once the minimization problem is solved, the image in
the spatial domain is obtained as γ̂iR � L−1 ~̂γ

i
R.

Many established CS reconstruction algorithms exploit the prior
knowledge that natural images are sparse in a given domain, such as
discrete cosine transform (DCT) (see Ref. [30] for an application to
GI). However, image signals are usually reshaped into one-
dimensional signals, thus hiding part of the structure

information. In this context, we explore a regularization term
related to the total variation (TV) of the image, namely, the
norm of the image gradient. CS-based TV regularization methods
exploit the sparseness of the image gradients in the spatial domain.
More complex solutions include more than one regularization term,
promoting both sparsity of DCT or Fourier transform and image
gradients. Possible regularization strategies involve the functions
outlined below:

• Case 1: sparse structure is expected in a transform domain
such as the DCT. The inverse transform matrix represents the
2D inverse DCT, applied to the minimization outcome to
obtain the reconstructed two-dimensional image

• Case 2a: as well-known from previous works [39–41], the
discrete gradient of natural images along the horizontal and
vertical directions are sparse, therefore TV regularization can
be used, as firstly proposed by Rudin-Osher-Fatemi [42].
While the original formulation is referred to as the
isotropic total variation, an anisotropic formulation was
also addressed in the literature [43],

RTV γR( ) ≔‖DγR‖2,1 � ��������������
DxγR
∣∣∣∣ ∣∣∣∣2 + DyγR

∣∣∣∣ ∣∣∣∣2√������ ������1, (16)
RTV,an γR( ) ≔‖DγR‖1 � ‖Dxγr‖1 + ‖Dyγr‖1, (17)

Where Dx and Dy denote the horizontal and vertical discrete partial
derivatives, respectively, and D = (Dx, Dy) is the discrete gradient
operator. The discrete partial derivatives are approximated by first
order forward differences. From the numerical point of view, the
exact total variation term can make the problem intractable.
However, after some manipulations, it is possible to recast the
optimization problem which includes the anisotropic
approximation of the TV term to the standard form by means of
an extended model, with γext � [(DxγR)T, (DyγR)T]T and sensing
matrix ~AR,ext

i � [1
2AR

i D
−1
x , 12AR

i D
−1
y ].

FIGURE 2
Graphical representation of the CS optimization procedure defined by Eq. 15.

Frontiers in Physics frontiersin.org05

Petrelli et al. 10.3389/fphy.2023.1287740

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1287740


• Case 2b: other edge-detection operators were considered in
previous research [44], such as the Laplacian operator

RLapl γR( ) ≔‖D2
xγR + D2

yγR‖1. (18)

The reason why we consider a second-order regularization term
is due to the fact that the problem can be easily recast to a standard
formwithout extending the model, but just considering the modified
sensing matrix ALapl

i � AR
i (D2

x + D2
y)−1. We consider the central

difference approximation of the second derivatives.
The previously described regularization terms can be combined

with each other (here, we limit our analysis to the anisotropic
approximation of the TV and to the Laplace operator), at the
expense of the computational complexity. The reason is twofold:
the optimal choice of the regularization parameters is usually a non-
trivial task, and recasting it to the standard form, for which efficient
solvers exist, is possible only by extending the model.

There is one final element to consider regarding the shape of the
objective function. Thus far, we have formulated N2

b independent
optimization problems, with each one corresponding to a distinctDb

pixel. However, the image to be reconstructed remains consistent
across these manifold problems. This understanding prompts the
exploration of two conceivable approaches: the “multiple-problems”
approach and the “single-problem” strategy.

The multiple-problems approach adheres more closely to the
original workflow, where each distinct perspective or refocused
image (corresponding to individual pixels of Db) is reconstructed
independently: through correlation in the original approach, solving
a minimization problem in the CS-based one. Subsequently, these

N2
b minimization problems yield a set of estimates, denoted as γ̂iR,

each targeting the same object of interest. In this paradigm, the final
reconstructed image, γ̂R, is derived by a straightforward averaging of
the outcomes. Notably, this method presents certain merits, as its
inherent parallelizability, as well as its manageable computational
complexity due to the relatively modest size of each individual
optimization problem and the possibility of reconstructing each
point of view.

