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Grid multi-scroll/wing chaotic systems are complex non-linear dynamic systems,
which are widely used in secure communication. The grid multi-scroll/wing
chaotic systems are usually realized by using the function control method,
which has a complex realization method, many control parameters, and a
simple unit attractor structure. In this paper, based on the Hopfield neural
network, a memristive Hopfield neural network model is proposed by using
the memristor synapse control method. The model can generate novel grid
multi-structure chaotic attractors, which have the characteristics of a simple
implementation method, few control parameters, and complex unit
attractor structure. Firstly, the generation mechanism of the grid multi-
structure chaotic attractors is analyzed by the equilibrium points and
stability. Secondly, its basic dynamical characteristics including the
Lyapunov exponent spectrum, fractal dimension, time series, power
spectrum, bifurcation diagram, and Poincaré section are analyzed. Thirdly,
an analog circuit of the neural network model is designed and realized by
Multisim. Finally, combined with the chaos encryption principle, an image
encryption scheme is designed based on the generated grid multi-structure
attractors. Experimental results show that compared with the existing
schemes, the proposed scheme has larger information entropy, higher key
sensitivity, and a good application prospect.
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1 Introduction

Chaos theory is an important discovery of human natural science in the 20th century and
has been widely concerned in the fields of non-linear circuits, neural networks, information
security, and so on [1–3]. Chaotic attractors are the core of chaos theory, which corresponds
to themotion of a disordered steady state in a chaotic system. Since Lorenz [4] discovered the
first double-wing attractor in 1962, the construction of complex attractors in chaotic systems
has been an important topic in the field of chaos research. After years of exploration, many
chaotic systems with different types of attractors have been discovered [5–8], but a complete
theoretical model has not yet been developed. The study of chaotic attractors is a very
important and key link in the study of chaos theory. From the whole research process, the
study of chaotic attractors has just started, and more chaotic attractors are still to be explored
and discovered. Furthermore, the wide application of chaotic signals generated by chaotic
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attractors in the field of information security is another reason that
attracts many researchers.

At present, there are three types of chaotic attractors found at
home and abroad: 1) Self-excited attractors and hidden attractors.
The chaotic attractors discovered earlier are closely related to the
unstable equilibrium point of the system and are called self-excited
attractors, such as the classical Lorenz attractors [4], Chua’s
attractors [9], Chen attractors [10], Lv attractors [11] and so on
[12–16]. With the deepening of research on self-excited attractors,
some scholars have found that there is an attractor basin of chaos
that does not intersect with any open small neighborhood of the
equilibrium point of the system, which is called a hidden attractor
[17]. In recent years, various hidden attractors have been proposed,
such as the hidden attractor of no equilibrium point [18], the hidden
attractor of a stable equilibrium point [19], and the hidden attractor
of infinite equilibrium points [20]. 2) transient chaotic attractors,
chaotic attractors, and hyperchaotic attractors. Chaotic systems can
be characterized by the Lyapunov exponent, and chaotic attractors
can be divided into different types according to the maximum
Lyapunov exponent spectrum. In general, a transient chaotic
attractor is defined as the existence of a positive Lyapunov
exponent in finite time [21]. The attractor has a positive
Lyapunov exponent in infinite time and is called a chaotic
attractor. Hyperchaotic attractors are defined as the simultaneous
existence of two or more positive Lyapunov exponents in infinite
time [22]. In the past few decades, the research on transient chaotic
attractors, chaotic attractors, and hyperchaotic attractors has been
fruitful [23–25]. 3) Double scroll/wing attractor, multi-scroll/wing
attractor, and grid multi-scroll/wing attractor. Double scroll/wing
attractors are classical chaotic attractors with special scroll and
dynamic trajectories of butterfly wings. Many simple chaotic
systems can produce double scroll/wing attractors, such as
Chua’s system, Lorenz system, Sprott system [26], Jerk circuit
[27], and so on [28, 29]. With the deepening of research on
double scroll/wing attractors, various functions such as periodic
function [30], piecewise linear function [31], and multistage logic
pulse function [32] have been used to expand double scroll/wing
attractors in multiple directions to generate multi-scroll/wing
attractors [33–35] and grid multi-scroll/wing attractors [36–38].
Among them, the grid multi-scroll/wing attractor has flexible
adjustability and high complexity and has a very broad
application prospect in secure communication and chaos control
[39, 40], so it has become a research hotspot in academia.

