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In this work, we present two finite-dimensional Lie–Poisson Hamiltonian systems associated with the Hirota–Satsuma modified Boussinesq equation by using the nonlinearization method. Moreover, the separation of variables on the common level set of Casimir functions is introduced to study these systems which are associated with a non-hyperelliptic algebraic curve. Finally, in light of the Hamilton–Jacobi theory, the action-angle variables for these systems are constructed, and the Jacobi inversion problem associated with the Hirota–Satsuma modified Boussinesq equation is obtained.
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1 INTRODUCTION
The Boussinesq-type equations are typical nonlinear integrable equations in mathematical physics and mechanics. We consider the Hirota–Satsuma modified Boussinesq equation
[image: image]
introduced in Hirota and Satsuma [1], which is derived from
[image: image]
by canceling the variable v. Here, [image: image] stands for an inverse operator of ∂ = ∂/∂x under conditions [image: image]. This equation was initially proposed by Hirota and Satsuma [1] from a Bäcklund transformation of the Boussinesq equation
[image: image]
which describes the motion of long waves which are propagated in both directions in shallow water under gravity. Similarity solutions to Eq. 1 are discussed in Quispel et al. [2]; Clarkson [3]. It is shown that this equation has a Lax pair associated with the 3 × 3 matrix spectral problem, from which the Darboux transformation is derived with the help of gage transformation Geng [4]. The corresponding finite-dimensional completely integrable systems in the Liouville sense were derived. As an application, solutions to Eq. 1 are decomposed into solving two compatible Hamiltonian systems of ordinary differential equations Dai and Geng [5]. The explicit Riemann theta function representations of solutions for the Hirota–Satsuma modified Boussinesq hierarchy were studied in He et al. [6].
The separation of variables for finite-dimensional integrable systems is important for constructing action-angle variables. A series of literature studies shows research on finite-dimensional integrable systems associated with hyperelliptic spectral curves (see, e.g., Kuznetsov [7]; Babelon and Talon [8]; Kalnins et al; [9]; Eilbeck et al; [10]; Harnad and Winternitz [11]; Ragnisco [12]; Kulish et al; [13]; Qiao [14]; Zeng [15]; Zhou [16]; Zeng and Lin [17]; Cao et al; [18]; Derkachev [19]; Du and Geng [20]; Du and Yang [21]). However, the study on integrable systems associated with non-hyperelliptic spectral curves is much more complicated (see, e.g., Sklyanin [22]; Adams et al; [23]; Buchstaber et al; [24]; Dickey [25]; Derkachov and Valinevich [26]).
Sklyanin introduced a powerful method of constructing the separated variables for the classical integrable SL (3) magnetic chain, which is associated with a non-hyperelliptic algebraic curve Sklyanin [22]. By this effective way, more general cases are studied Scott [27]; Gekhtman [28]; Dubrovin and Skrypnyk [29]. We follow this method to construct the separable variables for the Lie–Poisson Hamiltonian associated with the Hirota–Satsuma modified Boussinesq Eq. 1 on the common level set of Casimir functions and define action-angle variables with the help of the Hamilton–Jacobi equation. Furthermore, the Jacobi inversion problem for the Hirota–Satsuma modified Boussinesq equation is obtained with action-angle variables.
This paper is organized as follows. In the following section, we will review the Lie–Poisson structure associated with [image: image]. In Section 3, in the framework of the Lie–Poisson structure on [image: image], two Lie–Poisson Hamiltonian systems associated with the Hirota–Satsuma modified Boussinesq Eq. 1 are presented by using the nonlinearization of the adjoint representations of the 3 × 3 spectral problem and auxiliary spectral one. Moreover, the involution property of conserved integrals is discussed by using the generating function method. In Section 4, on the common level set of Casimir functions, the separated variables are introduced to study these Lie–Poisson Hamiltonian systems. In Section 5, in light of the Hamilton–Jacobi theory, the generating function S for obtaining the canonical transformation from separated variables to action-angle variables is obtained. In Section 6, in terms of the evolution of action-angle variables, the functional independence of conserved integrals is elucidated. Finally, the Jacobi inversion problems for those Lie–Poisson Hamiltonian systems and the Hirota–Satsuma modified Boussinesq Eq. 1 are built.
