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The spread of an epidemic over a population is influenced by amultitude of factors
having both spatial and temporal nature, which are hard to completely capture
using first principle methods. This paper concerns regional forecasting of SARS-
Cov-2 infections 1 week ahead usingmachine learning. We especially focus on the
Dutch case study for which we develop a municipality-level COVID-19 dataset.
We propose to use a novel spatiotemporal graph neural network architecture to
perform the predictions. The developed model captures the spread of infectious
diseases within municipalities over time using Gated Recurrent Units and the
spatial interactions between municipalities using GATv2 layers. To the best of our
knowledge, thismodel is the first to incorporate sewage data, the stringency index,
and commuting information into GNN-based infection prediction. In experiments
on the developed real-world dataset, we demonstrate that themodel outperforms
simple baselines and purely spatial or temporal models for the COVID-19 wild
type, alpha, and delta variants. More specifically, we obtain an average R2 of
0.795 for forecasting infections and of 0.899 for predicting the associated trend of
these variants.

KEYWORDS

epidemic prediction, deep learning, spatio-temporal graph neural networks, real world
evidence, COVID-19

1 Introduction

Epidemics of infectious diseases are occurring more frequently, and are spreading faster
and further than ever before [1]. This has become abundantly clear between late 2019 and
early 2020, when COVID-19 quickly progressed from a local outbreak to a global pandemic.
The SARS-Cov-2 virus has infected more than 600 million individuals, resulting in over
6 million deaths worldwide [2], and causing significant economic damage due to large-scale
quarantining and country-wide lockdowns [3].

Prevention, containment, and mitigation of the spread of infectious diseases is therefore
key to humanity [4]. To ensure that policymakers can impose measures and manage the
allocation of scarce medical resources to combat the spread of the virus, the ability to
accurately forecast epidemics is of paramount importance [3]. On a regional scale, forecasts
can be used to justify local measures tailored to particular regions when there are large
differences in infection prevalence [5]. Schools in affected regions could, for instance,
encourage parents and children to pay extra attention to disease symptoms and to test
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preventively. In addition, regional epidemic forecasts can be
beneficial for capacity planning within a country. Hospitals could
prepare for the potential need to relocate patients to regions with
fewer infections.

Extensive research has been devoted to developing a wide range
of effective epidemic forecasting models which can be mechanistic
[6, 7], based on statistics or machine learning [8, 9], or both [10–12].
Mechanistic models are grounded on theoretical principles of
disease spread, whereas statistical and machine learning
approaches are heavily data-driven [13].

Because of the enormous global impact of COVID-19 and the
technologies we have today, this is the first time that epidemic data is
available on such a large scale. Therefore, COVID-19 offers more
opportunities for epidemic research and data-driven modelling than
ever before. As a result of the lessons learned during this period, it is
likely that for more and more epidemics and future pandemics,
necessary data will be available. Deep learning methods in particular
have an outstanding ability to discover complex patterns from large
amounts of data [14, 15]. Lastly, they can be easily extended to
various temporal and geographical scales, and other diseases, in the
presence of collected data. For these reasons, we decided to focus on
this machine learning technique.

Current deep learning approaches mainly consider epidemic
forecasting as a time-series problem. They usually assume that
forecasts for a given location are dependent only on information
from that location, without incorporating interregional movements
and interactions. This is despite the fact that research has indicated
that human movement between regions contributes significantly to
the transmission and spread of infectious diseases [5]. Because of
this, we believe that data on these interregional interactions could be
leveraged to increase the prediction performance of (purely
temporal) epidemic forecasting models. This warrants a natural
graph-based representation of the problem, allowing the application
of a subcategory of deep learning called graph neural networks
(GNNs).

GNNs are capable of dealing with the irregular nature of
graphs and the complex relationships and interdependencies
between their objects [15]. The core idea of GNNs is that the
representation of each graph’s node is updated based on an
aggregation of messages received from its connected neighbors
[16]. Spatio-temporal GNNs can additionally handle data in the
temporal dimension. GNNs have successfully been applied to a
wide variety of domains and tasks where interaction between
different components is important, reaching state-of-the-art
performance [15, 17–19]. For example, Derrow-Pinion et al.
[20] developed a GNN that predicts the estimated time of
arrival of traffic in Google Maps, and Ying et al. [21]
introduced the large-scale GNN recommender system PinSage
that is developed and deployed at Pinterest. Due to their proven
effectiveness, we would like to examine the use of GNNs for
region-based forecasting of epidemic infections.

This work focuses on regional SARS-Cov-2 infections in the
Netherlands, relying on data gathered by the Authors of this paper
working at the Dutch National Institute for Public Health and the
Environment (RIVM).While earlier work on the regional prediction
of disease infections using GNNs exists [3, 10, 12, 16, 22, 23], GNNs
for SARS-Cov-2 infection prediction have never been applied in the
Netherlands and worldwide not at a small municipality-level scale.

We will clarify our contributions with respect to the mentioned
related works in detail in Section 2. In light of the current research
gap, the objective of this research is to develop a model for 1 week
ahead forecasting reported SARS-Cov-2 infections within
municipalities of the Netherlands using GNNs.

Research has shown that for spatiotemporal GNN
forecasting, the performance decreases as the prediction
horizon increases [12, 16, 22]. Predicting 1 week ahead gives
local governments time to anticipate and take required action
without adding unnecessary uncertainty to the model’s
predictions. Since no information on the actual number of
infections is available, we assume that a region’s number of
officially confirmed reported cases represents this.

This work’s main contributions are.

• Developing a COVID-19 dataset containing municipality-
level information of the Netherlands, including COVID-19
statistics, demographics, and information on interactions of
municipalities.

• Creating a novel spatiotemporal GNN model that is able to
capture relationships over time and between municipalities for
predicting the number of SARS-Cov-2 infections per
municipality 1 week ahead using the developed COVID-19
dataset.

• Evaluating the proposed approach on the developed COVID-
19 dataset. We observe that on average, the spatio-temporal
GNN outperforms the baselines.

The remaining part of this paper is organized as follows: Section
2 reviews the related work on the use of GNNs for epidemic
forecasting. Section 3 describes the proposed methodology used
for forecasting the number of SARS-Cov-2 infections. Section 4
explains the performed experiments, and Section 5 presents the
obtained results. These results are further discussed in Section 6.
Finally, Section 7 concludes this paper.

