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Understanding the transmission of light in ocean turbulence is of great
significance for underwater communication, underwater detection, and other
fields. The properties of ocean turbulence can affect the transmission
characteristics of light beams, therefore it is essential to estimate the ocean
turbulence intensity (OTI). In this study, we propose a deep learning-based
method for predicting the OTI. Using phase screens to simulate ocean
turbulence, we constructed a database of distorted Gaussian beams generated
by Gaussian beams passing through ocean turbulence with varying intensities. We
built a convolutional neural network and trained it using this database. For the
trained network, inputting a distorted beam can accurately predict the
corresponding intensity of ocean turbulence. We also compared our designed
network with traditional network models such as AlexNet, VGG16, and Xception,
and the results showed that our designed network had higher accuracy.
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1 Introduction

Optical signal transmission through seawater is subject to the effects of ocean turbulence,
which can cause image blurring, light energy dispersion, and limited resolution at the
receiver side in ocean detection and signal transmission [1–4]. In 1976, Fleck first employed
the “multi-phase screen method” to simulate the impact of atmospheric turbulence on
transmitted beams in free space [5]. The proposal of this model has attached much attention
[6–10]. In 2000, Nikishov proposed a spatial power spectrum that incorporates fluctuations
in seawater temperature, salinity, and refractive index to describe ocean turbulence, which
facilitates a comprehensive examination of the influence of seawater as a medium for laser
beam transmission [11]. To date, researchers have explored the propagation property of light
beams on propagation in ocean turbulence [12, 13]. For example, Yahya Baykal evaluated the
scintillation index of spherical waves in strongly turbulent oceanic environments [12]. These
studies revealed that the propagation characterization of a light beam in ocean turbulence
depends on the property of underwater turbulence, including the rate of dissipation of
kinetic energy per unit mass of fluid, the rate of dissipation of mean-squared temperature,
and the ratio of temperature to salinity contributions to the refractive index spectrum, etc.
Therefore, estimating these parameters of ocean turbulence is of paramount significance for
enhancing the performance and efficiency of underwater communication, detection,
scientific research, and engineering applications.
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Atmospheric and oceanic turbulence are two common types of
turbulence that show similar characteristics, such as causing
degradation of light intensity distribution. The refractive index
structure constant C2 n is the most critical parameter for
describing atmospheric turbulence, and numerous methods have
been proposed for evaluating it. For instance, Wang et al. employed
an artificial neural network with meteorological parameters, such as
temperature and relative humidity, as inputs to estimate refractive
index structure constant over the sea surface near Mauna Loa [14].
In another study, Ma et al. utilized convolutional neural networks to
estimate the refractive index structure constant of atmospheric
turbulence and evaluated the effects of transmission distance,
beam multiplexing technique, and beam pattern on the
estimation accuracy [15]. Compared to atmospheric turbulence,
temperature variations primarily induce refractive index changes
in the atmospheric medium, whereas in oceanic turbulence,
temperature and salinity jointly determine refractive index
fluctuations. A comparison of turbulence spatial power spectra
[11, 15] reveals that atmospheric turbulence exhibits a unimodal
structure, while oceanic turbulence displays a more intricate
bimodal structure. Furthermore, research on the transmission
characteristics of atmospheric turbulence is relatively mature,
whereas investigations into turbulence models and transmission
characteristics in oceanic turbulence are still in their early stages.
Consequently, evaluating the parameters of ocean turbulence from
the transmission and evolution characteristics of a light beam poses
a greater challenge.

In recent years, the advent of deep learning technologies has
facilitated rapid advancements in various fields [16–20]. In this
study, we propose a convolutional neural network (CNN) for
estimating turbulence intensity from the distorted intensity
pattern formed by a Gaussian beam through oceanic
turbulence, and investigate the effects of different parameters
on the estimation results in detail. The paper is structured as
follows: First, we describe the simulation system and
numerically simulate the intensity evolution of a Gaussian
beam in oceanic turbulence. Then, we propose a lightweight
CNN estimation structure and provide a detailed description of
its architecture. After sufficient training, the lightweight CNN
achieves accurate estimation of the three intensity factors of
oceanic turbulence. To demonstrate the performance of the
lightweight CNN, we conduct a thorough investigation of the

effects of network parameters, turbulence parameters, and the
type of training dataset on the identification results, and
compare the estimation outcomes with those of other
networks. Finally, we summarize the completed work and
provide an outlook on its future.

