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Cherries are a nutritionally beneficial and economically significant crop, with fruit
ripeness and decay (rot or rupture) being critical indicators in the cherry sorting
process. Therefore, accurately identifying the maturity and decay of cherries is
crucial in cherry processing. With advancements in artificial intelligence
technology, many studies have utilized photographs for non-destructive
detection of fruit appearance quality. This paper proposes a cherry appearance
quality identification method based on the Swin Transformer, which utilizes the
Swin Transformer to extract cherry image feature information and then imports
the feature information into classifiers such as multi-layer perceptron(MLP) and
support vector machine(SVM) for classification. Through the comparison of
multiple classifiers, the optimal classifier, namely, MLP, in combination with the
Swin Transformer is obtained. Furthermore, performance comparisons are
conducted with the original Swin-T method, traditional CNN models, and
traditional CNN models combined with MLP. The results demonstrate the
following: 1) The proposed method based on the Swin Transformer and MLP
achieves an accuracy rate of 98.5%, which is 2.1% higher than the original Swin-T
model and 1.0% higher than the best-performing combination of traditional CNN
model and MLP. 2) The training time required for the Swin Transformer and MLP is
only 78.43 s, significantly faster than other models. The experimental results
indicate that the innovative approach of combining the Swin Transformer and
MLP shows excellent performance in identifying cherry ripeness and decay. The
successful application of this method provides a new solution for determining
cherry appearance ripeness and decay. Therefore, this method plays a significant
role in promoting the development of cherry sorting machines.
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1 Introduction

Cherry is a highly productive fruit that is widely grown in world wide. Compared to other
fruits, cherry is high in microelement of iron which can enhance the hematopoietic function
of the human body and alleviate anemia symptoms. Tieton cherry is a late-ripening cherry
varieties, which is not only rich in vitamin A and vitamin C to maintain healthy organ
functioning, but also contain antioxidants to strengthen the immune system, reduce
inflammation. Besides the Tieton cherry also provides calcium to protect bones and
teeth. Tieton cherry is a seasonal fruit which can usually be made into fresh fruit or
dried fruit [1]. The ripeness and decay of cherries is one of the important evaluation indexes
of fruit quality. Agricultural wastage is partly due to the poor marketability of the related
agricultural products [2]. Cherries with bright colors and regular shapes can attract
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customers in domestic and foreign markets. Therefore, grading and
sorting processes play an important role in providing high quality
fruits to consumers. With the rapid growth of cherry production, the
demand for cherry grading and sorting is increasing. Currently,
most cherries are sorted manually by workers, which is tedious and
have low sorting efficiency [3]. The efficiency of cherry sorter
operation affects the rate of sales of products in the market.
Consequently, it is necessary to develop a high-performance
cherry sorting machine to improve the efficiency of cherry
appearance ripeness and decay identification, and improve the
speed of sorting and processing. This would further allow high
quality cherries to access fruit markets.

In recent years, advancements in computer performance have
greatly enhanced deep learning-based object recognition
techniques [4–7]. Concurrently, this has also introduced novel
solutions for crop identification. As a result, nowadays, the
control and monitoring of fruit appearance quality by
electronic ways such as machine vision and deep learning has
been increasingly taking the place of manual means in some
developed countries [8–11]. Compared with the manual
detection of cherry appearance quality, the advantages of
machine vision and deep learning techniques include high
accuracy and detection speed, high flexibility and low costs,
program-mability. The most important is that electronic ways
can achieve non-destructive identification. Elmasry et al. (2012)
utilized visual machine to identify irregularly shaped potatoes
images, and the average accuracy of this method was 96.2% [12].
Femling et al. used machine learning to create a system to achieve
vegetables and fruits identification in the retail market [13]. This
system minimizes the number of human computer interactions
and speeds up the recognition process. Sambasivam et al. achieve
cassava disease detection and classification with deep
convolutional neural networks, and reported an accuracy score
of over 93% [14]. Bao et al. set up a lightweight CNN model to
identify wheat ear diseases. They obtained 94.1% accuracy for the
model meanwhile the parameters are only 2.13 M [15]. Gao et al.
selected spectral features and utilized CNN to classify the ripe
and early ripe strawberry, which obtained the accuracy of 98.6%
for strawberry dataset [16]. Dong et al. proposed a diseases and
pests automatic recognition system based on improved AlexNet
model which has a good performance [17]. In order to maximize
the profit of cucumbers fruit, Kheiralipour and Perma (2017)
proposed graded system of different cucumber forms using image
processing technique and artificial neural networks. This method
has an accuracy of 97.1% for identifying cucumber forms [18].