2 PRELIMINARY
In this section, we introduce some basic notations of Lie–Poisson structures associated with Lie algebra [image: image].
The Lie algebra [image: image] has an invariant nondegenerate symmetric form [image: image] by means of which we can make an identification [image: image]. For convenience, we choose
[image: image]
where
[image: image]
are the basis of Lie algebra [image: image], and the dual bases are given by {eij = Eji, 1 ≤ i, j ≤ 3}. We can confirm that these bases satisfy the commutation relation
[image: image]
Thus, for any functions [image: image], the corresponding Lie–Poisson bracket at the point [image: image] is
[image: image]
with the gradient [image: image] defined as
[image: image]
The Hamiltonian vector field associated with (3) by a smooth function [image: image] is represented as
[image: image]
The Lie–Poisson structure equations in terms of variables {yij, 1 ≤ i, j ≤ 3} are
[image: image]
The two Casimir functions of the Lie–Poisson structure Eq. 3 are
[image: image]
If we take the direct product of N copies of [image: image], the Lie–Poisson structure becomes
[image: image]
and the Hamiltonian vector field associated with a smooth function F is
[image: image]
and the 2N Casimir functions
[image: image]
3 THE LIE–POISSON HAMILTONIAN SYSTEMS FOR THE HIROTA–SATSUMA MODIFIED BOUSSINESQ EQUATION
According to the Lie–Poisson bracket Eq. 5 on N copies of [image: image], we discuss the finite-dimensional Lie–Poisson Hamiltonian systems associated with the Hirota–Satsuma modified Boussinesq Eq. 1:
[image: image]
and
[image: image]
with Hamiltonians
[image: image]
and
[image: image]
with λ1, … , λN being N distinct parameters and [image: image].
In fact, the Lie–Poisson Hamiltonian systems Eqs 6, 7 are derived from the 3 × 3 matrix spectral problem
[image: image]
and the auxiliary spectral problem
[image: image]
where u, v are the potentials and λ is a constant spectral parameter. The adjoint representations of the spectral problems Eqs 10, 11 are given by
[image: image]
and
[image: image]
respectively. In order to obtain the Lie–Poisson Hamiltonian systems associated with the Hirota–Satsuma modified Boussinesq Eq. 1, we take N copies of (12)
[image: image]
and N copies of (13)
[image: image]
Now, under the constraint
[image: image]
Eqs 14, 15 are nonlinearized into the Lie–Poisson Hamiltonian systems Eqs 6, 7, respectively.
The Lax representation and the involution property of conserved integrals are also given by using the generating function method.
Since the Lie–Poisson structure Eq. 5 has 2N Casimir functions
[image: image]
thus to prove the integrability of the Lie–Poisson Hamiltonian systems Eqs 6, 7, it is necessary to find 3N functionally independent Poisson commuting integrals. By using the constraint Eq. 16, after a direct calculation, we can get the following proposition.
Proposition 1. The Lie–Poisson Hamiltonian systems Eqs 6, 7 admit the Lax representations
[image: image]
and
[image: image]
respectively, where
[image: image]
and
[image: image]
with
[image: image]
It follows that the integrals of motion for the Lie–Poisson Hamiltonian systems Eqs 6, 7 are provided by the spectral invariants of Lax matrix Vλ. Therefore, one has the generating function of integrals for systems Eqs 6, 7:
[image: image]
Furthermore, substituting Eqs 17, 18, we have
[image: image]
where
[image: image]
and
[image: image]
where
[image: image]
From the expressions of [image: image] and [image: image] in (19) and 20, we know that for j = 1, … , N, q1j, q2j, q3j provide 3N generators of conserved integrals for systems Eqs 6, 7. The Hamiltonian functions Eqs 8, 9 can also be written as
[image: image]
and
[image: image]
respectively.
Denoting the variables of [image: image]-flow and [image: image]-flow by t2λ and t3λ, respectively, let [image: image]; then, the Hamiltonian equations for [image: image] and [image: image] are
[image: image]
where
[image: image]
Taking the sum of Eq. 23 with respect to j from 1 to N, we have
[image: image]
from which we arrive at
[image: image]
For Casimir functions tr (yj), 1 ≤ j ≤ N, it is evident that
[image: image]
Proposition 2. The Lax matrix Vτ satisfies the Lax equations along the [image: image]-flows:
[image: image]
Proof. By using (23), (24), and (25), we have
[image: image]
Based on Proposition 2, for any λ, τ, it is easy to verify that for l, k = 2, 3,
[image: image]
from which we have {qhj, qim} = 0, h, i = 1, 2, 3, j, m = 1, … , N.