2 Fundamental principle

2.1 Propagation model

To simulate the beam propagation in ocean turbulence, we
employed a turbulence spectrum method proposed by Ref. [11],
which accounts for the effects of seawater temperature, salinity,
and refractive index undulation. This turbulence spectrum model
is suitable for isotropic homogeneous seawater media and can
accurately describe light transmission behavior in seawater,
providing favorable conditions for in-depth study of laser
transmission characteristics in seawater media. To establish
the ocean turbulence phase screen, we used the phase screen
method [5] based on the power spectrum inversion method. The
effect of oceanic turbulence on beam transmission is considered
equivalent to beam transmission through a series of
combinations of a random turbulent phase screen and free
space, as shown in Figure 1.

2.2 Theoretical derivation

The fundamental mode Gaussian beam is selected as the input
beam, with the form of:

U0 � exp −x
2 + y2

ω0
( ) (1)

where (x, y) is the coordinates of the optical field; ω0 is the radius of
the beam.

The propagation of a laser beam through ocean turbulence is
simulated by multi-phase screen, which mimics the effect of
turbulence on the beam. At position zi, the ith phase screen is
set, with Δzi+1 = zi+1-zi representing the interval between adjacent
phase screens. The propagation of a light field between two
consecutive phase screens can be expressed as:

FIGURE 1
Schematic of beam propagation through ocean turbulence.
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U r, zi+1( ) � F−1 F U r, zi( ) exp iφ x, y( )[ ]{ } × exp −i k
2
x + k2

y

2k
Δzi+1( )⎧⎨⎩ ⎫⎬⎭

(2)
where φ(x, y) is the phase perturbation caused by the phase
screens. kx and ky are the wave numbers in the x and y directions,
k is the wave number in the vacuum. F and F−1 represent the
Fourier transform (FT) and the inverse Fourier transform (IFT),
respectively. Each phase screen is divided into N×N grids.The
matrix of N×N points in the x-y plane represents the optical field,
and the total side length of the matrix is L. The range of the
matrix is -L/2 < x < L/2, -L/2 < y < L/2.

The following describes how to generate the random phase
screen. The phase φ(x, y) is obtained through power spectrum
inversion, which involves using the turbulence power spectrum
to filter a complex Gaussian random matrix, followed by
obtaining the turbulent distortion phase through IFT. This
process can be represented as:

φ x, y( ) � C∑
kx

∑
ky
p kx, ky( ) ���������

FΦ kx, ky( )√
exp i xkx + yky( )[ ]

(3)
where C is the constant factor that controls the phase screen
variance. x = mΔx, y = mΔy, Δx and Δy are the sampling
intervals in the spatial domain, m and n are integer. kx =
m′Δkx, ky = n′Δky, Δkx and Δky are the spatial frequency
domain sampling intervals in the wave number
domain,m′and n′ are integer. k = 2π/λ is the wave number of
the laser. p (kx, ky) is the Fourier transform of the Gaussian
random number with mean 0 and variance 1. The term FΦ(kx,
ky) represents the oceanic phase spectrum on any slice
perpendicular to the direction of beam propagation (z-axis),
as shown in equation:

Fϕ kx, ky( ) � 2πk2Δzϕ kx, ky( ) (4)

Φ(kx, ky) was calculated based on the refractive index
fluctuation spectrum of seawater proposed by Ref. [11], which
expression is:

ϕ kx , ky( ) �0.388 × 10−8 ×
������
k2
x + k2

y

√( )−11
3 ε−1

3 1 + 2.35 η
������
k2
x + k2

y

√( ) 2
3[ ]

×
XT

ω2
ω2e −ATσTS( ) + e −ASσTS( ) − 2ωe −ATSσTS( )[ ]

(5)
where η is the Kolmogorov scale with the value range is 6 ×
10−5~10–2 m. ε is the turbulent kinetic energy dissipation rate per

unit volume of seawater, XT is the mean square temperature
dissipation rate. The parameter ω corresponds to the ratio of
temperature gradient to salinity gradient, with a range
between −5 and 0. As ω approaches 0, it characterizes salinity
dominated turbulence, while nearing −5 signifies temperature-
dominated turbulence. The negative sign indicates that with
increasing seawater depth, there is a decrease in temperature
and an increase in salinity. Other parameters are described as
follows: AT = 1.863 × 10−2, AS = 1.9 × 10−4, ATS = 9.41 × 10−3, σTS =
8.284 (κη)4/3 + 12.987 (κη)2. The parameters in simulation are set
as in Table 1.

3 OTI-CNN network model

To accurately estimate the OTI from distorted patterns, we
developed a convolutional neural network called OTI-CNN, as
illustrated in Figure 2. The OTI-CNN model was trained using
supervised learning with dataset, enabling it to directly predict the
parameters of OTI from the input distorted Gaussian beam. The
OTI-CNN model comprises seven convolutional layers and two
fully connected layers. To prevent information loss in the distorted
patterns that may be caused by maximum pooling layers, we set the
step size of the convolutional layers to 2 instead, allowing the high-
dimensional channels to cover more input features while increasing
the network depth.