Although CNN has achieved satisfactory achievement in the
task of fruit identification, these methods of based on CNN still
have some shortcomings, since these methods have limitations in
the modeling of global information [19]. When CNN extracting
target features, only if stack many layers can obtain the global
features. With the emergence of more efficient structures, visual
tasks with transformer have become a new research orientation in
order to reduce structural complexity and improve training
efficiency. Transformer captures spatial patterns and non-local
dependencies by the attention mechanisms [20], which has been
successfully used to language recognition [21], image generation
[22], object detection [23], text image synthesis [24], and video
understanding [25]. Some transformer-based architectures

demonstrate powerful capabilities for visual task processing,
such as Visual Transformer (ViT) [26]. Zheng et al. uses ViT-
B/32 extract the class token and imports it into the support vector
machine to identify the appearance quality of strawberry,
eventually accuracy achieving 98.1% [27]. In addition, Swin
Transformer is an innovative vision model for transformers
that uses a hierarchical architecture to obtain the flexibility to
model at a variety of scales [28]. Zheng et al. utilizes the Swin
Transformer to extract image features and import the features
into MLP for identifying strawberry, and the accuracy reaches
98.45% [29].

Among the many physical characteristics used as the
evaluation criteria of agricultural products in the grading
process of cherries, the level of ripeness and decay are the
most important. Therefore, one of the requirements set by the
market standards for cherry is the appearance quality of the
product. Therefore, the aim of this research is to propose a
practical method based on improved Swin Transformer to
classify cherry appearance quality with a very high accuracy.
Firstly, Swin Transformer is used to extract cherry image
features, and then imported into MLP to realize cherry
recognition. Compared with other methods, this method can
achieve higher recognition accuracy.

2 Materials and methods

2.1 Materials

2.1.1 Dataset and experimental environment
In this study, the data set consisted of 4,669 cherry images taken

by a mobile phone (HUAWEI nova 9) from the cherry orchard of
Bailuyuan in Xi’an. The cherry dataset utilized in this study
exclusively comprises a single cultivar, namely, Tieton cherry.
Cherries are classified into three levels of ripeness: immature,
mature, and over-mature. Adding broken categories, the cherry
dataset is divided into four categories. Examples of cherry images
with different ripeness and decay are shown in Figure 1. The
appearance of each class has a very distinct character, such as the
skin of broken cherries is wrinkled, rotten or cracking (Figure 1A);
immature cherries have laurel-green or red-orange skin (Figure 1B);
the surface of mature cherry is positive bright red (Figure 1C); it can
be seen that if cherries are over mature, they would be dark purple,
even black hues (Figure 1D); The size of the original image collected
is large in this experiment, which reduces the accuracy and improves
the training time during image analysis and processing [30]. Thus, in
order to achieve higher recognition accuracy and less training time,
the images were resized to 224 × 224. The 4,669 images are divided
into training set and test set in the ratio of 8:2. Training and test
samples are independent of each other in order to reduce the
correlation between them.

The training of all network-models is done in a Personal
Computer (PC). The experimental hardware environment
includes an Intel Core i9-9900X CPU (3.50 GHz) and a NVIDIA
RTX 2080Ti GPU. The software environment consists of Ubuntu
18.04 operating system, CUDA10.1 and cuDNN 8.04 for deep
learning, Pytorch 1.7 as the neural network framework, and other
important packages such as numpy 1.21.5 and scikit-learn 1.0.2.
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2.1.2 Images enhancement
When deep learning training network, enough data is needed to

complete the training process to satisfy the training requirements of
convolutional neural network. And appropriate expansion of data
set can improve the accuracy of recognition. Since the number of
images broken category is not enough, data enhancement was used
to increase the size of the data set. In the experiment, seven
enhancement methods are applied to the images of broken
category: 1) Randomly adjust the brightness of the image; 2)
Randomly change the image contrast to obtain a new image; 3)
Rotate at random angles; 4) Flip the cherry image vertically or
horizontally; 5) Apply an affine transformation to obtain an
enhanced image; 6) The dislocation transformation based on the
horizontal or vertical direction to realize image geometric
deformation; 7) Achieve HSV image enhancement by selecting a
Hue value, a saturation value, and a lightness value. Eventually

1,302 images of broken category are produced, and Figure 2 shows
the results of data enhancement.