Corollary 1. [image: image] are in involution in pairs with respect to the Lie–Poisson bracket Eq. 5.
By observing Eqs 21, 22, we know that {H, H1} = 0. Thus, some solutions of the Hirota–Satsuma modified Boussinesq Eq. 1 can be obtained by solving two compatible Hamiltonian systems of ordinary differential equations.
Proposition 3. Let yj be a compatible solution of the Lie–Poisson Hamiltonian systems Eqs 6, 7, then
[image: image]
solves the Hirota–Satsuma modified Boussinesq Eq. (1).
4 SEPARATION OF VARIABLES
In this section, we construct the separable variables on the common level set of the Casimir functions
[image: image]
to deal with the Lie–Poisson Hamiltonian systems. The characteristic polynomial of Lax matrix Vλ for the Hirota–Satsuma modified Boussinesq Eq. 1 is an independent constant with variables x and t in the expansion
[image: image]
which defines a non-hyperelliptic algebraic curve of genus [image: image] by introducing variable ζ = a(λ)z:
[image: image]
where
[image: image]
With the application of Sklyanin’s method given in Sklyanin [22], a half of the variables of separation μi (i = 1, … , 3N − 2) should be defined as zeros of some polynomial B(λ) with degree 3N − 2, and the corresponding conjugate variables νi (i = 1, … , 3N − 2) are related to μi by the secular equation
[image: image]
It follows from (28) that νi should be an eigenvalue of the matrix [image: image]. Therefore, there must exist such a similarity transformation
[image: image]
for each i that the matrix [image: image] is block-triangular
[image: image]
and νi is the eigenvalue of [image: image] split from the upper block
[image: image]
Therefore, the problem is reduced to a determination of the matrix Ki and polynomial B(λ). Let us consider K(k) to be as follows:
[image: image]
Note that the matrix
[image: image]
depends on two parameters λ and k. Hence, we can consider condition Eq. 30 as the set of two algebraic equations
[image: image]
for two variables λ and k. By eliminating k from (32) yields the polynomial equation for λ:
[image: image]
Based on (33), we can define the polynomial B(λ) of degree 3N as
[image: image]
where
[image: image]
Expressing k from [image: image] as k = V31(λ)/V32(λ) and substituting it into the definition Eq. 31 of νi yields
[image: image]
thereby giving rise to 3N pairs of variables μi, νi. Let
[image: image]
with the help of (4) and (17), it is easy to see that
[image: image]
from which, together with the definitions of B by (34) and A by (37), the Lie–Poisson brackets for B(λ) and A(τ) satisfy
[image: image]
Proposition 4. {μi, νi, 1 ≤ i ≤ 3N} are canonical coordinates, that is,
[image: image]
Proof. The commutativity of Bs Eq. 38 obviously entrains the commutativity of μj (zeros of B(λ)). The Poisson brackets including νj can be calculated by using the implicit definition of μj. From B (μj) = 0, for j = 1, … , 3N, it follows that
[image: image]
or
[image: image]
for any function F, in the same way, we have
[image: image]
Now, we turn to prove {νi, μj} = δij. Starting with
[image: image]
using (39) and the third equation of (38), we arrive at
[image: image]
The last expression vanishes for μi ≠ μj due to B (μi) = B (μj) = 0 and is evaluated via L’Hôpital’s rule for μi = μj to produce the proclaimed result. The commutativity of νs can be shown in the same way, starting from the first equation of (38).
5 ACTION-ANGLE VARIABLES AND JACOBI INVERSION PROBLEMS
Let us start with
[image: image]
where
[image: image]
from which we can rewrite the generating functions [image: image] as
[image: image]
[image: image]
with [image: image]
The comparison of the coefficients of λl (l = 0, … , N − 1) in equation
[image: image]
and the comparison of the coefficients of λl (l = 0, 1, … , 2N − 1) in equation
[image: image]
respectively, yield
[image: image]
Let
[image: image]
with the help of Eq. 29, we have the completely separable Hamilton–Jacobi equations:
[image: image]
for i = 1, … , 3N − 2, from which we can obtain an implicit complete integral of Hamilton–Jacobi equations for the generating functions [image: image] and [image: image]:
[image: image]
where z satisfies Eq. 28.