The input to the network is a distorted pattern with a size of
256 × 256 pixels. After the first convolutional layer, the network
generates 16 feature maps with a size of 256 × 256 pixels. After the
second convolutional layer, 16 feature maps with a size of 128 ×
128 pixels are generated. The eighth convolutional layer produces
a tensor with a size of 2 × 2×128. It flows into the global
maxpooling layer [21] and enters the fully connected layer
(Dropout rate = 0.3). Finally, using Softmax as the activation
function, the output of the network is derived from the fully
connected layer, representing the OTI estimate. All convolutional
kernels in the OTI-CNN model are of size 3 × 3. After the
convolutional layers, we have added a LeakyReLU activation
function with an alpha value of 0.2 and a batch normalization
layer with a momentum of 0.95 to improve the network’s
performance.

The batch size of the network training was set to 16, and the
training dataset was split into three parts: training set, validation set,
and test set, with a ratio of 8:1:1. The validation and test sets, which
were not involved in the training process, were randomly selected
from the entire dataset. The network was trained using Python
3.7.13, TensorFlow-gpu 2.4.1, Keras 2.4.3, and a GPU (NVIDIA

TABLE 1 Parameter of simulation.

Simulation parameter Value Simulation parameter Value

Number of Grid Elements N 256 The beam waist radius ω0/m 0.02

Total edge length of matrix L/m 0.1 Kolmogorov scale η/m 0.001

Phase screen spacing Δz/m 5 Kinetic energy dissipation rate ε/m2·s-3 10–10–10–1

Total transmission distance z/m 10 Mean-square temperature dissipation rate XT/K
2·s-1 10–10–10–4

Laser wavelength λ/nm 632.8 Seawater temperature and salinity specific value ω −5~0
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GeForce RTX 3060 Laptop GPU). We trained the network for
50 epochs and used binary cross-entropy as the loss function.
The Adam optimizer [22] was chosen with an initial learning
rate of 2 × 10−4, which was reduced by a factor of 10 at the 20th
and 35th epochs.

To measure the recognition ability of OTI-CNN, we defined the
accuracy as:

Accuracy � ypred
ypred all

(6)

where ypred_all denotes the number of all the predictions, and ypred
denotes the number of the correct predictions.

4 Results and analysis

When a Gaussian beam propagates through seawater, it
experiences turbulent perturbations and distortions, resulting in a
speckle pattern that contains turbulence information at the output.
We use the OTI-CNNmodel to extract turbulence intensity features
from the speckle pattern and estimate the OTI parameters. We
discuss the OTI in five groups, named Set 1–5, as shown in Table 2.
The variation of OTI is mainly exemplified by temperature and
salinity in the ocean, which are represented by the three turbulence
intensity parameters: ε, ω and XT. The parameter ε represents the
turbulent kinetic energy dissipation rate per unit volume of
seawater, XT represents the mean square temperature dissipation
rate, and ω represents the ratio of seawater temperature to salinity in
the power spectrum.

Studies have shown [11–13] that the parameter ω varies from −5 to
0 in the marine environment. As ω approaches 0, it indicates that
temperature predominantly influences turbulence, while near −5, salinity
has a more pronounced impact. It is noteworthy that salinity-dominated
turbulence significantly affects the transmission characteristics of optical
beams. Additionally, when XT is large, ε is small, or ω is high, oceanic

turbulence has amore pronounced impact on optical beam transmission.
Conversely, when XT is small, ε is large, or ω is low, the effect of oceanic
turbulence on beam transmission is reduced. In each experimental Set, we
uniformly sample one intensity parameter within the specified range
while appropriately setting the other two parameters. This approach
ensures a comprehensive estimation of oceanic turbulence parameters
while maintaining experimental consistency. In Set1, the parameter ω
takes values in the range [−5, −2.75], and 10 OTI samples are collected at
intervals of 0.25. The values of ε and XT are fixed at 10–6 m2 s-3 and
10–7 K2 s–1, respectively. For Set 2 and Set 3, ε varies within the range of
[10–10, 10–1], and 10 and 20 OTI samples are taken with intervals of
10 and 10–0.5, respectively. Meanwhile, the fixed values of ω and XT

are−2.5 and 10–7 K2 s–1. In Set 4 and Set 5, XT is sampledwithin the range
of [10–10, 10–4], with 10 and 20 equally spaced sample values, respectively.
The fixed values of ω and ε are −2.5 and 10−6 m2 s3, respectively.

