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The behavior of a droplet under shear flow in a confined channel is studied
numerically using amulti-phase smoothed particle hydrodynamics (SPH) method.
With an extensive range of Reynolds number, capillary number, wall confinement,
and density/viscosity ratio between the droplet and the matrix fluid, we are able to
investigate systematically the droplet dynamics such as deformation and
breakup. We conduct the majority of the simulations in two dimensions due to
economical computations, while perform a few representative simulations in
three dimensions to corroborate the former. Comparison between current
results and those in literature indicates that the SPH method adopted has an
excellent accuracy and is capable of simulating scenarios with large density or/and
viscosity ratios. We generate slices of phase diagram in five dimensions, scopes of
which are unprecedented. Based on the phase diagram, critical capillary numbers
can be identified on the boundary of different states. As a realistic application, we
perform simulations with actual parameters of water droplet in air flow to predict
the critical conditions of breakup, which is crucial in the context of atomization.
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1 Introduction

The deformation and breakup of droplets in shear flow are ubiquitous in engineering
applications. On microfluidic chips, droplets are utilized for microbial cultivation and
material transport [1,2], and a thorough understanding of their dynamics in confined flows
may improve the efficiency of production and transportation. In other environmental and
industrial applications such as protection against harmful aerosols, ink-jet printing and
atomization in nozzles [3–7], liquid droplets are typically in gas flows. Accordingly, a decent
knowledge on their dynamics with a high density/viscosity ratio against the matrix fluid is
significant. To this end, a comprehensive investigation on the dynamics of a droplet in shear
flow, which involves a wide range of Reynolds number, capillary number, confinements of
the wall, viscosity/density ratio between the two phases, is called for.

Since pioneering works by Taylor on droplet deformation in shear and extensional
flows [8,9], enormous theoretical and experimental studies have been conducted. A
series of works by the group of Mason [10–12] further studied the deformation and burst
of droplets, and even depicted the streamlines inside and around the droplets. Chaffey
and Brenner [13] extended a previous analytical approximation to a second order form,
which is crucial for the non-elliptic deformation of a highly viscous droplet under large
shear rate. Barthes-Biesel and Acrivos [14] expressed the solution of creeping-flow
equations in powers of deformation parameters and applied a linear stability theory to
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determine the critical values for the droplet breakup. Hinch and
Acrivos [15] investigated theoretically the stability of a long
slender droplet, which is largely deformed in shear flow.
However, early analytical works rarely considered effects of
finite Reynolds number or wall confinements. In addition,
numerous experimental studies have been conducted on the
droplet deformation and breakup [16–19], where not only the
effects of viscosity ratio between the droplet and the matrix fluid
[20,21], but also wall confinements [22,23] have been taken into
account.

With advance in computational science, numerical
simulation has become a popular approach to study droplet
dynamics in the past decades. Boundary integral method was
among the first to be applied to study deformation of droplets in
stationary and transient states [24], non-Newtonian droplets
[25], and migration of a droplet in shear flow [26]. Moreover, Li
et al. [27] employed a volume-of-fluid (VOF) method and

Galerkin projection technique to simulate the process of
droplet breakup. In the work of Amani et al. [28], a
conservative level-set (CLS) method built on a conservative
finite-volume approximation is applied to study the effect of
viscosity ratio and wall confinement on the critical capillary
number. In addition, lattice Boltzmann method (LBM) has been
widely employed to study deformation, breakup and
coalescence of droplets [29–33]; to model viscoelastic droplet
[34] and surfactant-laden droplet [35]. We note that an
interface tracing technique such as VOF, CLS, a phase-field
formulation, or immersed boundary method is often necessary
by a flow solver based on Eulerian meshes.

As a Lagrangian method, smoothed particle hydrodynamics
(SPH) method has some advantages in simulating multiphase
flows. Since different phases are identified by different types of
particles, the interface automatically emerges without an
auxillary tracing technique, even for a very large deformation.

FIGURE 1
Schematic representation of a droplet in shear flow. (A) Initial geometry and parameters. (B) Treatment of no-slip boundary condition.