The artificial neural network is a kind of non-linear system with
complex dynamic characteristics [41, 42]. In recent years, the study
of neural network dynamics has gradually become a new research
hotspot in the intersection of physics, mathematics, computer
science, and neuroscience [43–45]. Among them, Hopfield neural
network is a complex non-linear system with chaotic behaviors [46].
Due to its chaotic characteristic, various Hopfield neural network
models with different neurons and synaptic weights have been
proposed and analyzed [47–50]. In particular, memristive
Hopfield neural networks have attracted much attention because
of their complex chaotic behavior and potential applications in
image encryption. For example, Lin et al. [51] constructed a
memristive Hopfield neural network with an arbitrary number of
scroll attractors. Yu et al. [52, 53] designed two different memristive
Hopfield neural networks which can generate multi-double-scroll

attractors. Furthermore, Lai et al. [54] proposed a memristive
Hopfield neural network with grid multi-scroll attractors.
Meanwhile, the memristive neural network is used to design an
image encryption scheme. Although the grid multi-scroll/wing
attractor has excellent characteristics, the existing grid multi-
scroll/wing attractor implementation methods are complex, the
unit structure is simple, and the control parameters are many,
and the exploration in recent years seems to indicate that the
research of grid multi-scroll/wing attractor is difficult to make
updated progress.

To solve these problems, this paper proposes a new method
for the generation of novel grid multi-structure chaotic attractors
controlled by memristor synapses based on the Hopfield neural
network. This method is based on the neural network with
complex dynamic characteristics, which successfully gets rid of
the scroll/wing attractor unit structure, and makes it appear a
more complex and changeable chaotic attractor unit structure. In
addition, only two memristor synaptic control parameters are
needed to adjust the grid size of the chaotic attractor. The basic
dynamic characteristics of the new grid multi-structure attractor
are studied by theoretical analysis and numerical simulation. At
the same time, the existence of the attractor is verified from the
aspect of the circuit. Finally, a scheme of grid multi-structure
attractor image encryption is designed based on chaotic
encryption theory. The experimental results show that the
chaotic attractor exhibits complex dynamic characteristics, so
it has better encryption performance and effect in image
encryption.

The rest of this paper is organized as follows. Section 2
constructs a memristive Hopfield neural network. Section 3
analyzes the dynamical behaviors of the neural network. Section
4 designs and implements an analog neural network circuit. Section
5 designs a medical image encryption scheme. Section 6 concludes
the article.

2 Construction of grid multi-structure
attractors

2.1 Introduction of memristor and Hopfield
neural network

A memristor is a non-linear circuit element with synaptic
memory properties [55], often described in terms of voltage and
current relationships. In this paper, a multi-piecewise non-linear
flux-controlled memristor model is introduced [51], which can be
expressed as

i � a + bφ( )v
_φ � cv − dh φ( ){ (1)

where a, b, c, and d represent the four positive parameters of the
memristor, and W(φ) = (a + bφ) represents the memristor
conductance associated with the memristor state variable φ. In
addition, h(φ) is the internal state variable function of the
memristor, which can be expressed as

h φ( ) � h1 φ( )
h2 φ( ){ (2)
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where

h1 φ( ) � φ, N � 0

φ −∑N
i�1

sgn φ + 2i − 1( )( ) + sgn φ − 2i − 1( )( )( )
N � 1, 2, 3, . . .

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

h2 φ( ) � φ − sgn φ( ),M � 0

φ − sgn φ( ) −∑M
j�1

sgn φ + 2j( ) + sgn φ − 2j( )( )
M � 1, 2, 3, . . .

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (4)

the sgn(.) is a symbolic function, N and whereM are the two control
parameters of the memristor. To verify that the above mathematical
model is a memristor model, consider the case when N = 3. With
fixedmemristor parameters a = 1, b = 0.05, c = 2.2, d = 1.2, φ0 = 0, the
pinched hysteresis loop of the memristor is simulated by MATLAB
R2017a when sinusoidal voltage v = Asin(2πFt) is applied at both
ends of the memristor. The simulation results are shown in Figure 1.
Under different excitation amplitude A, the pinched hysteresis loop
of the model always passes through the origin of the voltage and
current plane. With the increase of voltage frequency F, the area of
the pinched hysteresis loop of the memristor decreases gradually.
When the voltage frequency increases to infinity, the pinched
hysteresis loop shrinks to a one-valued function. In summary,
the proposed mathematical model satisfies the three
characteristics of the memristor and is a memristor model.