The final data distribution is shown in Table 1. The four types of
datasets are evenly distributed, which avoids the overfitting of single

FIGURE 1
Examples of the cherry images. (A) Broken; (B) Immature; (C) Mature; (D) Over-mature.

FIGURE 2
Original and seven different types of enhanced images.

TABLE 1 Image amount and resolution.

Item Training
dataset

Test
dataset

Total Resolution

Immature 958 240 1,198 224 × 224

Mature 838 209 1,047 224 × 224

Over-
mature

930 232 1,162 224 × 224

Broken 1,042 260 1,302 224 × 224
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sample data by the network and improves the generalization ability
of the model.

2.2 Swin transformer

Swin Transformer is a deep learning model based on
Transformer. Unlike the previous Vision Transformer (ViT),
Swin Transformer is efficient and accurate, and can be used as
the backbone of a universal computer vision. As shown in Figure 3A,
in existing ViT, the feature image size is fixed and without being
segmented, causing the computational complexity is quadratic to
image size. In contrast, Swin Transformer constructs hierarchical
feature maps, and the hierarchical feature representation was
constructed by small image element and layer by layer
neighborhood merging as illustrated in Figure 3B. Starting with
small-sized gray patches and gradually merging with adjacent

patches in deeper layers. The number of patches in red windows
is fixed, and so the complexity is linear to image size. However, this
approach will reduce connection between each window. To solve
this problem, Swin Transformer adopts that shift of window
partition, as shown in Figure 3C. The shifted windows connect
the windows of the previous layer, providing connections
between them.

The basic architecture of the Swin Transformer is shown in
Figure 4. First, the input RGB image is divided into non-overlapping
patches through patch splitting module, and each patch is treated as
a “token.” The patch splitting module made up Patch Partition and
Linear Embedding. Then the feature maps of different scales are
constructed through four stages, and each stage includes Swin
Transformer blocks. Except for the first stage, Patch Merging
operations are required for each stage before Swin Transformer
Block. The main purpose is to downsample and generate features of
different scales.

FIGURE 3
(A) The feature maps of ViT; (B) Swin Transformer builds hierarchical feature maps; (C) the shifted window approach for computing self-attention.

FIGURE 4
(A) a Swin Transformer architecture (B) Swin Transformer blocks.
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2.2.1 Swin transformer block
Swin Transformer is built on the basis of the Transformer

block, by replacing the standard multi-head self attention
(MSA) module with a module based on shifted windows
(W-MSA and SW-MSA) while the other layers remain
unchanged [31]. As observed in Figure 4B, each Swin
Transformer block consists of a window-based multi-head
self attention (W-MSA) module or a shifted window-based
multi-head self attention (SW-MSA) module, followed by a
2-layer MLP with Gaussian Error Linear Unit (GELU)
nonlinearity in between. A LN (LayerNorm) layer is added
before each MSA module and each MLP module, and a
residual connection is added after each MSA module and
each MLP. The calculation of feature map in successive Swin
Transformer blocks is shown below:

ẑl � W −MSA LN zl−1( )( ) + zl−1 (1)
zl � MLP LN ẑl( )( ) + ẑl (2)

ẑl+1 � SW −MSA LN zl( )( ) + zl (3)
zl+1 � MLP LN ẑl+1( )( ) + ẑl+1 (4)

where zl denote the output of the MLP module of the l th block, ẑl+1

denote the output of the (S)W-MSA model.