2 Related work

Numerous studies on the application of GNNs in the field of
epidemiology have been performed. These studies are focused either
on forecasting epidemic spreading [3, 10, 12, 16, 22–26], extracting
the full state of a spreading epidemic [27], reconstructing their
evolution [28, 29], generating mobility-control policies [30], or
prioritizing vaccine or test receivers [4, 31]. Below, the existing
methods on location-based spatio-temporal forecasting of the
number of infections are discussed.

2.1 Spatio-temporal graph neural networks
for epidemic forecasting

Deng et al. [22] developed a graph neural network called Cola-
GNN to predict weekly influenza-like illness cases in the
United States and Japan, without the use of an underlying graph.
Their framework combines learned temporal feature embeddings
with a cross-location attention matrix that captures how locations
influence each other.
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LaGatta et al. [10] take a different approach. Their proposed hybrid
model consists of a GNN framework that estimates the contact rate
parameter used to predict infections with the epidemiological SIR and
SIRD models. The authors evaluate their approach using COVID-19
data from the regions and provinces of Italy.

Kapoor et al. [3] propose another spatio-temporal GNNmethod
for next-day COVID-19 case prediction. Their model learns from a
single spatio-temporal graph, where the spatial edges capture
United States county-to-county movement, and a county is
connected to a number of past instances of itself with temporal
edges. This is the first paper that uses a graph based on data from
GPS-enabled mobile devices to model how regions affect each other
based on interregional mobility.

Furthermore, Murphy et al. [23] propose a GNN architecture
that can learn contagion dynamics on a network from time series
data. The approach is demonstrated to be accurate for different
contagion dynamics of increasing complexity and can be used to
simulate dynamics on arbitrary network structures. The applicability
of the approach is demonstrated using real data for predicting
infections during the COVID-19 outbreak in Spain.

Most similar to our method are the works of Gao et al. [12] and
Panagopoulos et al. [16]. The hybrid spatio-temporal attention network
(STAN) of Gao et al. [12] uses real-world COVID-19 data of US
counties, and information on demographic similarity and geographical
proximity between different forecasting locations as input. Different to
our work, the network integrates pandemic transmission dynamics into
a deep learning model for enhancing long-term predictions.

More recently, Panagopoulos et al. [16] employed a GNN to predict
the number of future COVID-19 cases in the regions of four European
countries. To account for the low quantity of available training data,
their method utilizes transfer learning to shift disease-spreading models
from countries where the epidemic has been stabilized to other
countries where the virus is in its early stages.Table 1

Additionally, Pu et al. [32] propose a dynamic adaptive spatio-
temporal graph network (DASTGN) based on attention
mechanisms, which they test on three COVID-19 datasets from
China, Austria, and Brazil.

In addition to being the first epidemic prediction GNN applied to
the Netherlands at the fine-grained municipality scale, we show in
Table 1 that we also introduce new dataset features to improve
predictions. In the Table, the infections (Inf) category includes
various measures of infection status, such as the number of reported
infections, active infections, incidence rate or recovered infections.
Other categories include hospitalizations (Hos), deceased patients

(Dec), virus loads in sewage water (Sew), and features related to the
strictness of the COVID-19 rules (Rul). Demographic (Dem) features
such as the population size and density are also included. Finally, either
the distance (Dis) between municipalities, commuting information
(Com), or GPS-based mobility data (GPS) are used to connect
regions. In this work, we are the first to incorporate virus loads in
sewage water and commuter information into our analysis.
Additionally, our approach to incorporating the strictness of
COVID-19 rules more accurately reflects real-world conditions.
Further details about feature selection can be found in Section 3.1.
Furthermore, our study distinguishes itself by the fact that we have
collected data over a period of almost 2 years, allowing us to compare
the results of different COVID-19 variants.

In Table 2, we compare the temporal and spatial layers of the
models used in previous works with our own approach. All the spatio-
temporal GNNmethods discussed consist of temporal layers thatmodel
the evolution of the epidemic over time and spatial layers that capture
the interactions between different locations. In addition to these core
components, these models may also incorporate additional deep
learning components such as fully connected layers, dropout layers,
and skip connections to improve performance. Our approach is the first
to use GATv2 [33] as a spatial component, and we propose a unique
and optimized combination of deep learning components, whichwill be
further described in Section 3.2.

3 Methodology

In this section, we present the methods used for developing the
COVID-19 dataset and predicting the course of the disease. More
specifically, Section 3.1 presents the constructed graph, Section 3.2

TABLE 1 Features in related works.

Paper Inf Hos Dec Sew Rul Dem Dis Com GPS

[22] ⊠ □ □ □ □ ⊠ ⊠ □ □

[10] ⊠ ⊠ ⊠ □ ⊠ ⊠ □ □ ⊠

[3] ⊠ □ ⊠ □ □ □ □ □ ⊠

[23] ⊠ □ □ □ □ ⊠ □ □ ⊠

[12] ⊠ ⊠ ⊠ □ □ ⊠ ⊠ □ □

[16] ⊠ □ □ □ □ □ □ □ ⊠

[32] ⊠ □ ⊠ □ ⊠ □ ⊠ □ □

Our work ⊠ ⊠ □ ⊠ ⊠ ⊠ □ ⊠ □

TABLE 2 Models in related works.

Paper Temporal Spatial

Deng et al[22] RNN and CNN MPNN [34]

Kapoor et al[3] MLP GCN [35]

Murphy et al[23] RNN GCN [35]

La Gatta et al[10] LSTM GCN [35]

Gao et al[12] GRU GAT [36]

Panagopoulos et al[16] LSTM MPNN [34]

Pu et al[32] GRU GAT [36]

Our work GRU GATv2 [33]
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reviews the proposed model architecture, Section 3.3 clarifies how
we optimize this model, and Section 3.4 describes how the optimized
model is used for making predictions.

3.1 Graph construction

In order to make municipality-level predictions for the
Netherlands using GNNs, we developed a graph-structured
dataset containing information on COVID-19 statistics,
demographics, and information on interregional interactions. The
resulting undirected graph G(V, E) represents the model’s input
data and consists of a set of nodes V with node features, and a set of
edges E with associated weights. In addition, we use the graph’s node
labels as a ground truth for supervised learning.

Graph nodes In the graph G, all 344 Dutch municipalities are
modeled as an individual node. Here, n � |V| denotes the number of
nodes. The graph is visualized in Figure 1.