The Hopfield neural network can produce complex chaotic
phenomena and is a classical model for studying chaotic
dynamics. A Hopfield neural network with n neurons can be
expressed as [46]

Ci _vi � − vi
Ri

+∑n
j�1
wijtanh vj( ) + Ii i, j ∈ N*( ) (5)

where, Ci, vi, and Ri respectively represent the membrane
capacitance, membrane voltage and membrane resistance of
neuron i. wij represents the synaptic connection weight from
neuron j to neuron i, and tanh(.) is the neuronal activation
function. In addition, Ii represents the external bias current of
the neuron. Generally speaking, the dynamic behavior of the
Hopfield neural network is closely related to its synaptic weight
coefficient. According to neural network model (Eq. 5), a Hopfield
neural network model with four neurons is constructed by selecting

appropriate synaptic weight coefficients, let Ci = 1, Ri = 1, Ii = 0, and
its expression is as follows

_x1 � −x1 + 3tanh x2( ) + 3tanh x3( ) − 13tanh x4( )
_x2 � −x2 − tanh x1( ) + 1.5tanh x2( ) + 7tanh x3( ) − 5tanh x4( )
_x3 � −x3 − 4tanh x2( ) + 1.8tanh x3( ) + 4tanh x4( )
_x4 � −x4 + 0.7tanh x1( ) + 2tanh x4( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(6)

where xi (i = 1, 2, 3, 4) is the membrane voltage of neuron i.

2.2 Construction of single-directional multi-
structure attractors

Memristors have synaptic memory and programmability and
can be used to simulate neural synapses [55]. When replacing the
resistive synapses between neuron 3 and neuron 1 in the neural
network (6) with the multi-piecewise non-linear memristor (1)
described above, a memristive Hopfield neural network can be
constructed as follows

_x1 � −x1 + 3tanh x2( ) + ρW φ( )tanh x3( ) − 13tanh x4( )
_x2 � −x2 − tanh x1( ) + 1.5tanh x2( ) + 7tanh x3( ) − 5tanh x4( )
_x3 � −x3 − 4tanh x2( ) + 1.8tanh x3( ) + 4tanh x4( )
_x4 � −x4 + 0.7tanh x1( ) + 2tanh x4( )
_φ � ctanh x3( ) − dh φ( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(7)

where, ρ represents the memristor synaptic coupling strength,
ρW(φ) = ρ(a + bφ) represents the memristor synaptic coupling
weight.

When a = 1, b = 0.01, c = 2.2, d = 1.2, ρ = 3, the initial value (0.1,
0.1, 0.1, 0.1, 0.1), the system in theρ-axis can produce n structure
attractor. Taking N = 3 and M = 3 respectively, the numerical

FIGURE 1
Pinched hysteresis loop characteristics of the memristor. (A) F =
0.1. (B) A = 4.

FIGURE 2
Multi-structure chaotic attractor of system (7). (A) 7-structure
attractor on the φ-x1 plane. (B) 7-structure attractor on the φ-x2 plane.
(C) 8-structure attractor on the φ-x3 plane. (D) 8-structure attractor
on the φ-x4 plane.
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simulation results of 7-structure chaotic attractor and 8-structure
chaotic attractor are obtained according to the system (7), as shown
in Figure 2. From the attractor substructure in Figure 2, it is not
difficult to find that, unlike the multi-scroll/wing chaotic attractor,
the multi-structure chaotic attractor contains the unit structure
attractor with multiple trajectory-disorder, rather than the
conventional scroll/wing.

2.3 Construction of grid multi-structure
attractors

Further studies show that the chaotic attractor can be
reconstructed and expanded in different directions by using other
synapses in the same type of multi-segment non-linear memristor
synaptic replacement system (7), and the grid multi-structure
chaotic attractor can be constructed. The system model is as follows

_x1 � −x1 + 3tanh x2( ) + ρ1W φ1( )tanh x3( ) − 13tanh x4( )
_x2 � −x2 − tanh x1( ) + 1.5tanh x2( ) + 7tanh x3( ) − ρ2W φ2( )tanh x4( )
_x3 � −x3 − 4tanh x2( ) + 1.8tanh x3( ) + 4tanh x4( )
_x4 � −x4 + 0.7tanh x1( ) + 2tanh x4( )
_φ1 � ctanh x3( ) − dh φ1( )
_φ2 � ctanh x4( ) − dh φ2( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(8)

where ρi represents the memristor synaptic coupling strength,
ρiW(φi) = ρi(a + bφi) represents the memristor synaptic coupling
weight.