Four statistics including mean absolute error (EMAE), mean
relative error (EMRE), root mean squared variance (ERMSE) and
correlation coefficient (Rxy) were selected to quantitatively evaluate
the performance of the network. The definitions of these four
statistics are [23]:

EMAE � 1
N
∑N

I�1 ŷi − yi( )2 (7)

FIGURE 2
Structure diagram of OTI-CNN for estimating ocean turbulence intensity parameters.

TABLE 2 Parameter setting for ocean turbulence.

Groups Turbulence intensity parameters

ω ε (m2·s-3) XT (K2·s-1)
Set 1 [-5, −2.7 5] (10) 10–6 10–7

Set 2 −2.5 [10–10, 10–1] (10) 10–7

Set 3 −2.5 [10–10, 10–1] (20) 10–7

Set 4 −2.5 10–6 [10–10, 10–4] (10)

Set 5 −2.5 10–6 [10–10, 10–4] (20)
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EMRE � ∑N

I�0
EMAE∑N

I�0
yi
N

∣∣∣∣ ∣∣∣∣ (8)

ERMSE �
�������������
1
N
∑N

I�1 ŷi − yi( )√
(9)

Rxy � 1 − ∑N
i�1 yi − �yi( )2∑N
i�1 yi − ŷi( )2 (10)

where N is the total number of test samples; ŷ = {ŷ1, ŷ2,/ŷn-1, ŷn} is
the estimated value; y = {y1, y2, /yn-1, yn} is the true value; �y is the
average value of yi.

4.1 Intensity estimation for training repetitive
speckle patterns

In developing the power spectrum inversion method for ocean
turbulence modeling, we generate the phase screen by filtering the
power spectrum function of the ocean turbulence phase with a
complex Gaussian random matrix. Even when the turbulence
intensity parameters remain invariant, the dynamic random variation
of the complex Gaussian random matrix can introduce randomness to
the turbulence phase screen, resulting in non-negligible variations in the
distorted patterns. As a result, when distorted patterns with the same
parameters are input to the OTI-CNN, the extracted features may not be
exactly the same. It is necessary to investigate the relationship between the
number of training samples and estimation accuracy under the same
parameters.

We selected Set2 and Set5 as examples to examine the effects of
number of the training sample on the performance of the network.
The dataset was randomly divided into training, validation, and test
sets in an 8:1:1 ratio. The results of the test set were evaluated using
four estimation functions (EMAE, EMRE, ERMSE, and Rxy).

Figure 3A illustrates the results of the three estimation error
functions (EMAE, EMRE, and ERMSE) for Set2 and Set5 with
different number of samples. All of them show a general decreasing
trend as the number of samples increases from 100 to 800, indicating

that the estimation accuracy improves with an increasing number of
replicate samples. Figure 3B presents the variation in correlation
coefficients (Rxy) of Set2 and Set5 as the number of sample replicates
changes. As the number of duplicate samples increases, the
correlation coefficients Rxy of Set2 and Set5 demonstrate an
overall upward trend. However, the increasing trend becomes less
pronounced when the number of duplicate samples reaches 800.
These results validate that increasing the number of training samples
is an effective way to improve the performance of the network.

4.2 Estimation of ocean turbulence intensity
from speckle patterns

Table 2 divides theOTI into five control groups (Set1-5), with each
group having a replicate sample size of 800 for each parameter. The
data sets for Set 1, Set 2, and Set 4 consist of 8000 samples, while the
data sets for Set 3 and Set 5 consist of 16000 samples. We split the data
with an 8:1:1 ratio to create the training set, validation set, and test set.
Figure 4A shows the variation of the accuracy function with training
cycles. After 50 training cycles, Set1 achieves an accuracy of 65.9% in ω
estimation, while Sets 2 and 3 achieve accuracy levels of 95.6% and
79.8% for ε estimation, respectively. For XT estimation, Sets 4 and
5 achieve accuracy of 100% and 94.5%, respectively. These results
indicate the feasibility of estimating the intensity parameters of the
ocean turbulence index (OTI) from the scattering pattern.
Furthermore, the identification accuracy of ω has consistently been
lower than that of XT and ε. This is because ω is sampled ten times
within the range of −5 to −2.75 with an interval of 0.25. This leads to a
lack of distinct features in the distorted Gaussian beam patterns
between two adjacent values of ω. When ω takes on values
of −5, −4.75, and −4.5, it results in a significant increase in
turbulence intensity, which in turn reduces the overall identification
accuracy of ω. Figure 4B shows the variation of the loss function with
training cycles. The loss function decreases rapidly in the initial
training cycles, indicating that the effectiveness of network.