Graph edges and weights We construct the edges of the graph
based on the assumption that mobility rates between pairs of
municipalities influence each other’s infection rates [5]. We use a
proxy to quantify mobility, as travel data of people between
municipalities is not available for privacy reasons. To determine
the most effective proxy for our application, we constructed and
evaluated various graphs with different edge configurations and
weights. Besides a randomly chosen graph configuration, the edge
locations and weights we tested are based on distance between
municipalities, distance in combination with population sizes [37], a
fitted gravity model [38], and commuter information [39]. We
adopted the last graph configuration for the remainder of this
research, since this was found to be the most effective. The data

about the place of residence and work of employees is collected by
Statistics Netherlands (CBS). In our graph, edges connect
municipality pairs with at least 1,000 daily commuters. Please
note that, limited by the available data, we assume that this
measure of mobility remains constant over time. Furthermore,
we presume that travelling individuals visit only one region and
return to their home region directly afterward.

As a result, we obtain the adjacency matrix A ∈ Rn×n. This
matrix indicates which municipalities are connected and how strong
these connections are, and is defined as

Aij � wij if eij ∈ E and i ≠ j
0 otherwise,

{ (1)

where wij is the normalized weight for each two regions i and j
with an existent edge eij between them.

Node features Each node or municipality of the graph has a set
of associated features F to provide additional information useful for
making more accurate predictions. The node features we include in
our developed dataset are.

• Incidence: the daily number of reported COVID-19 cases per
unit of population [40, 41].

• Hospitalizations: the daily number of COVID-19 hospital
admissions [40].

• Virus load in sewage water: the average concentration of
SARS-CoV-2 RNA, converted to the daily amount of
sewage water (flow rate) and displayed per
100,000 inhabitants [40].

• Stringency Index: a country-wide composite measure
indicating the strictness of the applicable COVID-19
control measures, based on nine response indicators
including school closures, workplace closures, and travel
bans [42, 43].

• Population density: the number of inhabitants per square
kilometer of land area [44].

The feature selection process started with an initial set of ten
features, which was based on data and expertise available within the
RIVM. Five features were not included in the dataset due to their
relatively lower correlation with the ground truth or their negative
impact on the model’s performance. These features include the
population size, daily number of reported infections and deaths,
vaccination rate, and day of the week.

Each feature is normalized to ensure that all features are on the
same scale, ranging from 0 to 1. Except for the static population
density, we assume that the above-mentioned node attributes are
dynamic and change on a daily basis. Subsequently, it is important to
note that at each time step t (in days) the features are represented as
vectors that stretch back d days, including day t. This means that the
values in this feature vector correspond to days t+1-d to t. Together,
these feature vectors are presented in a time dependent feature
matrix Xt ∈ Rn×d×f, where n denotes the number of municipalities
and f � |F | the number of features.

Node labels The graph has a time-varying associated node
label per municipality, which is equal to the ground truth. While
the goal of this paper is to forecast the number of reported SARS-
Cov-2 infections 7 days ahead, we train the model on the
normalized incidence of this day instead. The reason for

FIGURE 1
Input graph G consisting of a set of nodes V corresponding to the
municipalities of the Netherlands and a set of edges E representing the
connections between them.
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training on incidence is the disproportionate distribution of
municipalities’ population sizes, and hence also of their
infection numbers. By optimizing on incidence instead of
infections, we compensate for the population size and prevent
the model from focusing too much on the forecasts for the largest
municipalities of the Netherlands. Training on incidence means
that our node label vector yt+7 ∈ Rn on prediction day t+7 is
calculated as

yt+7 � normalize
It+7

p
( ), (2)

where It+7 ∈ Rn represents the daily number of reported
infections per municipality on day t+7 and p ∈ Rn denotes the
region’s population sizes [40, 41].

When evaluating the performance of our trained model, we
use the data on the observed daily number of reported infections
per municipality It+7 directly. For real-world application, it is
particularly important that epidemic forecasting models can
properly predict the trend of infection rates within
municipalities. Initiating local measures or allocating resources
will in practice not occur daily, which allows policymakers to act
on a prediction of the infection trend. Therefore, we also evaluate
the model’s performance relative to the trend of the observed
infection numbers It+7trend ∈ Rn instead of these numbers
themselves. As a trend, we define the moving average of the
observed infection numbers.

3.2 The model

Since we would like to capture COVID-19 spread both over time
and between municipalities, we propose a spatio-temporal GNN
model. Because recurrent neural networks provide a way to extend
deep learning to sequential data, we first apply deep learning layers
of this type to find temporal patterns in the changing node features
of municipalities. Gated recurrent units (GRUs) and long short-term
memories (LSTMs) are the most effective sequence models used in
practical applications, due to their ability to effectively and
accurately retain long-term dependencies in sequential data
[45–47]. Based on the observation that the GRU outperforms the
LSTM for our application, we decided to include this technique in
our model.

After applying the GRU and obtaining the resulting node
embedding htGRU, we employ a GNN to model the spatial disease
transmission patterns caused by the relationship between
municipalities. Essentially, the GNN updates each municipality’s
node embedding by aggregating the information municipalities
receive from their adjacent neighbors. Nowadays, graph attention
networks (GATs) as proposed by Veličković et al. [36] are one of the
most popular and widespread GNN architectures [48]. Additionally,
Brody et al. [33] have proposed the closely related GATv2 recently,
which outperforms GAT on all their benchmarks. Based on these
results and the performance evaluation on our developed dataset, we
decided to use GATv2 to capture the spatial trends in disease
transmission. We modify the GATv2 model with skip-
connections between layers to avoid diluting the self-node
embeddings. Specifically, we concatenate the output of each

GATv2 layer with the learned temporal embedding, before we
apply the ReLU activation function.

Finally, we need tomap the output of the final GATv2 layer htGAT
to the desired output dimension, for which we use a fully connected
(FC) linear output layer.

We visualize our proposed model in Figure 2, and describe each
of its elements in more detail below. Please note that we optimized
the number of layers of the architecture based on performance,
resulting in a model consisting of two GRU modules, two
GATv2 modules, and one fully connected output layer.

3.2.1 Gated recurrent unit (GRU) module
The two layer GRU module uses the node feature matrix

Xt ∈ Rn×d×f as an input. The goal is to retrieve an output
embedding htGRU ∈ Rn×GRU−dim, which captures the temporal
patterns of the dynamic node features over a window of the past
d days for each node. This new representation for the municipalities
corresponds to the hidden state of the last time step t of the second
GRU layer, and is calculated as follows:

ht
GRU � GRU GRU Xt, h0( ), h0( ), (3)

where h0 ∈ Rn×GRU−dim is a matrix filled with zeros,
corresponding to the initial hidden state before the first day of
the time window.