2.2.2 W-MSA and SW-MSA
When the conventional transformer block adopts MSA

module, it performs global self-attention computation. As a
result, a quadratic increase in the computation of the module
with respect to the number of patch tokens. The computational
complexity of the MSA is illustrated in Eq. 5. Where and are the
height and width of the input image. For the W-MSA module,
the pictures are divided into the windows in an evenly manner.
The disadvantage is that the self-attention calculation only be
carried out in each window, and information cannot be
transferred between Windows. Assuming that each window is
M in width and height, and then use the MSA module within h
Windows. The computational complexity of the W-MSA is
illustrated in Eq. 6. SW-MSA solves the problem of
information communication between different Windows.
Swin performs self-attention calculations in each window as
shown in Figure 3B. This method improves the ability of model
characterization.

ΩMSA � 4hwc2 + 2 hw( )2C (5)
ΩW −MSA � 4hwC2 + 2M2hwC (6)

2.3 Muti-layer perceptron

MLP is a dynamic classifier based on neural networks. The MLP
classifier uses neural networks to deduce a hyperplane that
distinguishes between different categories of cherries. The
hyperplane is then used to perform the classification. In this
study, cherry appearance ripeness and decay were classified into
four categories, and the hyperplane that is farthest from the feature
vector was chosen as the classification plane to classify each feature

vector into one of the four categories. TheMLPmainly consists of an
input layer, a hidden layer, and an output layer, with each layer being
fully connected to the adjacent layers. Its structure is shown in the
Multi-layer Perceptron module in Figure 5.

MLP has high recognition accuracy and faster classification
speed. The hyperparameters of the classifier are the adjustment
knobs that control the model structure and efficiency. In this
experiment, the optimal parameter details that achieved the best
recognition performance are shown in Table 2.

To measure the performance of the network during training, a
loss function is used. Typically, the mean squared error function is
employed, as shown in Eq. 7.

L ŷ, y( ) � 1
2

ŷ − y( )2 (7)

However, this function is usually non-convex, which can lead to
finding a local optimal solution rather than a global optimal
solution. Therefore, the following function is selected as the loss
function:

L ŷ, y( ) � − y logŷ + 1 − y( )log 1 − ŷ( )( ) (8)
where y is the true value of the sample, and ŷ is the predicted value.
The goal of the training is to minimize the loss function.

The average value of the loss function for the entire training
dataset is the cost function of the training set, as shown in Eq. 9:

J w, b( ) � 1
m
∑
m

i�1
L ŷ i( ), y i( )( )

� − 1
m
∑
m

i�1
y i( ) log ŷ i( ) + 1 − y i( )( )log 1 − ŷ i( )( )[ ] (9)

It is evident that the cost function is a function of w and b.
Therefore, the objective of the training is to iteratively compute the
optimal values of w and b, which minimize the cost function and
achieve the best training results.

2.4 Proposed method

It is well-known that a CNN model can be used as a feature
extractor by removing the fully connected layers and using the
remaining layers for feature extraction [32, 33]. Similarly, in this
paper, the same approach is applied to the Swin Transformer
model. The pre-trained parameters on ImageNet are used for
extracting cherry image features, which enhances the model’s
receptive field. Liu et al. proposed four models of Swin
Transformer: Swin-B, Swin-T, Swin-S, and Swin-L [28]. Swin-
T has a small model size, low floating-point operations per
second (FLOPs), and high throughput, with values of 29M,
4.5G, and 755.2 image/s, respectively. Therefore, Swin-T is
chosen as the feature extractor to avoid high computational
complexity. The overall architecture is shown in Figure 5,
where the input cherry image size is 224 × 224. The output
features from the four stages of the Swin Transformer have a
resolution of 77 and a channel dimension of 768D. Then, the
features are flattened into a one-dimensional feature vector,
which is inputted into an MLP for predicting the final cherry
label.
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2.5 Workflow diagram

Step-1: Swin-T was used as a classifier to extract features of cherry
image.

Step-2: The extracted one-dimensional features are imported
into ten classifiers such as MLP and SVM for comparison, and
then the best combination Swin transformer and MLP is
obtained.

Step-3: Compare the performance of the combination of Swin-
Transformer and MLP with the combination of CNN and MLP.

3 Results

3.1 Evaluation criteria

In this paper, the model’s performance is evaluated using six
metrics, including accuracy, training time, precision, recall, FPR,
and F1-score. The specific formula is shown in Table 3, where TP
represents true positive, TN is true negative, FP is false positive, and
FN is false negative. Taking binary classification task as an example,
the structure of the confusion matrix is shown in Table 4. In

FIGURE 5
The structure of SwinT combined MLP model.