FIGURE 2
Trace of interface and parameters for the measurement of droplet deformation.
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Moreover, inertia and wall effects can be taken into account
straightforward, in contrast to theoretical analysis or the
boundary integral method. Since its inception in astrophysics,
SPH method has been largely developed and widely applied in
various flow problems [36,37]. Morris [38] considered the surface
tension based on a continuous surface force model and simulated
an oscillating two-dimensional rod in SPH. Hu et al. [39]
proposed a multi-phase model that handles both macroscopic
and mesoscopic flows in SPH, where a droplet in shear flow was
selected as a benchmark to validate the method. Other
improvements and modifications have also been proposed for
SPH in the context of multiphase problems [40–43].
Furthermore, a droplet or matrix flow with special properties
can also be considered. For example, Moinfar et al. [44] studied
the drop deformation under simple shear flow of Giesekus fluids
and Vahabi [45] investigated the effect of thixotropy on
deformation of a droplet under shear flow. Saghatchi et al.

[46] studied the dynamics of a 2D double emulsion in shear
flow with electric field based on an incompressible SPH method.
There are also studies on colliding and coalescence process of
droplets by SPH [47,48]. Simulation of bubbles in liquid is
similar, but can encounter special challenges [49], due to the
reverse density/viscosity ratio as that of droplet in gas.

Previously, simulations of multiphase flows by SPH method
often investigated specific circumstances. Therefore, the objective
of this paper is two fold: firstly, to simulate an extensive range of
parameters to examine the SPH method for multiphase flows;
secondly, to fill gaps of unexplored range of parameters and
systematically investigate their influence on the droplet
dynamics. The rest of the paper is arranged as follows: in
Section 2, we introduce the multiphase SPH method and a
specific surface tension model. We present validations and
extensive numerical results in Section 3. We summarize this
work after discussions in Section 4.

FIGURE 3
Particle distribution forH=4R0, α= λ =1, Re =0.125,Ca =0.45, L=4R0 at (A) initial configuration. (B)maximum elongation. (C) steady state. (D) Taylor
deformation parameter as a function of time.
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2 Methods

2.1 Governing equations and surface tension
model

We consider isothermal Navier-Stokes equations with a surface
tension for multiphase flow in Lagrangian frame

dρ

dt
� −ρ∇ · v,

dv
dt

� 1
ρ

−∇p + Fb + Fv + Fs( ), (1)

where ρ, v and p are density, velocity and pressure respectively. Fb is the
body force, which is not considered in this study. Fv, Fs denote viscous
force and surface tension at the interface between two phases, respectively.

Following previous studies of quasi-incompressible flow
modeling [38], an artificial equation of state relating pressure to
density can be written as

p � c2s ρ − ρref( ), (2)
where cs is an artificial sound speed and ρref is a reference density.
Theoretically, subtracting the reference density has no influence on
the gradient of pressure, but it can reduce the numerical error of
SPH discretizations for the gradient operator.

For a Newtonian flow, the viscous force Fv simplifies to

Fv � μ∇2v, (3)
where μ is the dynamic viscosity. We assume surface tension to be
uniform along the interface and do not consider Marangoni force.

FIGURE 4
Transient deformations of a droplet compared with results of Sheth and Pozrikidis [54] with α = λ =1,H =4R0, L =4R0 and (A) Re =0.25, Ca =0.1,0.45.
(B) Re =2.5, Ca =0.1,0.4. (C) Re =12.5, Ca =0.1,0.2. (D) Re =25, Ca =0.025,0.2.
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Therefore, the surface tension acts on the normal direction of the
interface. Moreover, its magnitude depends on the local curvature as

Fs � σκn̂δs, (4)
where σ, κ, n̂ are surface tension coefficient, curvature and unit
normal vector to the concave side, respectively; δs is a surface delta
function and its discrete form shall be described later.

To describe the surface tension at the interface between two
fluids, a continuous surface tension model is adopted. As a matter of
fact, surface tension my be written as the divergence of a tensor T
[50,51]

σκn̂δs � ∇ · T, (5)
where

FIGURE 5
Effects of Re and Ca on 2D droplet deformation when α = λ =1, H =8R0, L =8R0. (A) Taylor deformation parameters. (B) Droplet orientation.