3.2.2 Graph attention network v2 (GATv2) module
In the GATv2 module, the temporal node embedding htGRU is

updated per municipality by the GATv2 mechanism [33] using the
update rule

hi′ � ∑
j∈N i( )

αijWhj, (4)

where hi′ is the updated embedding of node i, and hj is the node
representation of node j of the previous layer, initially being htGRU,j.
We use the graph structure as represented by the weighted adjacency
matrix A ∈ Rn×n by exclusively summing over the nodes j that are
part of the set of neighbors of node i, N (i), in a weighted manner.
We consider node i itself to be part of this neighborhood as well.
Furthermore, W is a learnable weight matrix associated with each
node’s linear transformation and αij is the normalized attention
coefficient. This value quantifies the connective strength between the
node i and its neighbor j using an attention mechanism

FIGURE 2
The proposed architecture is made up of three stages, being the
GRU module in orange, the GATv2 module in yellow, and the output
layer in green. Both the GRU module and the GATv2 module are
repeated once. Therefore, the dashed input arrows Xt and ht

GRU

imply that for the second layer of their corresponding module, they
are replaced by the output embeddings of the module’s first layer.
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αij �
exp a⊤LeakyReLU W hi‖hj[ ]( )( )

∑k∈N i( ) exp a⊤LeakyReLU W hi‖hk[ ]( )( ), (5)

where aT is a transposed vector of learnable parameters, and ‖ is
the concatenation operation.

To stabilize the self-attention learning process and to
improve its expressive power, the GATv2 model uses multi-
head attention [33, 36]. This implies that K independent
attention mechanisms perform the transformation described
above, and subsequently concatenate their outputs to create
the final node representation.

The two layered GATv2 module and its resulting spatio-
temporal embedding htGAT ∈ Rn×GAT−dim can thus be represented as

ht � ReLU GATv2 ht
GRU,A( ) ‖ ht

GRU( )
ht
GAT � ReLU GATv2 ht,A( ) ‖ ht

GRU( ). (6)

3.2.3 Output layer
Finally, we need to map the output of the final hidden layer to

the desired output dimension. Therefore, we feed the hidden state
obtained by the GATv2 module htGAT to a fully connected (FC)
linear output layer

ŷt+7 � FC ht
GAT( ). (7)

As a result, we predict the normalized incidence vector ŷt+7 ∈ Rn

containing predictions for each municipality 7 days ahead.

3.3 Optimization

We propose to optimize the model for 7 day ahead
prediction directly [22], following the pseudocode described
in Algorithm 1. We use the mean squared error (MSE) as our
loss function

L � 1
nT

∑T
t�1

∑n
i�1

yt+7
i − ŷt+7

i( )2, (8)

since it is commonly used in regression tasks and encourages the
model to minimize large errors [49]. Here, n denotes the number
of municipalities and T the number of days on which we train the
model. Furthermore, yt+7

i refers to the reported infection
incidence for municipality i at day t+7 and ŷt+7

i to the
associated predicted infection incidence as obtained by the
model.

• Input: Time series node feature and node label data {X,

y}, adjacency matrix A, learning rate η

• Output: Model parameters Θ Initialize Θ randomly

• for each epoch do

• for each timestep t do

• ht
GRU � GRUmodule(Xt)

• ht
GAT � GATv2module(ht

GRU,A)
• ŷt+7 � Outputlayer(ht

GAT)
• error + � MSE(yt+7 , ŷt+7)
• end for

• L(Θ) � 1
T error

• ΔL(Θ) � BackProp(L(Θ),Θ)
• Θ � Θ − ηΔL(Θ)
• end for

• return Θ

Algorithm 1. : Training the model.

3.4 Prediction

We apply the trained model to predict the number of reported
COVID-19 cases Î

t+7 ∈ Rn in all municipalities on day t+7 using the
equation

Î
t+7 � p*denormalize ŷt+7( ). (9)

Here, p ∈ Rn is the population size per municipality and ŷt+7 ∈ Rn

the predicted incidence, which is converted back to its original scale.

4 Experiments

This section introduces the datasets we used in Section 4.1, refers
to our comparison methods in Section 4.2, describes the evaluation
metrics used in Section 4.3, and explains the hyperparameters and
implementation details in Section 4.4.

4.1 The dataset

We use open data from three sources: the COVID-19 dataset of
the National Institute for Public Health and the Environment
(RIVM) [40], data from Statistics Netherlands (CBS) [39, 41, 44],
and the Oxford COVID-19 Government Response Tracker [42, 43].
We fuse these datasets to obtain the necessary graph edge, node
feature, and node label information.

While the first COVID-19 case in the Netherlands was discovered
on 27 February 2020, our study period is from 1 June 2020, until
10 April 2022. In the Netherlands, testing capacity was limited before
1 June 2022, so the number of positive tests did not reflect the actual
number of SARS-Cov-2 infections. The same applies to all days after
10 April 2022, because from then on, the advice to confirm a positive
self-test at the DutchMunicipal Health Service was canceled, except for
specific target groups such as healthcare workers [50, 51].

To ensure real-world application of our method, we chose to divide
the study period into shorter time intervals of 61 days. By training on
the first 53 and validating on the subsequent 7 days of each interval, we
guarantee that our model can be used for prediction on test day 61.
Because there have been only four widespread COVID-19 variants
(i.e., the wild type, alpha, delta, omicron) [52], it is difficult for themodel
to capture the differences between them. Therefore, we make sure that
in each time period at least 75% of all test samples of SARS-Cov-
2 infected persons that are sequenced by the pathogen surveillance
consist of the same variant [53].

Although users would in real life retrain the model every day
to make a prediction based on the most recent data, we chose to
predict for 14 days in this paper. This allows us to balance the
need for computational efficiency with the ability to examine
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differences in performance over time and between variants. We
present the associated 14 time periods and their characteristics in
Table 3.

In Figure 3, we visualize the split in training, validation, and
test data by means of a plot of the aggregated number of
infections in the Netherlands over period D3, corresponding
to a time when the delta variant was dominant, and the infection
numbers were increasing. Once the model is trained, day t is the
day up until which data is used to make t+7 predictions for the
test day on 18 November 2021. In Appendix A, these plots are
presented for the other periods as well.