TABLE 2 Parameters of MLP.

Parameter name Parameter after adjustment

Learning rate 0.001

Hidden_layer_sizes 105

Activation ReLU

Solver Adam

Alpha 0.0001

Max_iter 400

TABLE 3 Definition of evaluation indicators.

Criterion Definition Criterion Definition

Accuracy TP+TN
TP+TN+FP+FN Precision TP

TP+FP

Recall TP
TP+FN F1-score 2 × TP

2 × TP+FP+FN

FPR FP
TN+FP
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addition, confusion matrix and ROC curve play a crucial role in
further verifying experimental results.

3.2 The deep feature visualization of
network model

The purpose of visualizing the deep features of a network model
is to help us understand how the neural network discriminates
between different object categories, and to gain some insight into
what the neural network relies on to recognize objects [34]. In this
paper, the Gradient-weighted Class Activation Mapping (Grad-
CAM) method is used to observe the image features extracted by
Swin Transformer, and to understand which local regions of the
original image led the model to make its final classification decision
[35]. Using the gradient of any target concept, a rough localization
map is generated to highlight the important regions of the image
used for prediction. Figure 6 shows examples of Grad-CAM
generated from four cherry categories. The brightness of the
generated image varies with changes in the visual features of the
image [36]. From the figure, we can see that the network is able to
recognize the ripeness and decay of the cherries based on their fruit
features.

3.3 The performance of Swin transformer
and different classifiers

Swin Transformer is used as a feature extractor to extract the
deep features of cherries, and then the features are imported into the
classifier to predict the category labels of cherries. Different

classifiers have different learning abilities for pre-trained features.
In this work, nine classifiers such as random forest (RF) [37],
decision tree (DT) [38], extremely randomized trees (ET) [39],
quadratic discriminant analysis (QDA) [40], gaussian naive bayes
(GNB) [41], SVM [42], linear discriminant analysis (LDA) [43],
extreme gradient boosting (XGB) [44], and K nearest neighbor
(KNN) [45] are compared with the MLP classifier proposed in
this paper.

3.3.1 Analyze the accuracy and training time of
different combinations

Figure 7 shows the comparison of accuracy and training time for
ten classifiers combined with Swin Transformer. From Figure 7A, it
is evident that the accuracy of QDA and GNB classifiers is much
lower than the original Swin-T training results, indicating poor
classification performance. In contrast, SVM, XGB, and MLP
classifiers have higher accuracy than Swin-T, with improvements
of 0.2%, 0.3%, and 2.1%, respectively. Through experiments, the
training time of Swin-T was found to be 551.24s, and Figure 7B
shows that the average training time of the method combining deep
features with specific classifiers is much shorter than that of Swin-T.
The training times for SVM, XGB, and MLP are 78.021, 83.853, and
78.774 s, respectively. XGB’s longer training time is due to its need to
traverse the dataset during node splitting. Through a comprehensive
analysis of accuracy and training time, MLP performs the best.

3.3.2 Analyze the assessment indicators of different
combinations

The ten classifiers were compared based on precision, recall,
F1-score, and FPR. As shown in Table 5, it can be observed that
the QDA and GNB classifiers’ results were not satisfactory, as

TABLE 4 The confusion matrix formed by the parameters of the evaluation index.

Confusion matrix Predictive

Positive Negative Totol

Practical Positive True positive (TP) False negative (FN) Actual positive (TP + FN)

Negative False positive (FP) True negative (TN) Actual negative (FP + TN)

Total Predicted positive (TP + FP) Predicted negative (FN + TN) TP + FP + FN + TN

FIGURE 6
Grad-CAM visualization of Swin Transformer. (A) Broken; (B) Immature; (C) Mature; (D) Over-mature.
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their precision and recall values were much lower than the other
classifiers, and GNB had the highest FPR value. A high FPR value
indicates a high false positive rate of the model. SVM and XGB
classifiers had very similar precision, recall, and F1-score values,
with a difference of only 0.002, 0.001, and 0.002, respectively,
which achieved ideal performance. Compared to SVM and XGB,
the MLP classifier had higher precision and recall values,
reaching 98.4% and 98.5%, respectively, and an F1-score
exceeding 0.99. In addition, the MLP classifier had the lowest
FPR value among all classifiers, which was 0.005.