FIGURE 6
A typical evolution of deformation for an initially circular 2D droplet in shear flow: α = λ =1, Re =0.1, Ca =0.4, H =16R0, L =16R0. (A) Droplet
deformation over time. (B) Streamlines: the color represents the magnitude of velocity and a red line indicates the droplet interface.
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T � σ I − n̂ ⊗ n̂( )δs. (6)
To represent amultiphase flow, we define a color function c and set a

unique value for each phase, that is, cI = 0 and cII = 1 for the two phases,
respectively. Apparently, the color function has a jump from 0 to 1 at the
interface between phase I and II. Therefore, the unit normal vector can be
represented by the normalized gradient of the color function as

n̂ � ∇c

∇c| |, (7)

and the surface delta function is replaced by the scaled gradient as

δs � n| | � ∇c| |
cI − cII| |. (8)

2.2 SPH method

In SPH, fluid is represented by moving particles carrying flow
properties such as density, velocity and pressure. We largely follow

the work of Hu and Adams [39] and provide a brief derivation here.
Density of a particle is calculated by interpolating the mass of
neighboring particles as

ρi � mi ∑
j

Wij, (9)

where mass mi is constant for every particle. Wij denotes a weight
function for interpolation

Wij � W rij, h( ), (10)

where rij = ri − rj is a relative position vector from particle j to i and h
is the smoothing length. We further define

Vi � 1
∑jWij

, (11)

to be an equivalent volume of particle i so that Vi = mi/ρi.
The pressure gradient can be computed as

FIGURE 7
Effects of confinement ratio and Ca on 2D droplet deformation when α = λ =1, Re =0.1, L =16R0. (A) Taylor deformation parameters. (B) Droplet
orientation. (C) Pressure distribution around droplet under different confinements when Ca =0.4.
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− 1
ρ
∇p( )

i

� −∑
j

V2
i pi + V2

jpj( ) ∂W
∂rij

eij, (12)

where pi and pj are obtained by Eq. 2. The viscous force can be
calculated as

μ∇2v( )i � ∑
j

2μiμj
μi + μj

V2
i + V2

j( ) vij
rij

∂W

∂rij
, (13)

where vij = vi − vj is the relative velocity of particle i and j and
rij � |rij| is the distance between them.

As suggested by Morris [38] and Hu et al. [39], a part of pressure
contribution σ d−1

d δs is removed to avoid attractive force and

improve the stability of the interactions between SPH particles.
Therefore, we employ

T′ � σ
1
d
I − n̂ ⊗ n̂( )δs (14)

to replace Eq. 6, where d is the spatial dimension. Combining Eqs 7,
8 and Eq. 14, we obtain

T′ � σ

cI − cII| | ∇c| |
∇c| |2
d

I − ∇c ⊗ ∇c( ). (15)

The gradient of color function between phase I and phase II can be
calculated in SPH as

FIGURE 8
Effects of viscosity ratio λ and Ca on 2D droplet deformation when α =1, Re =0.1, H =16R0, L =16R0. (A) Taylor deformation parameters. (B) Droplet
orientation.

FIGURE 9
Effects of density ratio α and Ca on 2D droplet deformation when λ =1, Re =0.1, H =16R0, L =16R0. (A) Taylor deformation parameters. (B) Droplet
orientation.
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∇ci � 1
Vi

∑
j

V2
j cj − ci( ) ∂W

∂rij
eij, (16)

where ci (or cj) is initially assigned to be cI or cII according to which
phase particle i (or j) consititutes. Substitute Eq. 16 into Eq. 15 to
obtain stress tensor

Ti′ � σ

∇ci| | cI − cII| |
∇ci| |2
d

I − ∇ci ⊗ ∇ci( ). (17)

Finally, the surface force term is calculated by the stress tensor
using the SPH expression for divergence

σκn̂δs( )i � ∑
j

∂W

∂rij
eij · V2

i Ti′ + V2
jTj′( ). (18)

It is simple to see that the discrete version of δs in SPH is

δs( )i � 1
Vi cI − cII| | ∑j V2

j cj − ci( ) ∂W
∂rij

eij

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣, (19)

which has a finite support to remove the singularity and distributes
the surface tension onto a thin layer of two fluids across the interface.

2.3 Computational settings

The quintic kernel is adopted as weight function

W � ϕ

3 − R( )5 − 6 2 − R( )5 + 15 1 − R( )5 0≤R< 1;
3 − R( )5 − 6 2 − R( )5 1≤R< 2;
3 − R( )5 2≤R< 3;
0 R≥ 3,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (20)

where R = r/h and h is the smoothing length. ϕ is a normalization
coefficient which equals 1/120, 7/(478π) and 1/(120π) in one, two
and three dimensions, respectively. We set h = 1.2Δx with Δx as the
initial spacing distance between particles. This means that the
support domain of the kernel function is truncated at 3.6Δx,
namely, the cutoff rc = 3.6Δx. According to our tests, a
smoothing length of 1.2Δx is almost optimal for an excellent
accuracy while avoiding the pairing instability. A detailed
discussion on this issue is referred to Price [52].