Now, let us consider a canonical transformation from (μ, ν) to (ϕ, I) generated by the generating function S:
[image: image]
which satisfies
[image: image]
From Eqs 28, 41–44, we have
[image: image]
where R(λ) = 3a2(λ)z2 − R2(λ). Thus, by using (40), (41), and (42), the generating functions of integrals can be rewritten as
[image: image]
The variables I1, … , I3N−2 will be variables of action type, and the conjugate variables ϕ1, … , ϕ3N−2 will be the corresponding angles.
The Hamiltonian canonical equations for the generating functions [image: image] in terms of action-angle variables Ij, ϕj, j = 1, … , 3N − 2 are
[image: image]
[image: image]
Proposition 5. Let t2,l and t3,l be the variables of [image: image]-flow and [image: image]-flow, respectively; then, we have
[image: image]
where
[image: image]
with Aks being the coefficients in the expansion
[image: image]
which could be represented through the power sums of λl, [image: image],
[image: image]
with the recursive formula
[image: image]
and Brs are the comparison of the coefficients of λr, r = 0, 1, … in
[image: image]
which can be written as [image: image] with the supplementary definition A−k = B−k = 0, k = 1, 2, ….
Proof. According to the definition of the Lie–Poisson bracket,
[image: image]
for j = 1, … , 3N − 2. By using Eqs (46), (47), and 49, it is easy to see that
[image: image]
By comparing the coefficients of λ−l−1 in (50), we get the Lie–Poisson brackets
[image: image]
thereby providing the nondegeneracy matrix Eq. 48.
Proposition 6. [image: image] given in Eqs 19, 20 are functionally independent.
Proof. We only need to prove the linear independence of the gradients:
[image: image]
Suppose
[image: image]
we have
[image: image]
Hence, c1 = c2 = ⋯ = c3N−2 = 0 since the coefficient determinant is equal to 1 by matrix Eq. 48.Remark. Corollary 1 and the present Proposition completely prove the Liouville integrability of the Lie–Poisson Hamiltonian systems Eqs 6, 7 with the Hamiltonians Eqs 21, 22, and 3N − 2 integrals [image: image], [image: image], which are involutive in pairs and functionally independent.
After fixing the values of the 2N Casimir functions in (27), based on (51), using (21), the solution of system Eq. 6 in terms of action-angle variables ϕj, Ij is
[image: image]
Thus, combining Eq. 45 with (52) yields the Jacobi inversion problem for the Lie–Poisson Hamiltonian system Eq. 6
[image: image]
For the Lie–Poisson Hamiltonian system Eq. 7 with respect to Lie–Poisson bracket Eq. 51, using (22), we obtain the solution of system Eq. 7 in terms of action-angle variables ϕj, Ij
[image: image]
According to Eqs 45, 53, we have the Jacobi inversion problem for the Lie–Poisson Hamiltonian system Eq. 7
[image: image]
The compatible solution of systems Eqs 6, 7 in terms of action-angle variables Ij, ϕj is
[image: image]
From (45) and (54), we finally obtain the Jacobi inversion problem for the Hirota–Satsuma modified Boussinesq Eq. 1:
[image: image]
6 CONCLUSION
In this paper, two finite-dimensional Lie–Poisson Hamiltonian systems associated with a 3 × 3 spectral problem related to the Hirota–Satsuma modified Boussinesq equation are presented. Separation of variables for the integrable systems with non-hyperelliptic spectral curves is constructed by using the method proposed by Sklyanin. Then, 3N-2 pairs of action-angle variables are introduced with the help of Hamilton–Jacobi theory. The Jacobi inversion problems for these Lie–Poisson Hamiltonian systems and the Hirota–Satsuma modified Boussinesq equation are discussed. Furthermore, based on the Jacobi inversion problems, we may use the algebro-geometric method to obtain the multi-variable sigma-function solutions, which will be left to future research. The methods in this paper can be applied to other systems of soliton hierarchies with 3 × 3 matrix spectral problems, even 4 × 4 matrix spectral problems.
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