On the other hand, the single-problem formulation exploits the
fundamental insight that, once the sensing matrix is refocused a
priori, we are effectively striving to reconstruct the same object
image from multiple viewpoints. This observation enables us to join
the various optimization problems by merging the sensing matrices,
as well as the corresponding bucket measurements. From an
implementation standpoint, this means stacking all the refocused
measurement matrices and all the measurement vectors: a graphical
explanation is provided in Figure 3. Consequently, the single-
problem approach entails solving one optimization problem, with
the objective of obtaining the sparsest image, γ̂R. In this approach,
each sub-image effectively serves as a measurement of the same
underlying object. The notable advantage of this strategy lies in its
potential to leverage a multitude of measurements to enhance the
algorithm convergence, thereby leading to improved reconstruction
quality.

However, it is worth recognizing that the single-problem
formulation comes with a challenge: The stacking of several
sensing matrices and associated measurements vectors leads to
the creation of large matrices, which, in turn, increases the
computational complexity. Ultimately, the choice between the

FIGURE 3
Graphical representation of two approaches to objective function minimization. Left: multiple-problems formulation. Right: single-problem
formulation. In the multiple-problems formulation, we solve N2

b minimization problems, each yielding an estimate γ̂iR for the refocused image. The final
reconstruction is obtained by averaging these individual estimates. In contrast, the single-problem formulation involves stacking all refocused
measurement matrices and bucket vectors to create a single optimization problem aimed at obtaining γ̂R.
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multiple-problems and single-problem formulations should be the
result of a trade-off between computational complexity and
reconstruction quality.

3 Numerical results

The multiple-problems and single-problem strategies are tested
on simulated datasets accounting for source statistics and field
propagation. The CS-CPI algorithm was implemented in Python.
Specifically, we utilized the scikit-learn library, whose modules
encompasses a variety of linear models, including Lasso [45]. The
standard reconstruction obtained by correlating a large number of
frames (N = 15,000) is taken as the ground truth, a random subset of
M frames is extracted from the collection to test CS procedures. To
quantify the size of the subset, we consider two parameters: the total
number of measurements over the total number of “spatial” pixels,
α � M/N2

a, and the number of “directional” pixels per sideNb. In the
single-problem formulation,Nb plays a specifically important role in
the reconstruction process, since the presence of multiple viewpoints
increase the size of the sensing matrix.

The chosen quality metric is the Structural SIMilarity (SSIM)
index [46]. Consider x and y two non-negative image signals. If x is
supposed to be the reference with perfect quality, then the similarity
measure is a quantitative measurement of the quality of the second
signal. In this context, the SSIM is defined as

SSIM x, y( ) � l x, y( )[ ]ω · c x, y( )[ ]ϕ · s x, y( )[ ]ψ , (19)
where the similarity measurement is split into three comparisons:
luminance l (x, y), contrast c (x, y) and structure s (x, y). The three
functions are defined as

l x, y( ) � 2μxμy + C1

μ2x + μ2y + C1
, c x, y( ) � 2σxσy + C2

σ2x + σ2y + C2
,

s x, y( ) � σxy + C3

σxσy + C3
. (20)

The constantsCi � (KiL)2, with i = 1, 2, 3,Ki≪ 1 and L the dynamic
range of the pixel values, are included to avoid instabilities when the
denominators are close to zero. Moreover, μi (with i = x, y) is the
mean intensity, σi the standard deviation and σxy the covariance.

The definition above satisfies the following conditions:

• Simmetry: SSIM(x, y) = SSIM(y, x),
• Boundedness: SSIM(x, y) ≤ 1,
• Unique maximum: SSIM(x, y) = 1 if and only if x = y.

Finally, the exponents ω > 0, ϕ > 0 and ψ > 0 are parameters used
to adjust the relative importance of the three components. In the
following, we set ω = ϕ = ψ = 1 and C3 = C2/2, K1 = 0.01 and
K3 = 0.03.

3.1 Case 1: Sparsity in the DCT domain

Since natural images tend to be compressible in the DCT
domain, we solve the minimization problem encoded in Eq. 15
using standard convex programming algorithms (e.g., the

coordinate descent algorithm). Multiple-problems and single-
problem strategies have both been tested. A random sample of
M = 225 frames, corresponding to α = 0.05, is extracted and used for
the reconstruction. Following this approach, the CS-CPI algorithm
improves the reconstruction quality, as highlighted by the results
reported in Figure 4. The left panel reports the value of the structural
similarity index as a function of the regularization parameter in the
CS-CPI case, compared with the value of the correlation in the
standard case. Panels on the right compares the reconstruction
obtained through cross-correlation with the results obtained with
the CS-CPI algorithm, for different values of the parameter λ.