Since we adopt a weakly compressible formulation, the sound
speed cs should be large enough to restrict the density fluctuations.
Based on a scale analysis, Morris et al. [38,53] suggested that c2s
should be comparable to the largest of

FIGURE 10
Effects of box length L and width W on the Taylor deformation parameter D of 3D droplet deformation when α = λ =1, Re =0.1, Ca =0.2, H =4R0,
compared to the analytical prediction of [56]. (A) Each line represents the same W/R0. (B) Each line represents the same L/R0.

FIGURE 11
Effects of confinement ratio andCa on 3D droplet deformation in
shear flow when α =1 and Re =0.1, L =24R0, W =8R0, compared with
predictions of Shapira and Haber [56] and experiment data of Sibillo
et al. [57].
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FIGURE 12
Breakup type (A) evolution of an initially circular 2D droplet breakup in shear flow with α =1, λ =0.2, Re =0.1, Ca =10, H =16R0, L =16R0. (A) Droplet
shape. (B) Streamlines: The color represents the magnitude of velocity and red outlines in the background represent the droplet interface.

FIGURE 13
Breakup type (B) evolution of an initially circular 2D droplet breakup in shear flowwith α= λ=1, Re =0.1,Ca=0.9,H=16R0, L=16R0. (A)Droplet shape.
(B) Streamlines: The color represents the magnitude of velocity and red outlines in the background represent the droplet interface.
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U2

Δ ,
μU

ρ0LΔ
,
FL

Δ ,
σκ

ρ0Δ
, (21)

where Δ is the density variation and U, L, F, κ and σ are typical
velocity, length, body force, curvature and surface tension
coefficient, respectively. Accordingly, for multiphase flows the
sound speed may be different for each phase. In all simulations,
we set identical Δ ≤ 0.5% for each phase and calculate cs
accordingly.

At every time step, the minimal relative density is recorded
among all particles, that is,

ρmin � min min
ρi
ρI0

{ }, min
ρj
ρII0

{ }{ }, (22)

where particle i belongs to phase I and particle j belongs to phase II;
ρI0, ρ

II
0 are initial densities for the two phases, respectively. Thereafter,

ρIref � 0.99ρminρ
I
0, ρIIref � 0.99ρminρ

II
0 are subtracted as reference

density for each phase in Eq. 2 to compute the particle pressure.
This operation is performed to reduce numerical errors in
calculating the pressure gradient while still keeping repulsive
forces between particles.

The explicit velocity-Verlet method is adopted for time
integration and a time step is chosen appropriately for stability [38].

3 Numerical results

We consider a shear flow generated by two parallel walls with
opposite velocity of magnitudeU. Periodic boundaries apply in the x
direction. The computational domain is with length L and heightH.
A circular droplet with radius R0 is initially located at the center of
the computational domain, as shown in Figure 1A. The blue dashed
lines represent periodic boundaries. The continuous phase has
viscosity μc while the dispersed phase has viscosity μd = λμc.

No-slip boundary condition is applied at the wall-fluid interfaces
using the method proposed by Morris [53]. As shown in Figure 1B,
yellow particles represent fluid and blue particles represent the
boundary wall. The wall particles and boundary move with
velocity vb, which depends on the shear rate. But when a wall
particle j is in the support domain of a fluid particle i, a given velocity
vj = dj/di (vb − vi) + vb is used to calculate the viscosity force between
particle i and particle j in Eq. 13.

Five dimensionless parameters that determine the deformation
of the droplet are Reynolds number Re � ρc _γR

2
0/μc, Capillary

number Ca � _γR0μc/σ, confinement ratio R0/H, viscosity ratio
λ = μd/μc and density ratio α = ρd/ρc, where _γ � 2U/H is the
shear rate, σ is the surface tension coefficient, ρd and μd are
density and viscosity of the dispersed fluid phase inside the

FIGURE 14
Evolution of an initially spherical 3D droplet breakup in shear flow when α = λ =1, Re =0.1, Ca =0.46, H =2.857R0, L =16R0: particle distribution (left)
and interface (right).

FIGURE 15
Phase diagram of 2D droplets states under different
confinement, Re and Ca when α = λ =1, L =16R0.
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droplet while and ρc and μc are for the continuous fluid phase,
respectively.