4.2 Comparison methods

Our approach involves applying the proposed method on
the newly developed COVID-19 dataset, which is why no
baselines yet exist to compare our model to. Therefore, we
implemented various simple and commonly used baselines [3,

16]. According to these baselines, the prediction for day t+7 is
equal to.

1) PD: the number of reported cases on day t.
2) HA: the historical average of the number of reported cases up to

and including day t.
3) HAwindow: the historical average of the number of reported cases

in observation window d (day t+1-d to day t).
4) EB: the number of reported cases on day t multiplied with

λ (ŷt+7 � λyt), where λ is determined based on the infection
rates of observation window d.

In order to gain a better understanding of the proposed
spatio-temporal GNN’s behavior, we perform an ablation
study. We investigate the influence of the GRU and
GATv2 modules on the performance of the developed model
by removing them one at a time, resulting in the following
architectures.

1) GRU: A temporal model consisting of the GRU module and the
output layer.

2) GATv2: A spatial model consisting of the GATv2 module and the
output layer.

4.3 Evaluation metrics

To quantify the difficulty of making predictions for the
developed dataset, we propose the fluctuation size per
municipality as a metric that measures the fluctuations in the
data. The fluctuation size Fli of municipality i is calculated as follows:

Fli � 1
T − 1

∑T−1
t�1

|~It+1i − ~I
t

i |, (10)

where T is equal to the number of time steps in the
considered time period, and ~I

t+1
i and ~I

t
i are the normalized

observed number of reported infections in the municipality i
at times t+1 and t.

TABLE 3 Time period characteristics.

Variant Prediction period Avg new cases total (train/val/test)

W1 Wild type 11/06/2020–10/08/2020 0.5 (0.4/1.4/2.3)

W2 15/07/2020–13/09/2020 1.5 (1.2/3.0/3.2)

W3 18/08/2020–17/10/2020 7.4 (5.4/20.7/23.5)

W4 20/09/2020–19/11/2020 17.8 (18.1/15.2/16.5)

W5 23/10/2020–22/12/2020 21.3 (19.6/32.7/28.5)

W6 25/11/2020–24/01/2021 21.7 (22.6/15.4/14.2)

A1 Alpha 04/03/2021–03/05/2021 19.7 (19.6/19.2/26.6)

A2 14/04/2021–13/06/2021 14.7 (16.3/4.3/3.0)

D1 Delta 15/07/2021–13/09/2021 10.3 (10.8/6.9/5.0)

D2 17/08/2021–16/10/2021 6.6 (6.2/8.8/10.7)

D3 19/09/2021–18/11/2021 18.7 (13.8/48.7/68.0)

D4 21/10/2021–20/12/2021 44.1 (44.6/41.1/35.0)

O1 Omicron 13/01/2022–14/03/2022 178.5 (177.7/190.9/133.7)

O2 09/02/2022–10/04/2022 124.6 (138.5/34.4/20.6)

FIGURE 3
The aggregated number of reported COVID-19 cases in the
Netherlands over the prediction days of time period D3, with the days
included in the training set in blue, the validation set in yellow, and the
test set in orange. Once the model is trained, we use data up to
and including day t (dashed orange line) to predict infections on the
test day at t+7.
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The objective of this study is to predict the number of SARS-
Cov-2 infections as accurately as possible, which is defined by the
error between the observed infections It+7 ∈ Rn and predicted
infections Î

t+7 ∈ Rn. Lower errors indicate higher prediction
accuracy. We especially aim to minimize relatively large
errors, as these can result in inaccurate control measures and
resource allocation. Therefore, we adopt the root mean squared
error (RMSE) [54] over all municipalities on each test day as an
evaluation metric.

Besides the RMSE, we also introduce a scale independent metric,
the coefficient of determination (R2) [54]. This metric assesses the
correlation between observed and predicted number of infections. A
R2 close to one suggests a perfectly accurate prediction, while a R2

close to or below zero indicates that the model fails to make accurate
predictions. Please note that we also use the RMSE and R2 metrics
when evaluating the performance of the model relative to the trend
of the observed infection numbers It+7trend ∈ Rn.

When evaluating the forecast of the model for an individual
municipality on a specified day, we would like to use an evaluation
metric that is easy to interpret. Therefore, we use the absolute error
between the municipality’s observed number of infections and the
predicted number of infections.

4.4 Hyperparameter setting and
implementation details

In Table 4, we present the hyperparameters that have been used
for the final model. The mentioned hidden dimensions correspond
to the two GRU layers and the two GATv2modules, and the number
of independent attention heads K to the two GATv2 layers. With
early stopping, we store the parameters of the model that achieved
the highest validation accuracy, and then retrieve it to make
predictions about the test samples. The model is implemented
with Porch [55] and Porch Geometric [56]. For all our
experiments, we use a look-back window d of 7 days, and the
aforementioned prediction horizon h of 7 days.

5 Results

In this section, we present the obtained results, where Section 5.1
focuses on the dataset and Section 5.2 on the model.

5.1 The dataset

To evaluate the proposed approach on the developed COVID-19
dataset, we first determine the difficulty of making predictions for
the developed dataset by calculating the fluctuation sizes Fl for our
time periods. Taking time period D3 as an example, we see that
during this period of time the fluctuation size for the Netherlands as
a whole is equal to 0.031, while the average over the individual
municipalities is equal to 0.098, meaning that the fluctuation of
individual municipalities is on average 3.2 times as large as of the
Netherlands. Averaged over all time periods, the mean fluctuation
size of individual municipalities is 2.3 times as large as of the
Netherlands as a whole.

We present a visualization of the normalized actual number of
reported infections and its fluctuations during time period D3 for
the whole of the Netherlands and for two example municipalities,
Oost Gelre and Rotterdam, in Figure 4. Here, the fluctuations in Oost
Gelre are 3.8 times as large, and for Rotterdam 2.5 times as large as in
the Netherlands.

5.2 The model

In Table 5 and Table 6, we report the RMSE and the R2

performance metrics for the prediction of our spatio-temporal
GNN model, its GRU and GATv2 components, and the baselines
for the different time periods of our dataset. Here, the numbers in
bold indicate which of these concepts perform best on the test day of
each time period, and underlined numbers present the
corresponding best baseline. It is notable that both the
performance of our proposed model and the baselines vary
widely across the different time periods. The proposed model’s
minimum coefficient of determination is 0.004 for the first
omicron period O1, which indicates that the model fails to make
accurate predictions during this time period. Meanwhile, the R2 of
0.934 for the last delta time period D4 suggests that the model
explains as much as 93.4% of the variance of our forecasts.