3.4 The best performance of Swin
transformer and MLP

The results demonstrate that the method proposed in this
paper, which combines Swin-T with MLP, achieves the best
recognition performance, with an accuracy of 98.5%, precision

of 98.4%, recall of 98.5%, F1-score of 0.995, and FPR of 0.005.
The high recognition accuracy of the method proposed in this
paper is attributed to the strong adaptability and self-learning
capabilities of MLP. In addition, the ROC curve of Swin
transformer and MLP is shown in Figure 8A, where the area
under the curve (AUC) is used as a metric for evaluating the
recognition performance. The larger the AUC value, the better
the recognition performance. As shown in Figure 8A, the AUC
values of the four categories and the micro-average are almost
equal to 1. To further evaluate the performance of this method,
the confusion matrix is shown in Figure 8B, which intuitively
demonstrates the performance of the model for each category.
The performance for each category is represented by the
predicted labels on the horizontal axis and the true labels on
the vertical axis. The results indicate that the precision for
broken, immature, mature, and over-mature are 97.5%,
98.2%, 99.5%, and 98.5%, respectively. The category with the
most misclassification is broken, which was mistakenly
identified as over-mature. This is possibly because some
cherries only exhibit slight rotting, which is characterized by
a darkening of the surface color, and is therefore easily mistaken
as over-mature. Figure 8B clearly shows that the recognition
performance for mature cherries is the best, which is attributed
to the distinct bright red color of mature cherries. Therefore, the
method proposed in this paper exhibits excellent recognition
performance.

3.5 Proposed method versus other models

The proposed method in this paper utilizes Swin-T to extract
different category features of cherry images and inputs these
features into a multilayer perceptron (MLP) to predict the final
labels. At the same time, six CNN models including GoogleNet
[46], VGG13, VGG16, VGG19 [47], ResNet101 [48], and
MobileNet_v2 [49] are used to recognize the appearance
quality of cherries, and the features extracted from these CNN

FIGURE 7
(A) The accuracy of different combinations (B) The training time of different combinations.

TABLE 5 The performance of ten classifiers.

Classifiers Precision (%) Recall (%) F1-score FPR

RF 93.1 93.3 0.931 0.023

DT 85.4 86.3 0.857 0.049

FT 95.5 95.7 0.956 0.015

QDA 63.8 54.9 0.563 0.043

GNB 77.5 82.9 0.775 0.071

SVM 96.5 96.6 0.965 0.011

LDA 96.0 96.1 0.960 0.013

XGB 96.7 96.7 0.967 0.011

KNN 92.5 93.0 0.925 0.024

MLP 98.4 98.5 0.995 0.005
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models are imported into the MLP classifier. The CNN plus MLP
method, traditional CNN method, and the proposed Swin
transformer and MLP method are compared in terms of
accuracy and training time, as shown in Table 6. The results
show that the features plus MLP classifier method has a higher
average recognition accuracy than the traditional CNN method,
especially the Swin transformer and MLP method achieves the
best accuracy of 98.5%. For the proposed method, the training
time should be the time for the model to extract features plus the
training time for the classifier. Table 6 clearly shows that the
training time of the features plus MLP method is much less than
that of the traditional CNN models, and the training time of the
Swin transformer and MLP method is only 78.43 s.

To further explain the objective evaluation between accuracy
and training time, a scatter plot is presented in Figure 9, where
the x-axis and y-axis represent training time and accuracy,
respectively, and the x-axis values represent the
computational resources of the models. We can see from the
experiments that the VGG13-MLP, VGG16-MLP, and VGG19-

MLP methods have low accuracy and long training time, and the
ResNet101-MLP method has a higher accuracy but a long
training time. Therefore, the results demonstrate that the
method proposed in this paper has high accuracy and less
training time, and it has good application value in the
recognition of cherry ripeness and decay.