In Section 3.1, we study the deformation for an intact droplet
while considering the effects due to the five dimensionless numbers.
In Section 3.2, we examine the breakup of the droplet. In Section 3.3,
we summarize the droplet dynamics for both intact shape and
breakup in phase diagrams. In Section 3.4, we demonstrate the
deformation and breakup with physical parameters of a water
droplet in air flow as an industrial application.

3.1 Droplet deformation

When the shear is mild, the droplet remains intact and deforms
to arrive at a stable shape eventually. The degree of droplet
deformation can be quantified by the Taylor deformation
parameter D = (A − B)/(A + B), where A is the greatest length
and B is the breadth of the droplet as shown in Figure 2. To validate

our method, we first compare our results of transient deformations
with that of Sheth and Pozrikidis using immersed boundary method
within the finite difference method [54]. We follow their work to set
L = H = 4R0 = 1, ρd = ρc = 1, μd = μc = 0.5 and adjust shear rate and
surface tension. The two walls slide with velocities ± 1

2 _γH to
generate a clockwise rotation of the droplet. Two resolutions are
considered for particles initially placed on squared lattice: Δx = 2R0/
25 and R0/25, corresponding to the droplet containing N = 484 and
1976 particles, respectively.

We present particle distributions and D as functions of time in
Figure 3 for a typical simulation with Re = 0.125 and Ca = 0.45. We
note that the deformation of the droplet may oscillate in time and its
maximum elongation does not necessarily takes place at the steady
state of a very long time.

We further focus on the transient deformations in short time in
Figure 4 so that we can compare our results with those of Sheth and
Pozrikidis [54]. It can be readily seen that our results with low
resolution Δx = 0.02 orN = 484 already reproduce the reference very

FIGURE 16
Phase diagram of 2D droplets states under different confinement, Re and Ca when α = λ =1, L =16R0 and (A) H =2.4R0. (B) H =4R0. (C) H =8R0. (D)
H =16R0.
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well for different Reynolds numbers and/or capillary numbers. As
the reference is within a rather short time period, some interesting
phenomenon such as oscillation of the Taylor deformation
parameter D is not captured, as indicated for Re = 12.5 and Ca =
0.025 on Figure 4D.

To validate our method for vanishing Reynolds numbers, we
calculate the stationary deformation and orientation of the droplet
with respect to Ca. We follow Zhou and Pozrikidis [55] to set L =
H = 8R0 = 2, ρd = ρc = 1, μd = μc = 0.5 and adjust shear rate and
surface tension accordingly. The deformation parameter D and
orientation θ (defined on Figure 2) as functions of Ca (up to
Ca = 1) for Re = 0.01 are shown in Figure 5. Results for Re = 0.1
and 1 are also given for comparison, where droplet breakup already
takes places at Ca ≳ 0.4 for Re = 1. The difference between the results
of Re = 0.1 and Re = 0.01 is insignificant and they both resemble the
results of boundary integral method for Stokes flow [55]. We can
readily conclude that Re = 0.1 is small enough to approximate the
Stokes flow. We further present the contours and streamlines for a

typical evolution of droplet deformation at vanishing Reynolds
number in Figure 6.

We commence to investigate the effects of confinement and set
L = 16R0 to minimize the periodic artifacts. We first restrict out
attention to Re = 0.1, α = 1 and λ = 1. Four ratios of confinement are
considered: H = 2.4R0, 4R0, 8R0 and 16R0. The deformation
parameter as a function of Ca is shown in Figures 7A, B. As we
can observe, a smaller distance of the two walls enhances the
elongation of droplet and makes its long axis align more
horizontally. As we relax the confinement, the relation between
D and Ca becomes linear and the difference between H = 16R0 and
H = 8R0 is already negligible. To further investigate the mechanism
to the effects of wall confinement on the droplet deformation, we
choose Ca = 0.4 plot the pressure around the droplet under four
confinement ratio as shown in Figure 7C. We have subtracted a
background pressure p0 = 1000c2, where 1,000 is the initial density
and c = 0.707 is used under Ca = 0.4. For H = 2.4R0 and H = 4R0 we
plotted the entire flow field region. For H = 8R0 and H = 16R0, we