TABLE 4 Hyperparameters.

Parameter Value(s)/choice of algorithm

epochs early stopping

minimum 100 and maximum 500 epochs

50 epochs of patience

optimizer Adam

learning rate 5e-3

batch size 344

hidden dimensions [32, 32, 64, 64]

# of GATv2 heads [2, 2]

FIGURE 4
The normalized actual number of reported COVID-19 cases over
time in theNetherlands for periodD3. The blue line corresponds to the
total number of infections in the Netherlands, the yellow line to the
municipality Oost Gelre, and the orange line to the municipality
Rotterdam.
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In Table 7 and Table 8, we report the average performances over
all 14 time periods (Avg), and over the four COVID-19 variants
being the wild type (WT), alpha α), delta δ), and omicron o). It is not
fair to compare the RMSE over the time periods, because the
interpretation of a given RMSE is highly dependent on the
predicted number of infections. For example, a RMSE of
10 infections while there are 200 infections predicted is not
important for policymaking and resource relocation, as opposed
to a RMSE of 10 infections with a prediction of 20 infections.
Therefore, we only report the RMSE relative to the baselines and its
parts in Table 7. Here, we notice that averaged over all time periods,
the RMSE of our model is −9.8% relative to the best performing
baseline PD, meaning that on average our proposed model achieves
a 9.8% lower RMSE than this baseline. Looking at Table 8, we find
that the average coefficient of determination of the proposed model
0.696, which is 3.2% higher than of the best performing baseline PD.
These results show that on average, our model can conduct more
accurate predictions than the baselines, and that the relationship
between the actual values and our model’s predictions accounts for
69.6% of the variation in the predictions.

By looking at the performance of the model per COVID-19
variant in Table 7 and Table 8, we notice that our proposed model
achieves a lower RMSE and a higher R2 than all the baselines for the
wild type, alpha, and delta variant. Looking at the coefficient of
determination, we see that relative to the PD baseline, this value
increases with 8.7% for the wild type, 8.2% for the alpha variant, and
6.1% for the delta variant. For these variants, we note that the
average coefficient of determination is 0.795. Meanwhile, we notice

that the performance of the proposed model is worse than all
baselines for the omicron variant.

5.2.1 The GRU and GATv2 modules
Table 5 and Table 6 also contain the RMSE and R2 evaluation

metrics for the exclusively temporal GRU model and the solely
spatial GATv2 model. As with our proposed model and the
baselines, there is a large variation between the time periods.
While the R2 of the GRU and the GATv2 are both below zero for
the second omicron period O2, the GRU achieves a R2 of 0.917 for
period A1 and the GATv2 a R2 of 0.910 for period D4.

Table 7 and Table 8 show that on average the RMSE of our
spatio-temporal model is 12.9% lower, and the coefficient of
determination 8.6% higher than of the temporal GRU model.
Similarly, the model’s RMSE is 15.4% lower than the
GATv2 model, and the corresponding R2 score is 8.2% higher.
For our application, the performance of the proposed spatio-

TABLE 5 The root mean squared errors (RMSE) of the developedmodel, theGRU andGATv2 components, and the baselines for all 14 time periods. Numbers in bold
indicate the lowest RMSE per time period, underlined numbers present the corresponding best performing baseline.

RMSE (↓) W1 W2 W3 W4 W5 W6 A1 A2 D1 D2 D3 D4 O1 O2

PD 8.04 4.97 13.59 15.57 21.52 10.02 22.39 4.49 4.34 8.16 39.08 17.88 139.81 28.4

HA 10.34 8.08 35.95 18.31 18.41 13.97 20.06 23.29 18.84 8.36 79.28 15.16 93.44 203.69

HAwindow 8.36 5.98 18.11 12.39 13.08 7.10 13.75 7.82 6.53 8.34 52.20 26.23 96.70 71.49

EB 8.32 5.27 14.44 15.97 23.16 9.74 23.75 4.07 4.31 9.12 39.73 17.47 159.33 24.51

GRU 10.55 8.25 18.79 19.54 17.94 6.93 12.64 3.10 4.87 8.40 32.11 20.65 175.90 55.25

GATv2 9.68 8.20 35.23 10.19 15.23 9.88 20.44 5.28 4.07 7.84 36.02 15.5 133.2 59.97

Model 7.03 5.76 13.02 11.19 16.12 7.92 17.10 4.29 4.60 6.91 26.56 13.22 177.10 30.31

The bold values indicate the best performing models for the specified dataset(s), and the underlined values the best performing baseline.

TABLE 6 The coefficients of determination of the developed model, the GRU and GATv2 components, and the baselines for all 14 time periods. Numbers in bold
indicate the highest R2 per time period, underlined numbers present the corresponding best performing baseline.

R2(↑) W1 W2 W3 W4 W5 W6 A1 A2 D1 D2 D3 D4 O1 O2

PD 0.560 0.860 0.926 0.566 0.664 0.723 0.739 0.386 0.849 0.702 0.769 0.880 0.379 0.23

HA 0.274 0.630 0.482 0.400 0.754 0.461 0.790 <0 <0 0.688 0.048 0.914 0.723 <0
HAwindow 0.525 0.797 0.869 0.725 0.876 0.861 0.901 <0 0.659 0.690 0.587 0.741 0.703 <0
EB 0.529 0.842 0.916 0.544 0.611 0.738 0.706 0.497 0.852 0.628 0.761 0.885 0.194 0.427

GRU 0.243 0.614 0.859 0.317 0.766 0.867 0.917 0.708 0.810 0.685 0.844 0.840 0.018 <0
GATv2 0.362 0.618 0.503 0.814 0.832 0.730 0.782 0.151 0.867 0.725 0.803 0.910 0.437 <0

Model 0.664 0.812 0.932 0.776 0.811 0.827 0.848 0.441 0.831 0.787 0.893 0.934 0.004 0.123

The bold values indicate the best performing models for the specified dataset(s), and the underlined values the best performing baseline.

TABLE 7 The average relative RMSE prediction performance of our model with
respect to its parts and the baselines for each COVID-19 variant and in total.