FIGURE 3
Schematic diagram of the relationship between training samples and estimation accuracy. (A) Is the result of three estimation error functions (EMAE,
EMER, and ERMSE) for Set2 and Set5. (B) Is the result of the correlation coefficient (Rxy) of Set2 and Set5 transformed with the number of sample
replicates.
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4.3 OTI-CNN model estimation
performance improvement and comparison

To validate the advantages of lightweight convolutional neural
network-based methods in estimating the intensity of ocean turbulence,
we compared the performance of different networks (AlexNet, VGG16,
and Xception) in estimating the parameter XT. We selected Set 5 and
collected 800 sample values repeatedly for each OTI value.

The AlexNet model [24] comprises 5 convolutional layers, 3 fully
connected layers, and 1 softmax layer. The VGG16 model [25] is
composed of 13 convolutional layers, 3 fully connected layers, and
1 softmax layer. VGG16 differs from AlexNet in that it replaces the
7 × 7 sized convolutional kernels with multiple 3 × 3 sized convolutional
kernels, which better preserves the image’s nature, increase network depth
while maintaining the same perceptual field, and enables the system to
learn more complex patterns. In 2014, Christian Szegedy proposed
Inception (GoogLeNet) [26], a new deep learning architecture. Before
this, AlexNet, VGG, and other structures achieved better training results
by increasing the network’s depth (number of layers). However, adding
layers came with various negative effects such as overfitting, gradient
vanishing, and gradient exploding. Xception [27], an improved version of
Inception, achieves complete decoupling of cross-channel correlation and
spatial correlation in the feature map of convolutional neural networks.
The Xception architecture consists of 36 convolutional layers, organized
into 14 modules, with all modules surrounded by linear residual
connections except for the first and last modules. Essentially, the
Xception architecture is a linear stack of deeply separable
convolutional layers with residual connections.

As seen in Section 3, the main body of the OTI-CNN model
consists of seven 3 × 3 convolutional layers and an average pooling of
two fully connected layers. The OTI-CNN model utilizes 3 ×
3 convolutional kernels, avoiding the issue of image feature loss
associated with the use of 7 × 7 kernels in the AlexNet model. In
comparison to VGG and Xception, the OTI-CNN network architecture
is designed to be lightweight, effectively mitigating problems such as

overfitting, gradient vanishing, and gradient explosion that can arise
from increasing network depth. Additionally, we have incorporated
convolutional layers with a stride of 2 to replace the max-pooling layers
in VGG. This enables high-dimensional channels to cover more input
features while deepening the network.

Table 3 presents the estimation results. The OTI-CNN model
exhibits relatively good estimation performance, considering both
the estimation results of the test set and the training time. Wang
et al. demonstrated that cropped speckle patterns also contain most
of the feature information [28]. In practice, to achieve a lightweight
effect, we can input a 32 × 32 or 64 × 64 scatter pattern to further
speed up the neural network and reduce hardware usage.

5 Conclusion

In conclusion, we have demonstrated the potential of using a deep
learning-based method to estimate the parameters of ocean turbulence.
By employing the power spectrum inversion method, we simulated the
distorted intensity patterns of a laser beam propagating through ocean
turbulence. We designed an OTI-CNN network and trained it with the
distorted intensity patterns. Our results show that the designed OTI-
CNNmodel can accurately estimate the parameters XT, ω, and ε related
to the intensity of ocean turbulence. For a single parameter sample with
a repeated speckle pattern number of 800, the accuracy of OTI-CNN

FIGURE 4
Results of 4 statistics for different values of turbulence intensity. (A) The accuracy variation of Set (1–5) with training cycles. (B) The loss function of
Set (1–5) with training cycles.

TABLE 3 Parameter setting for ocean turbulence.

Net EMAE EMER ERMSE Rxy (%) Time (step/ms)

OTI-CNN 0.0003 0.0152 0.0673 99.90 10

AlexNet 0.0159 0.0177 0.0702 99.61 15

VGG16 0.0803 0.0576 0.1660 99.85 20

Xecption 0.1982 0.0860 0.4611 96.90 63
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can reach 65.9% for estimating ω, up to 95.6% for estimating ε, and up
to 100% for estimating XT. We also investigated the impact of the
number of samples on the estimation accuracy. The results indicated
that increasing the number of samples is an effective way to improve the
network’s performance. Furthermore, we compared the OTI-CNN
model with other models, namely, AlexNet, VGG16, ResNet18, and
Xception, and found that the OTI-CNNmodel outperformed the other
models in terms of overall estimation performance.
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