Select a = 1, b = 0.01, c = 2.2, d = 1.2, ρ1 = 3, ρ2 = 5, and the initial
value is (0.1, 0.1, 0.1, 0.1, 0.1). By taking different memristor control
parameters Ni and Mi, the n × m grid multi-structure chaotic
attractor can be obtained from system (8), as shown in Figure 3.

Obviously, by controlling the two control parameters of the two
memristor synapses, a grid multi-structure chaotic attractor of
arbitrary size can be obtained, as shown in Table 1. Therefore,
compared with the existing multi-parameter function control
methods of grid multi-scroll/wing chaotic attractors [30–32], the
proposed control method of grid multi-structure chaotic
attractors is greatly simplified. In addition, by comparing the
structure of system (7) and system (8), we can see that: Only one
memristor synapse is introduced in system (7), so that the
attractor expands horizontally in the direction of introducing
the magnetic flux variable φ, while system (8) introduces two
memristor synapses at the same time, so that the attractor
expands simultaneously in both directions of the magnetic
flux variable φ1 and the magnetic flux variable φ2, thus
forming a more complex grid multi-structure chaotic attractor.
This is a phenomenon that has not been seen in many chaotic
structures before.

3 Basic dynamics analysis

In this section, the dynamic generation mechanism and chaotic
characteristics of system (8) are analyzed by dynamic analysis
method and numerical simulation.

3.1 Equilibrium points and their stabilities

The equilibrium point is a necessary condition for the
generation of self-excited chaos, which can reveal the formation
mechanism of chaos attractor from the system level. If the right-
hand side of Eq. 8 is equal to 0, the equilibrium state equation of the
system can be obtained as follows

−x1 + 3tanh x2( ) + ρ1W φ1( )tanh x3( ) − 13tanh x4( ) � 0
−x2 − tanh x1( ) + 1.5tanh x2( ) + 7tanh x3( ) − ρ2W φ2( )tanh x4( ) � 0
−x3 − 4tanh x2( ) + 1.8tanh x3( ) + 4tanh x4( ) � 0
−x4 + 0.7tanh x1( ) + 2tanh x4( ) � 0
ctanh x3( ) − dh φ1( ) � 0
ctanh x4( ) − dh φ2( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(9)

Equation 9 is a sixth-order equation, using the MATLAB
platform to solve the equilibrium point by graphical analysis
method. To have resistance control parameters N1 = N2 = 1 as
an example, set a = 1, b = 0.01, c = 2.2, d = 1.2, ρ1 = 3, ρ2 = 5, Eq. 9 can
be converted to

FIGURE 3
Grid multi-structure chaotic attractor of system (8). (A) 3 × 3-
structure attractor (N1 = 1,N2 = 1). (B) 3 × 4-structure attractor (N1 = 1,
M2 = 1). (C) 4 × 5-structure attractor (M1 = 1,N2 = 2). (D) 5 × 5-structure
attractor (N1 = 2, N2 = 2).

TABLE 1 Relation between memristor synaptic control parameters and grid
attractors.

N1/M1 φ1 (n) N2/M2 φ2 (m)

0 1/2 0 1/2

1 3/4 1 3/4

2 5/6 2 5/6

. . . . . . . . . . . .

N/M (2N + 1)/(2M + 2) N/M (2N + 1)/(2M + 2)
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x3 � atanh dh φ1( )/c( )
x4 � atanh dh φ2( )/c( )
x1 � atanh x4 − 2tanh x4( )( )/0.7( )
x2 � atanh −x3 + 1.8tanh x3( ) + 4tanh x4( )( )/4( )
f1 φ1 ,φ2( ) � −x1 + 3tanh x2( ) + ρ1W φ1( )tanh x3( ) − 13tanh x4( ) � 0
f2 φ1 ,φ2( ) � −x2 − tanh x1( ) + 1.5tanh x2( ) + 7tanh x3( ) − ρ2W φ2( )tanh x4( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(10)