RMSE (↓) WT α δ o Avg

PD −12.5% −14.0% −16.9% 16.7% −9.8%

HA −36.5% −48.2% −43.1% 2.2% −34.5%

HAwindow −3.8% −10.4% −36.4% 12.8% −11.7%

EB −15.8% −11.3% −18.7% 17.4% −11.3%

GRU −22.1% 36.8% −19.1% −22.2% −12.9%

GATv2 −20.7% −17.5% −10.0% −8.3% −15.4%
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temporal GNN is thus higher than of the temporal GRU model or
the spatial GATv2.

5.2.2 Individual municipalities
To further evaluate the performance of our model on the

developed COVID-19 dataset, we also look at our forecasts for
individual municipalities. Hence, we visualize the correlation
between the observed and the predicted number of reported
SARS-Cov-2 infections of period D3 in Figure 5, which we
present for the other time periods in Appendix B. The blue dots
indicate the 18 November 2021, forecasts for all 344 municipalities.

It is apparent from the plot that there is a high number of
municipalities with low infection rates. Accordingly, there are more
small municipalities than large ones in the Netherlands. The dots of
most of the municipalities are quite close to the 45° yellow line
through the origin, which corresponds to the high coefficient of
determination of 0.893 that we presented for period D3 in Table 6.
In general, the model thus appears to be both accurate and precise.
However, for the municipalities with less than 400 infections, the
mean of the dots is in an increasing manner slightly below the
perfect prediction line, indicating that the accuracy is not perfect and
that the model increasingly underestimates the number of
infections. There are only four municipalities with more than
400 observed infections, being the four biggest municipalities of
the Netherlands; Amsterdam, Rotterdam, ‘s-Gravenhage, and
Utrecht. In contrast to the smaller municipalities, their
predictions are on average above the actual infections.

As an illustration of the variation between municipalities,
Table 9 and Table 10 present the absolute difference between the
predicted and the actual number of infections for individual
municipalities on 18 November 2021. Here, Table 9 shows the
three municipalities with the smallest error, being Oost Gelre,
Meierijstad, and Opsterland, and Table 10 the three worst
performing municipalities, being Rotterdam, Maastricht, and
Heerlen. As we have seen before with the variation between the
time periods, it appears here that the variation on the same day
between municipalities is also large, with a minimum error of
approximately zero infections in Oost Gelre, Meierijstad, and
Opsterland, and a maximum error of 202 infections in
Rotterdam. Relatively speaking, the differences are also large.
Indeed, the error relative to the number of infections is below

1% for Oost Gelre, Meierijstad and Opsterland, while it is 36.6%
for Rotterdam, 45.2% for Maastricht and 48.5% for Heerlen.

We present plots corresponding to the predictions of these
municipalities in Figure 6. Please note that, next to our proposed
model and the actual values, we chose to visualize only the best
performing baseline in each prediction for clarity. It is noticeable
here that the data contains a lot of noise due to the rapid
fluctuations. Therefore, it seems that while our model often
captures the right trend, it is unable to interpret these rapid changes.

5.2.3 The trend
As explained in before, we would also like to analyze the

performance of our proposed model for infection trend
prediction. We present an example of the actual infection curve
and the trend for Rotterdam on 18 November 2021, in Figure 7.

If we evaluate our model against the trend rather than actual
infection values, the performance improves significantly. Where the
average coefficient of determination for actual infection prediction is

TABLE 8 The average coefficient of determination of our model, its parts, and
the baselines for each COVID-19 variant and in total. Numbers in bold indicate
the highest R2 per variant, underlined numbers present the corresponding
best performing baseline.

R2 (↑) WT α δ o Avg

PD 0.717 0.563 0.800 0.305 0.660

HA 0.500 0.395 0.413 0.362 0.440

HAwindow 0.776 0.451 0.669 0.352 0.638

EB 0.697 0.602 0.782 0.311 0.606

GRU 0.611 0.813 0.795 0.009 0.606

GATv2 0.643 0.467 0.826 0.219 0.610

Model 0.804 0.645 0.861 0.064 0.692

The bold values indicate the best performing models for the specified dataset(s), and the

underlined values the best performing baseline.

FIGURE 5
The correlation between the forecasted and the observed
number of reportedCOVID-19 cases in periodD3. Here, each blue dot
corresponds to the forecast for one municipality 18 November 2021.
When a dot lies on the yellow diagonal line, it means that the
prediction is perfect.

TABLE 9 The absolute error for the proposed model and its baselines for the
best performing municipalities for prediction on 18/11/2021 (period D3).

Oost gelre Meierijstad Opsterland

# infections 39 96 42

PD 8.0 27.0 14.0

HA 28.2 69.6 30.7

HAwindow 14.0 29.6 13.0

EB 15.8 28.3 26.6

Our model 0.2 0.2 0.2
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0.692, it increases to 0.851 for prediction of the trend, indicating a
15.9% gain. For each variant specifically, the coefficients of
determination for trend prediction are 0.898 for the wild type,
0.831 for alpha, 0.934 for delta, and 0.562 for omicron. We give
an overview of the improvements of the trend predictions compared
to the actual value predictions of our model in Table 11. It is evident
that, across all variants and on average, our model exhibits superior
performance in predicting the trend of infection rates compared to
the highly variable actual rates.

5.2.4 The forecasting horizon
We would like to understand if our varying performance is

caused by the prediction horizon h of 7 days, or whether the cause is
in our dataset or model itself. Therefore, we also made t+1 forecasts
for the exact same days as with the t+7 forecasts. For these t+1
forecasts, the coefficients of determination are 0.845 on average,

0.863 for the wild type, 0.750 for alpha, 0.882 for delta, and 0.845 for
omicron. We present the relative performances of our 7-day
multistep prediction with respect to the performance of the
model when predicting only 1 day ahead in Table 12.
Comprehensive results of the 1-day ahead forecast can be found
in Appendix C.

As presented earlier in literature [12, 16, 22], we share the
observation that for both the individual COVID-19 variants and the
average, the performance of the model decreases as the prediction
horizon increases. On average, the RMSE increases with 34.3%, and the
coefficient of determination decreases with 15.3%. By looking at the
individual variants, we particularly notice that the results of our model
for the omicron variant deteriorate relatively much, with a RMSE
increase of 125.7% and a coefficient of determination decrease of 78.1%.