FIGURE 17
Phase diagram of 2D droplets states under different confinement, Re and Ca when α = λ =1, L =16R0 and (A) Re =0.01. (B) Re =0.1. (C) Re =1. (D)
Re =10.
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plot the middle region of 16R0 × 4R0.We can clearly see the presence
of low-pressure regions at both ends of the droplet. Under different
wall confinements, the pressure in these low-pressure regions does
not differ significantly. On the sides of the droplet in the middle,
there are high-pressure regions, and the pressure in these high-
pressure regions increases with an increase in the wall confinements.
These high-pressure regions on the sides cause the droplet to
elongate and become more horizontal. We can observe that there
is only a slight difference in the pressure field between H = 8R0 and
H = 16R0, so does the corresponding deformation of the droplet. A
further exploration of why increasing the confinement causes an
increase in pressure on sides of the droplet can be explained as
follows: The proportion of the channel blocked by the droplet
increases with the confinement. The outer flow is forced to
bypass the droplet, resulting in a squeezing effect between the
droplet and the wall. When the ratio R0/H decreases, there is

more space between the droplet and the wall to buffer this
squeezing effect, dispersing the pressure over a larger area.

Furthermore, we simulate cases where the droplet and the
matrix flow are two fluids with different physical properties. We
first consider two fluids of the same density but with different
viscosities. We choose a computational domain of 16R0 × 16R0 and
set Re = 0.1, α = 1 and λ ranges from 0.1 to 10. Initial spaceΔx among
nearest particles is 2R0/25 so a droplet contains 484 particles. The
deformation parameter as a function of Ca is shown in Figure 8. As
we can observe, the deformation increases as λ increases from 0.1 to
10. In this range of λ, a droplet with lower viscosity has a smooth
inside circulation and fast reaction which can reduce the elongation
[16,20].

The other case is that fluids inside and outside the droplet have
the same viscosity but different densities. The sound speed is chosen
according to the ratio of initial density to balance the pressure

FIGURE 18
Phase diagram of 2D droplets states under different confinement, viscosity ratios λ and Ca when α =1, Re =0.1, L =16R0. (A) H =4R0. (B) H =8R0. (C)
H =16R0. (D) two patterns of breakup.
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ccs
cds

� ρdref
ρcref

� ρd
ρc

� α, (23)

where ccs , c
d
s and ρcref, ρ

d
ref are sound speeds and reference densities

used for fluids outside and inside the droplet. As shown in Figure 9,
the difference between deformations of droplet under density ratio
0.1–10 is very small except obvious lower inclination at small Ca
when α = 0.1. In this small Reynolds number regime (Re = 0.1), the

density ratio has negligible influence and only the capillary number
determines the droplet deformation.

In 3D simulations, the width of simulation box W is an
additional computational parameter compared to the 2D
simulations. To compare with analytical predictions or
experiment data, the length and width of simulation box are
numerical and should be large enough. One set of parameters of
Re = 0.1, Ca = 0.2, α = λ = 1,H = 4R0 are selected and different length
L and width W of simulation box are examined. According to our
simulations, the deformation basically decreases with the increase of
L and/or width W. We compare the Taylor deformation parameter
D in steady states of our simulations with the analytical prediction of
Shapira and Haber [56]. The differences between our results and
analytical prediction under different L and W are plotted in
Figure 10. It can be seen that when L is larger than 24R0 and W
is larger than 8R0, the results has little change with the increase of L
and/orW. Figure 11 shows the steady deformation of 3D droplets in
shear flow when L = 24R0, W = 8R0, Re = 0.1 and α = λ = 1 with
different Ca and confinement in H direction, compared with
theoretical predictions of Shapira and Haber [56] and experiment
data of Sibillo et al. [57]. Our results agree well with both anlaytical
and experiment references at Ca = 0.1 and 0.2, whereas are closer to
the experimental data at Ca = 0.3. The deformation increases with
the confinement ratio R0/H, which has the same trend as for 2D
cases.

3.2 Droplet breakup

When the shear is strong, the droplet is over-stretched to break
up. We find two patterns of breakup process under different
viscosity ratios in simulations. As shown in Figure 12, when α =
1, λ = 0.2, Re = 0.1, Ca = 10, and L = H = 16R0, a droplet is rotated
and then stripped of its main body near the surface and gradually
breaks apart. We call this breakup type A. This type is also found in
the experiment study of Grace and they call it “tip streaming
breakup” [20]. The conditions for type A breakup happening is
exhibited in the next section. Figure 13 shows another set of typical
snapshots of the droplet shape and flow fields in shear flow breaks
when α = λ = 1, Re = 0.1, Ca = 0.9 and L = H = 16R0. In this
simulation, a droplet is stretched and its waist becomes slender and
slender and finally breaks up. We call this breakup type B.