This strategy entails an obvious drawback: huge matrices are
involved in the minimization problem, with ~AR

characterized by
MN2

n rows and N2
a columns. The number of rows becomes easily

unmanageable even when a small fraction of the available frames is
considered. A possible solution involves parallelization of the
algorithm: the rows of ~A

R
are randomly extracted, along with the

corresponding ones from B, thus creating separate sub-problems.
Each sub-problem can be solved independently from the others, thus
leading to different solutions. The process is then complemented by
a final average. In any case, the results we obtained demonstrate that
a reconstruction strategy based on CS guarantees an improvement in
the reconstructed image quality.

The performance of the multiple-problems strategy is not as
good as the single-problem one, as expected. The resulting image
quality of the two procedures becomes comparable by doubling the
frames used for the multiple problems (α = 0.1). As shown in
Figure 5, the CS-CPI reconstruction is always poorer than the one
obtained through the standard correlation-based evaluation with the
same number of frames, except for a narrow range of parameters
within which the quality of the two reconstructions become
comparable.

In the context of CS, the regularization parameter optimization
is a challenging task due to the need for prior knowledge of ideal
outcomes. The most suitable parameter is greatly influenced by both
the observation model and the specific subject of interest.
Consequently, there is no universally applicable method for fine-
tuning regularization parameters.

The regularization parameter λ, a trade-off between sparsity and
data fidelity, is expected to affect the quality of the image
reconstruction Yang et al. [47]. The numerical experiments
conducted to assess the sensitivity of λ on the reconstructed
image quality (whose results are encoded in Figures 4, 5) show
that an optimal λ value exists that yields the best performance in
image reconstruction.From Eq. 15, which encapsulates the essential
trade-off in CS, the first term primarily serves the purpose of fitting
the measured data to reconstruct the image vector, whereas the
secon term controls its degree of sparsity. A larger λ places more
emphasis on enforcing sparsity within the object, effectively
suppressing unsparse image noise. Conversely, a smaller λ has
the opposite effect, allowing for the preservation of finer details
of the object.

Generally, it is not granted that the CS-based reconstruction
outperforms the standard one. The performance of CS algorithms
depend on several factors including the properties of the
measurement matrix, excessive noise in the measurements,
convergence issues in the optimization algorithm or spurious
correlations in the measurement matrix.
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3.2 Case 2: Sparsity in the gradient domain

As discussed in Section 2.2, we tested a version of the CS-based
reconstruction algorithm for CPI that incorporates sparsity of
image gradients as a regularization term. Specifically, we
considered the anisotropic TV approximation (Case 2a) and the
Laplacian (Case 2b). Furthermore, we explored the combination of
regularization terms, imposing sparsity on both the DCT and the
gradients. Also in this context, we tested both the single-problem

and multiple-problems strategies. The same random sample ofM =
225 frames, corresponding to α = 0.05, used in Case 1 was also used
in this second case and employed for the reconstruction. However,
the performance of the reconstruction algorithm in case 2a
(anisotropic approximation of the TV term with and without
the DCT term) is not satisfying, hence the results are not
shown. In particular, in order to obtain a sufficiently good
reconstruction (in any case worse than that obtained by
correlations), it is necessary to increase the number of frames

FIGURE 4
CS-CPI algorithm (single-problem formulation, Case 1 regularization) applied on a simulated dataset (blue box, standard reconstruction with all
frames). The proposed CS-CPI algorithm (red boxes/curve) can overcome the standard correlation evaluation with the same number of frames (green
box/curve) in a range of regularization parameter values.

FIGURE 5
CS-CPI algorithm (multiple-problem formulation, Case 1 regularization) applied on a simulated dataset (blue box, standard reconstruction with all
frames). Even if the proposed CS-CPI algorithm (red boxes/curve) is able to reconstruct the image, the quality of the standard correlation evaluation
(green box/curve) with the same number of frames is always better, except for a narrow range of parameters within which the reconstructions become
comparable.
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by at least 3 times. Thereby, in the rest of this paragraph we will
concentrate on case 2b. The best image reconstructions in the four
cases described above are reported in Figure 6, see the caption for
details on the parameters values.