6 Discussion

The variation in results as demonstrated in Section 5.2, can be
explained by the observation that the daily numbers of reported
SARS-Cov-2 infections per municipality have a high fluctuation size.
We also note that there are significant differences in the data
between the chosen time periods and between municipalities,
such as the order of magnitude of the infection rates and the
dynamic node features (e.g., the virus load in sewage water), and
the shape of the infection curve. Between time periods, the variants
circulating vary as well. Additionally, there are variations between
municipalities in population size, population density, and the

TABLE 10 The absolute error for the proposed model and its baselines for the
worst performing municipalities for prediction on 18/11/2021 (period D3).

Rotterdam Maastricht Heerlen

# infections 553 288 239

PD 36.0 198.0 144.0

HA 351.1 245.6 195.0

HAwindow 148.6 184.4 141.7

EB 84.4 200.0 144.1

Our model 202.2 130.0 115.9

FIGURE 6
The actual and predicted reported number of infections for individual municipalities on 11/18/2021 (period D3). Based on the absolute difference
between the prediction and the actual value, the upper row corresponds to the best performing municipalities (Oost Gelre,Meierijstad,Opsterland) and
the bottom row to the worst performing municipalities (Rotterdam, Maastricht, and Heerlen). The blue line indicates the actual number of infections
reported, the red line the model’s predictions, and either the yellow or the orange line the predictions of the baselines. Note that for clarity of
illustration, the plots only visualize the best performing baseline in each prediction. In the plots, the dashed lines represent predictions in the validation set,
and the dots represent the prediction on test day 18/11/2021.
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number of neighbors. These aspects of the dataset make it
challenging to capture the resulting complex relationships, and to
obtain accurate predictions for all time period and municipality
combinations.

Despite these challenges, the average performance of our model
in predicting the spread of SARS-CoV-2 at the municipal level in the
Netherlands is strong. We observed that the performance of the
proposed spatio-temporal GNN outperforms its temporal and
spatial components, proving the effectiveness of modelling the
spreading of epidemic diseases as a spatio-temporal problem.
Nevertheless, we hypothesize that if related data would be
available, the performance of the spatial GATv2 module could be
enhanced through the use of a more representative strategy for
selecting edge locations and weights.

As discussed in Section 5.2, both our model and the baselines
struggle to make accurate predictions for the omicron variant.
This suggests that omicron is a particularly challenging variant to
predict. This may be due to the fact that omicron is more
contagious and produces milder symptoms compared to
earlier variants, leading to more rapid changes in the number
of cases [57]. Another potential explanation could be the
occurrence of natural immunity in individuals due to the high
number of infections during the omicron period [40], leading to a
decrease in transmission during this period as a result of the
increased protection.

In order to improve the overall prediction performance (including
that of the omicron variant), a model capable of capturing more
complex relationships would be required. To obtain such models,
we either increased the number of GRU layers, the number of
GATv2 layers, or the hidden dimension sizes. Evaluation of these
models demonstrated that utilizing these adapted models with the
limited available data a decrease in performance. To effectively utilize a
more complex model, an increased amount of data, such as synthetic
data or data from other countries, would be necessary.

In future work, it may also be worth considering a larger regional
scale, such as the 25 security regions of the Netherlands instead of
the 344 municipalities. This approach could potentially decrease the
fluctuation size and complexity of relationships, making it easier for
the model to capture the relationship of infection numbers over time
and between regions, while still allowing for the implementation of
regional measures or resource distribution.

7 Conclusion

In this paper, we introduced a novel model architecture for
forecasting reported SARS-Cov-2 infections 1 week ahead using a
spatio-temporal GNN. We applied our model to a newly introduced
COVID-19 dataset containing municipality-level information for
the Netherlands, including COVID-19 statistics, demographic
features, and municipality interaction data.

Our model demonstrates strong performance in predicting the
spread of SARS-Cov-2 at the Dutch municipal level for the wild type,
alpha, and delta variants. The model outperforms the baselines and the
exclusively spatial and temporal models. Additionally, with an average
coefficient of determination of 0.795 and the ability to capture the trend
of the disease with a R2 score of 0.899, we conclude that the model is
well-suited for predicting the spread of these variants in real-world
applications, allowing policymakers to anticipate and take necessary
action in response to the pandemic. However, for the omicron variant
the performance is significantly worse with an average coefficient of
determination of 0.064 for infection prediction and 0.562 for trend
prediction. Therefore, we recommend using more data for more
complex disease dynamics, such as those exhibited by the omicron
variant. The model could, for example, be pre-trained on data from
other countries than the Netherlands or synthetically generated data.
Another option is to decrease the complexity of the problem by
expanding the regional forecasting scale. For instance, by predicting
for safety regions instead of municipalities in the Netherlands. In real-
world applications, we recommend using our proposed model in
combination with a mechanistic model in an ensemble approach to
enhance long-term predictions and to improve prediction accuracy and
robustness. Future work will investigate this possibility and on
combining forecasting models with reactive intervention strategies
based on control theory [58–61].
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FIGURE 7
The normalized actual number of reported COVID-19 cases
(orange) and its trend (blue) over time in Rotterdam for period D3.

TABLE 11 The performance of the proposed model for trend predictions
compared to actual value predictions.

WT α δ o Avg

RMSE (↓) −31.4% −40.8% −26.3% −20.7% −29.8%

R2(↑) 9.4% 18.6% 7.3% 49.8% 15.9%

TABLE 12 The relative prediction performance for T+7 with respect to T+1.

WT α δ o Avg

RMSE (↓) 27.0% 14.9% 9.3% 125.7% 34.3%

R2(↑) −5.9% −10.5% −2.1% −78.1% −15.3%
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Appendix A: Datasets

In Supplementary Figures S1, S2, we visualize the aggregated
number of infections in the Netherlands over time for the 14 time
periods we evaluated. As explained in Section 6, we note that there are
significant differences between the chosen time periods in the order of
magnitude of the infection rates and in the shape of the infection curve.

Appendix B: Correlation plots

In Supplementary Figures S3, S4, we visualize the
correlation between the observed and the predicted number

of reported SARS-Cov-2 infections for the 14 time periods we
evaluated. The blue dots indicate the test day forecasts for all
344 municipalities, and the yellow line indicates that the
prediction is perfect.

Appendix C: One day ahead prediction

In Supplementary Tables S1, S2, S3, S4 we summarize the
performance of our model, its components, and the baselines for
1 day ahead prediction.
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