To encompass the breakup of a 3D droplet with a large
elongation, we employ a rather long computational domain
with L = 32R0. Figure 14 shows the dynamics of the breakup
with Re = 0.1, H = 2.857R0, Ca = 0.46 and α = λ = 1. Left side are
SPH particle distributions and right side are corresponding
contour interfaces processed by SPH kernel interpolation into
mesh cells. The color represents the magnitude of velocity. We
adopt the same Ca and R0/H as the experiment in creeping flow
by Sibillo et al. [57]. The shape of the droplet in the breakup
process of our simulation is very close to their experimental
observation. Only a slight difference appears in the final stage: in
the experiment, the droplet is divided into three main parts, while
in our simulation the middle part continues to split into two
smaller droplets. In contrast to the 2D case, a 3D droplet has a
more slender shape before breaking up.

FIGURE 19
Phase diagram of 3D droplets states under different Re and Ca
when α = λ =1, H =4R0, L =32R0, W =8R0.

FIGURE 20
Diagram for states of water droplets in air shear flow under
different Re and Ca when H =16R0, L =16R0.
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3.3 Phase diagram

To clearly visualize the states of a droplet in different conditions,
we consider a range of Reynolds numbers, capillary numbers, and
confinements/density/viscosity ratios and summarize our
simulation results into phase diagrams. Thereafter, we may
estimate the critical capillary number Cac that segments the
intact and breakup states and further investigate how it is
influenced by other dimensionless parameters.

For λ = α = 1, we perform a group of 2D simulations with
different Reynolds number Re = 0.01, 0.1, 1, 10 and confinementH =
2.4R0, 4R0, 8R0, 16R0 with Ca ∈ [0.1, 1.1] and L = 16R0. For a general
overview, the states of the droplet are summarized in Figure 15. To
get a clear view, we slice the phase diagram by two perspectives.
Firstly, we divide results into groups of the same confinement to
reveal the influence of Re on Cac as shown in Figure 16. Overall it is
apparent that a higher Re reduces Cac. Three scenarios are special:
under confinement H = 2.4R0, 4R0 and 8R0, we can not differentiate
Cac between Re = 0.01 and 0.1.

From another perspective of Ca versus confinement ratio for
each Re on Figure 17, we are not able to find a universal pattern.
Under Re = 0.01, Cac decreases with R0/H while under Re = 10, Cac
increases with R0/H. Whereas, under Re = 0.1 and 1, Cac has no
monotonic relation with R0/H.

Furthermore, we investigate effects of viscosity ratio λ = μd/μc
∈ [0.1, 10] on the droplet dynamics for Re = 0.1 and three
confinement ratios H = 4R0, 8R0 and 16R0. The results are
shown in Figure 18. For breakup type A, the droplet rotates
and is stripped off as described in Section 3.2; Breakup type B
represents that a droplet is stretched and breaks up in the middle.
Under Re = 0.1, type A is observed only if the droplet has a much
smaller viscosity compare to the matrix fluid. Overall, Cac
decreases with the increase of λ. However, we notice a flatten
trend or even a reverse trend with small difference for Cac from
λ = 5 to λ = 10, as shown on the insets of Figure 18. According to
the study of Karam et al. and Grace [16,20], a maximum transfer
of energy takes place across an interface, which demands this
trend.

Due to highly computational cost in 3D, we only consider a
moderate confinementH/R0 = 4 and perform a group of simulations
to draw a phase diagram in the plane of Ca and Re, as shown in
Figure 19. The size of the simulation box is L = 32R0,W = 8R0, H =
4R0. As in 2D case, the critical Cac decreases with increasing Re in
3D, as shown in in Figure 16. However, the critical capillary number
Cac in 3D case is significantly smaller than that of 2D case.

3.4 Water droplet in air flow

As one specific application, we employ ourmethod to predict the
breakup of a water droplet in shear flow of air. The critical capillary
number or the shear rate determined is helpful to design an effective
atomization device. Actual physical properties of water and air
around 20°C are adopted: ρd = 998.2 kg · m−3, μd = 1.0087 ×
10−3 Pa · s and ρc = 1.205 kg · m−3, μc = 1.81 × 10−5 Pa · s are set
for water (dispersed) phase and air (continuous) phase, respectively;
surface tension coefficient σ = 72.75 × 10−3 N · m−1 is set for the
water-air interface.