The functions f1 and f2 are drawn inMATLAB R2017a, as shown
in Figure 4, where f1 is represented by a green curve and f2 by a red
curve. It can be observed from the figure that f1 and f2 have
25 intersection points in different positions, that is, the system
(8) has 25 equilibrium points at this time. Near the equilibrium
point, the Jacobian matrix of the system can be expressed as

J �

−1 3m2 ρ1W φ1( )m3 −13m4 ρ1btanh x3( ) 0
−m1 −1 + 1.5m2 7m3 −ρ2W φ2( )m4 0 −ρ2btanh x4( )
0 −4m2 −1 + 1.8m3 4m4 0 0

0.7m1 0 0 −1 + 2m4 0 0
0 0 cm3 0 −dh′ φ1( ) 0
0 0 0 cm4 0 −dh′ φ2( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where mi = sech2(xi), i = 1, 2, 3, 4. Through numerical calculation,
these 25 equilibrium points have three different stability, namely,
unstable saddle coke of indicator 4 (yellow), unstable saddle coke of
indicator 5 (blue), and unstable saddle coke of indicator 6 (black), as
shown in Table 2. Obviously, system (8) generates 9 single structure
attractors in the neighborhood of 9 unstable saddle focal points with
index-4, 10 unstable saddle focal points with index-5 produce bond
bands in the direction of φ1 and φ2, and 4 unstable saddle focal
points with index-6 play a role in strengthening the connection in
the diagonal direction. Finally, under the action of 25 unstable

equilibrium points, a 3 × 3 grid multi-structure chaotic attractor
phenomenon is generated, as shown in Figure 4. A large number of
simulation results show that with the increase of the control
parameters N1/M1 and N2/M2 of the two memristic synapses, the
equilibrium point of the system will gradually expand along the φ1
and φ2 axes, resulting in a larger number of grid multi-structure
chaotic attractors on the φ1-φ2 phase plane.

3.2 Lyapunov exponents and Kaplan-Yorke
dimension

Lyapunov exponent spectrum analysis is an important method
to study the dynamical characteristics of chaotic systems. It reveals
the chaotic characteristics of the system from the perspective of the
average exponential rate of convergence or divergence between
adjacent orbits in the phase space of the system. Under the
condition of multi-structure attractor generation in a 3 × 3 grid,
six Lyapunov indices of the system were obtained by using the
Wolf’s Jacobian-based method, as shown in Figure 5. Where L1 =
0.2146, L2 = 0.0015, L3 = −0.2608, L4 = −0.5047, L5 = −1.201,
L6 = −1.202. Obviously, it is not difficult to find that system (8) has a
positive Lyapunov exponent; a Lyapunov exponent is approaching 0;
The sum of all Lyapunov exponents is negative. Therefore, under
these conditions, the system is chaotic. The Kaplan-Yorke
dimension corresponding to its Lyapunov index is

DKY � j + 1

Lj+1
∣∣∣∣ ∣∣∣∣∑ji�1Li � 2 + L1 + L2

L3| | � 2.8286 (12)

Obviously, the Kaplan-Yorke dimension of the system is
fractional, which further proves that the grid multi-structure
attractors generated by the system are chaotic.

FIGURE 4
Function f1 and f2 curves, equilibrium point, and superposition
diagram of 3 × 3 structure attractor.

TABLE 2 Representative equilibrium points of system (8), corresponding to eigenvalues and types of equilibrium points.

Equilibrium points Eigenvalues Stabilities

E1 (0,0,0,0,0,0) (−1.2,−1.2, 0.3181 ± 5.9165i, 0.3319 ± 1.9652i) unstable saddle focus with index 4

E2 (0,0,0,0,-1,0) (1.2e + 6,−1.2, 0.3213 ± 5.9156i, 0.3286 ± 1.9678i) unstable saddle focus with index 5

E3 (0,0,0,0,1,1) (1.2e + 6, 1.2e + 6, 0.3165 ± 5.9186i, 0.3335 ± 1.9586i) unstable saddle focus with index 6

FIGURE 5
Lyapunov exponents of system (8).
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3.3 Time series and power spectrum