4 Discussion

4.1 The advantage of deep features plus MLP

The article proposes two advantages of the method: 1) high
accuracy in recognizing cherry appearance, 2) short training
time. Swin-T with MLP has an accuracy 2.1% higher than
original Swin-T, indicating strong robustness. In addition, the
training time for Swin-T is 551.24 s, while the method of deep
feature extraction with MLP has a training time of only 78.43 s.
The training time for Swin-T is approximately seven times that of

FIGURE 8
(A) Confusion matrix (B) ROC curve.

TABLE 6 The contrast of traditional models and features plus MLP.

Model Accuracy (%) Training
time

Inference
time (s)

Model + MLP Accuracy (%) Training
time

Inference
time (s)

GoogleNet 94.9 516.13 s 0.5485 GoogleNet + MLP 95.9 68.34 s 0.0726

VGG13 94.4 4236.92 s 4.5026 VGG13 + MLP 95.4 195.63 s 0.2079

VGG16 93.2 5079.01 s 5.3975 VGG16 + MLP 95.6 227.19 s 0.2414

VGG19 92.9 6330.21 s 6.7271 VGG19 + MLP 94.5 261.42 s 0.2778

ResNet101 97.6 2025.52 s 2.1525 ResNet101 + MLP 97.5 218.88 s 0.2326

MobileNet-v2 85.7 250.44 s 0.2661 MobileNet-v2 + MLP 96.8 76.50 s 0.0813

Swin-T 96.4 551.24 0.5858 Swin-T + MLP 98.5 78.43 s 0.0833
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Swin transformer and MLP, and the training time for deep
feature extraction with MLP is shorter because the network
only needs to extract features from cherry images and does
not need to continuously optimize the internal parameters of
the model. Therefore, the computational complexity of the
proposed method is much lower than that of Swin-T, and the
required computing power is not large.

4.2 Potential impact and future work

In recent years, the area of cherry cultivation has been
expanding year by year, and the yield has been steadily
increasing. However, cherry sorting has always been one of
the most troublesome problems for growers. Currently,
manual sorting during the cherry ripening season is still
common, but this method is expensive, inefficient, and
difficult to ensure the quality of the fruit, which leads to
significant quality problems in marketing. Therefore, the
development of automatic sorting equipment is particularly
important. According to the different ripening stages of
cherries, the appearance color of cherries is divided into three
levels. In general, to ensure that cherries have a high hardness
and crisp texture even after several days of packaging and
transportation, they should be harvested and sorted before
they turn deep red, which is the ripening stage represented in
this paper. This ensures that consumers can purchase high-
quality products. In the cherry sorting process, it is not enough
to classify the appearance ripeness and decay into four
categories. In order to better sort cherries of different
qualities, it is necessary to further study and add categories
such as semi-ripe and diseases. At the same time, it is very
important to accurately identify rotten or damaged cherries
during the sorting process. The Swin-T with MLP method

proposed in this paper has high classification accuracy in the
identification of cherry ripeness and decay. This experiment is
also applicable to other cherry varieties such as Lapins, Kordia,
Skeena, etc.

5 Conclusion

This paper proposes a cherry appearance ripeness and decay
recognition method based on deep feature extraction combined
with an MLP classifier. The method performs well in cherry
detection. In the experimental stage, the features extracted from
Swin-T were imported into ten classifiers for comparison, and
the best performing classifier was the MLP classifier. In
addition, the method proposed in this paper, which extracts
image features from Swin-T and imports them into MLP, was
compared with the method that extracts features from
traditional CNN and imports them into MLP. The
recognition accuracy of Swin transformer and MLP was as
high as 98.5%, and the training time was only 78.43 s, which
is an impressive result. Therefore, the proposed method has
important practical value. In addition, this method has
reference significance for the identification of other types of
cherries. If one wishes to identify other cherry varieties, it
suffices to substitute the dataset. Furthermore, it is
imperative to emphasize that the improved method presented
in this article remains applicable in such a scenario, owing to its
versatility and robustness, enabling it to accommodate the
distinct characteristics of various cherry varieties. Thus, it
furnishes a flexible and viable solution to the problem of
cherry cultivar recognition. The focus of future research is to
apply this method to sorting equipment and other mechanical
devices to promote the development of future intelligent sorting
methods.

FIGURE 9
The accuracy and training time of models.
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