We perform a relative large range of Reynolds numbers and
depict a phase diagram on the plane of Re and Ca in logarithmic-
logarithmic scales on Figure 20. This allows us to connect the
results with the same droplet size and observe its behavior while
changing Re and Ca. Points on each dotted line represent the
droplet of the same radius, as marked in the figure. For example, we
have a line of dynamics for the droplet with R0 = 10μm under shear
rates of 1 × 106s−1, 2 × 106s−1, 5 × 106s−1, 1 × 107s−1, 2 × 107s−1;
another line of dynamics for the droplet with R0 = 100μm under
shear rates of 5 × 104s−1, 1 × 105s−1, 2 × 105s−1, 5 × 105s−1, 1 × 106s−1.
Furthermore, we observe that if the Re is on the order of 100, the
critical Ca for breakup is very sensitive to Re. We also perform a
group of 3D simulations for a droplet with R0 = 50μm under shear
rates of 1 × 105s−1, 2 × 105s−1, 5 × 105s−1, 1 × 106s−1, 2 × 106s−1. The
3D results for the critical point of breakup is close to that of the 2D
results.

4 Conclusion and disucssion

In this study, we employed a multi-phase SPH method to
simulate droplet deformation and breakup subjected to a simple
shear flow in an extensive range of physical parameters. We
performed both 2D and 3D simulations and validated them by
benchmarks: transient deformations and steady shapes of droplets
are compared with previous simulations, analytical derivations and
experimental data. These results indicate that the method is reliable
to simulate droplet dynamics in general. We wish to emphasize the
convenience of SPH method in simulating multi-phase problems, as
we can leverage on its Lagrangian nature and differentiate different
phases by particle species. In addition, the algorithm and data
structure for 2D and 3D simulations have tiny difference and
therefore, it is a simple task to extend the code from 2D to 3D.
Economical 2D simulations allow us to investigate a wide range of
physical parameters in five dimensions, which serve as a guide to 3D
realistic situations. From the results, we come to the following
conclusions.

(1) A larger Reynolds number Re or capillary number Ca leads to a
more considerable deformation of the droplet. The transient
and steady-state deformations of the droplet in our study are in
good agreement with the previous studies but beyond their time
limits [54,55].

(2) Under low Reynolds number (Re = 0.1), a stronger
confinement due to the walls enhances the steady-state
deformation in both 2D and 3D simulations. When the
walls are separated further apart, the Taylor deformation
parameter is almost linear with respect to Ca. The influence
of confinement on the deformation of a droplet has been
studied by Shapira and Haber by a first-order analytical
solution based on Lorentz’s reflection method. They
proved that the walls do not influence the shape of
deformed droplet but increases the deformation magnitude
with a term of order (R0/H)3 [56]. The experiment data of
Sibillo et al. illustrate satisfactory agreement with the
predictions of Shapira and Haber except for the droplet
being within a small gap, where the reflection analysis is
expected to fail [57]. Our 3D simulation results resemble the
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whole set of experiment data even when the droplet is within
the small gap, which suggests the method as an applicative
tool for more realistic situations in microfluidics.

(3) The effects of wall confinement on the critical capillary
number Cac are not universal under different Re. When
Re = 0.1, a closer gap of walls reduces Cac. This is because
a closer gap of walls increases the deformation as described
above. But when Re is larger, the relation between Cac and
the confinement ratio is unclear. From our observation, this
non-monotonic relation results from an interplay of
influences by the shear strength and the stability of the
whole flow field. On the one hand, the shear stress
transferred to the droplet from the wall is more
pronounced in stronger confinement [56], thus closer
walls reduce the Cac. On the other hand, the narrower
channel reduces the instability of the flow and restricts
droplet movements, thus increases the Cac.

(4) Under Re = 0.1 and the range of viscosity ratio λ ∈ [0.1, 1], a
higher λ causes a larger deformation. The effect of λ on Cac is
not monotonic when λ > 1 and there is a minimum value of
Cac between λ = 1 and λ = 10. The existence of a minimal Cac
among different λ has also been found by previous
experiment studies [16,20], when λ is about 1. The
discrepancy between our results and the previous ones are
attributed to the difference between 2D and 3D cases. At the
same Re, the influence of density ratio on droplet
deformation is much smaller compared with that of the
viscosity ratio.

(5) As an application, a phase diagram obtained by actual physical
parameters of water and air is depicted to predict the magnitude
of shear rate for breaking a droplet of certain size, which is
helpful in the designing atomization nozzles.
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