When system parameters are kept unchanged, the timing
waveform of system (8) in the direction of state variable φ1 is
shown by the blue curve in Figure 6. It can be seen from the figure
that its motion trajectory oscillates randomly in a certain region and
has distinct aperiodic characteristics. In addition, after slightly
changing the initial value x10, the time-domain waveform
obtained by system (8) is shown by the red curve in Figure 6. It
is not difficult to see that when the initial values are 0.1 and 0.1 +
10−16 respectively, there is no obvious difference between the two
timings in (0, 120 s) time, but when t is greater than 120 s, they show
completely different time evolution tracks. Therefore, even with a
size adjustment of 10−16 for x10, the trajectory of the system canmake
a huge difference, which means that the motion state of the system is
not only aperiodic but also extremely sensitive to initial conditions.
To further verify its non-periodicity, the power spectrum of system
(8) is shown in Figure 7. It can be seen that the system exhibits a
continuous power spectrum similar to a noise signal in a limited
frequency range, which indicates that the system has obvious
aperiodic chaotic characteristics.

3.4 Bifurcation diagrams and Poincaré maps

The bifurcation diagram is an important tool to describe the
dynamic state of chaotic systems with parameter variation. Figure 8
shows the structure of local branch forks within the range of
parameter ρ2∈[5, 5.2], where red is the bifurcation in the
direction of state variable φ1, and blue is the bifurcation in the
direction of state variable φ2. It can be seen from Figure 8 that there
are pieces of quasi-random points in the bifurcation diagram,
indicating that the system is in a chaotic state. More importantly,
different from the general chaotic bifurcation structure, the
bifurcation diagram of system (8) presents three parallel
bifurcation structures simultaneously in the directions of φ1 and
φ2, and they are all in a chaotic state. This means that the system
generates a 3 × 3 grid multi-structure chaotic attractor. In addition,
Figure 9 shows the Poincaré map of a 3 × 3 grid multi-structure
chaotic attractor in the φ1-φ2 phase plane. Among them, the red
section diagram is generated by the x1 = 0 section, and the green
section diagram is generated by the x2 = 0 section. Through
observation, it is not difficult to find that the Poincare map of
system (8) shows a series of irregular dense points, which further

FIGURE 6
Time domain waveform of state variable φ1.

FIGURE 7
Power spectrum of system (8).

FIGURE 8
Bifurcation diagram of system (8) with ρ2.

FIGURE 9
Poincaré maps of system (8) in the plane φ1-φ2.
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proves that the grid multi-structure attractors have complex chaotic
characteristics.

4 Circuit implementation and
verification

Circuit realization is one of the effective ways to verify the
mathematical model [56]. In general, chaotic systems can be
implemented by analog or digital circuits to generate chaotic
signals [57, 58]. In this section, we first design the physical
circuit of system (8) and then verify the existence of grid multi-
structure chaotic attractors by Multisim simulation.

4.1 Circuit design

First, a multi-segment non-linear memristor circuit is designed,
as shown in Figure 10. Where, the internal state equation h(φ) of the
memristor is realized by a non-linear function generator, e1, e2,..., ei
is the control voltage, S1, S2,..., Sn is the selection switch. By selecting
the corresponding control voltage and switch, the memristor
function under different control parameters can be realized, as
shown in Table 3.

Then, based on the memristor circuit, the physical circuit of
system (8) is realized, as shown in Figure 11. Where the neuron
activation function tanh(.) The equivalent circuit is available in Ref.
[47]. In addition, the four neuronal membrane voltages are
simulated by the four capacitor voltages of the circuit, and the
fixed synaptic weight coefficients are simulated using resistors
R1–R10. The memristor synaptic weight is achieved by the
memristor. According to Kirchhoff’s current law, the circuit
equation of system (8) can be expressed as

RC _v1 � −v1 + R

R1
tanh v2( ) + R

1
Ra1

+ g
vφ1
Rb1

( )tanh v3( ) − R

R2
tanh v4( )

RC _v2 � −v2 − R

R3
tanh v1( ) + R

R4
tanh v2( ) + R

R5
tanh v3( ) − R

1
Ra2

+ g
vφ2
Rb2

( )tanh v4( )

RC _v3 � −v3 − R

R7
tanh v2( ) + R

R8
tanh v3( ) + R

R9
tanh v4( )

RC _v4 � −v4 + R

R10
tanh v1( ) + R

R11
tanh v4( )

RC _vφ1 � R

Rc
tanh v3( ) − R

Rd
h vφ1( )