As evident from Figures 7, 8, all the versions of the CS-CPI
algorithm with single-problem and multiple-problems approaches
improve image quality (except for Case 2b in the single-problem
formulation whose results are comparable with the standard
correlation case) with the Case 1+2b (single-problem

formulation) giving the best results in terms of reconstruction
quality.

Comparing the results reported in Figure 4 with Figure 7, as well as
the results from Figure 5 with Figure 8, it emerges that the introduction
of a regularization term requiring gradient sparsity enhances
reconstruction quality, since it tends to penalize fast noise
fluctuations in the background, limiting at the same time the
introduction of artifacts. Reconstruction capability is further
enhanced when the requests of sparsity in the gradient and the

FIGURE 6
CS-CPI algorithm results (first row: single-problem formulation, second row: multiple-problems formulation. Case 2b with and without DCT
regularization). The proposed CS-CPI algorithms can overcome the standard correlation evaluation with the same number of frames (green box) in all
cases except Case 2b (single-problem formulation), as evident from the structural similarity index reported in the images. The regularization parameters
used for the reconstruction are: λ =2.5·10−5 (single-problem Case 2b), λ =5·10−5, γ =2.5·10−4 (single-problem, Case 1+2b), λ =5·10−4 (multiple-
problems, Case 2b), λ =5·10−4, γ =2.5·10−4 (multiple-problems, Case 1+2b). (SSIM values in figure updated).

FIGURE 7
CS-CPI algorithm (single-problem formulation, left: Case 2b, right: Case 1+2b regularizations) applied on a simulated dataset. This version of the
proposed CS-CPI algorithm succeeds in the reconstruction if both regularization terms are included in a certain range of the regularization parameters λ
and γ.
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transform domains are combined. In particular, the most promising
results are observed in Case 1+2b (single-problem formulation).
However, it is worth noticing that the single-problem formulation of
the CS-CPI algorithms provides satisfactory results also in its simpler
formulation (Case 1). Instead, when analyzing the results of the
multiple-problems strategy, the presence of a term penalizing the
image gradients seems crucial. Actually, while the multiple-problems
approach to CS-CPI is not able to provide a satisfactory reconstruction,
as shown in Figure 5, introducing a TV-related term (the image
Laplacian) reverses the situation. From an overall comparison
involving single- or multiple-problems strategies, as well as all the
considered regularization term, it emerges that the best results are
obtained when both the DCT and the Laplacian of the target image are
regularized.

We conclude by showing in Figure 9 the average pixel value along
the slit direction and across them. The contrast obtained in the CS-TV
case, corresponding to the multiple-problems formulation with the
DCT and the Laplacian regularization terms, is always higher than in

the correlation-based reconstruction obtained with the same frame
subset, while it is comparable with the correlation-based ground truth,
obtained with all the available frames.

4 Conclusion

CPI is a novel technique capable of acquiring the light field, the
combined information of intensity and propagation direction of light.
The standard image retrieval is performed by evaluating correlations
between the intensities measured by two detectors with spatial
resolution. In this work, we have discussed a first demonstration of
the applicability of CS-based approaches to CPI. We have explored
several possibilities for building the objective function. Specifically, we
have tested two approaches: one envisaging a single-problem
formulation, in which the whole information on the object coming
from all light propagation directions is exploited at once, and the other a
multi-problem approach, in which reconstruction is separately

FIGURE 8
CS-CPI algorithm (multiple-problems formulation, left: Case 2b, right: Case 1+2b regularizations) applied on a simulated dataset. This version of the
proposed CS-CPI algorithm guarantees a good image reconstruction in both cases (with and without the DCT regularization term) with minimal
differences.

FIGURE 9
Average pixel value along the slits direction (left panel) and across them (right panel). The blue line corresponds to the standard reconstruction with
all frames, the green one to the standard with a reduced frame subset and the red line to the CS-CPI result (multiple-problems formulation, case 1+2b).
The parameters are the same as in Figure 6.
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performed for the object illuminated by different source points. Besides,
we have considered regularization terms promoting both the sparsity of
the imageDCT and the sparsity of the image gradient, showing that, at a
fixed frame number, CS-based approaches can boost the CPI image
quality with respect to the deterministic correlation measurement, thus
allowing for shorter acquisition times. Nevertheless, the high
computational costs usually associated with common CS
implementations still represent a bottleneck towards the extensive
application of the selected solution into the operational CPI framework.
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