RC _vφ2 � R

Rc
tanh v3( ) − R

Rd
h vφ2( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

4.2 MULTISIM simulation

The physical circuit of system (8) is implemented and simulated
on the Multisim14.0 platform. In this section, we first design the
physical circuit of system (8) and then verify the existence of grid
multi-structure chaotic attractors by Multisim simulation. Set
capacitance C = 1 nF, R = 10 kΩ. Fixed synaptic weight
coefficient according to system (8), setting R1 = R/w12 = 3.3 kΩ,
R2 = R/w14 = 0.77 kΩ, R3 = R/w21 = 10 kΩ, R4 = R/w22 = 6.7 kΩ, R5 =
R/w23 = 1.4 kΩ, R6 = R/w32 = 2.5 kΩ, R7 = R/w33 = 5.7 kΩ, R8 = R/
w34 = 2.5 kΩ, R9 = R/w41 = 14.3 kΩ, R10 = R/w44 = 5 kΩ. In addition,
the resistance of the memristor circuit Ra = R/ρa, Rb = gR/ρb, Rc = R/
c, Rd = R/d. When the system parameters a = 1, b = 0.01, c = 2.2, d =
1.2, ρ1 = 3, ρ2 = 5, Ra1 = 3.3 kΩ, Rb1 = 34 kΩ, Ra2 = 2 kΩ, Rb2 = 20 kΩ,
Rc = 4.5 kΩ, Rd = 8.4 kΩ can be solved. Set the initial voltage of the
five capacitor voltages to (0.1V, 0.1V, 0.1V, 0.1V). By setting the
corresponding switching and control voltage according to Table 3,
the system circuit can generate a grid multi-structure chaotic
attractor consistent with the numerical simulation results, as

FIGURE 10
Memristor circuit.
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shown in Figure 12. By comparing the results of Figure 12 and
Figure 13, it can be found that the results obtained by Multisim
circuit simulation and Matlab numerical simulation are almost
exactly the same, thus verifying the grid multi-structure chaotic
attractor characteristics of system (8).

5 Medical image encryption
applications

Chaotic signals have the characteristics of ergodic, initial value
sensitivity, high randomness, etc., and are mainly used for the key

generation of secure communication [59, 60]. Generally, the more
chaotic the attractor trajectory of chaotic systems, the more sensitive
the initial conditions, the higher the randomness of the key
generated, and the better the encryption performance. Based on
the above analysis results, the grid multi-structure chaotic attractor
proposed in this paper has a complex structure, high initial value
sensitivity, and strong chaos randomness, which can greatly improve
the communication encryption effect and crack difficulty.

5.1 Image encryption scheme

In this section, a new image encryption scheme is designed based
on the grid multi-structure chaotic attractor. The specific encryption
steps are as follows:

Step 1: Set (a, b, c, d, ρ1, ρ2, x20, x30, x40, φ10, φ20,N1,N2) = (1, 0.01, 2.2,
1.2, 3, 5, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 1, 1), discarded number N0 = 1000,
time step Δt = 0.002, based fourth-order Runge-Kutta algorithm, the
system (8) is continuously iterated 256 × 256 times. For each iteration,
we can get six values x1(i), x2(i), x3(i), x4(i), φ1(i), φ2(i).

Step 2: The following preprocessing is performed on the six
chaotic sequences to produce two distinct sets of sequences,
respectively

K1 i( ) � x1i + x2i + x3i + x4i (14)
K2 i( ) � mod f loor x1i + x2i + x3i + x4i + φ1i + φ2i( )/6( )*1015( ), 256( )

(15)

Step 3: The index sequence index is obtained by arranging the
sequence K1 in ascending order. Then, the index sequence is
replaced and encrypted with the original image pixels
successively to obtain the replaced image P1 as follows

P1 i( ) � P index K1 i( )( )( ) (16)

Step 4: The pixels of the sequence K2 and the diagram P1 to be
encrypted are different or encrypted as follows

TABLE 3 Different memristor types realized by selecting the combination of switch and control voltage.

S1 S2 S3 S4 . . . Sn Memristor

e1 = 1 V e2 = 3 V e3 = 5 V e4 = 7 V . . . ei=(2n-1) V h1(φ)

Open Open Open Open . . . Open N = 0

Open Off Open Open . . . Open N = 1

Open Off Off Open . . . Open N = 2

. . . . . . . . . . . . . . . . . .

e1 = 2 V e2 = 4 V e3 = 6 V e4 = 8 V . . . ei=(2n) V h2(φ)

闭合 断开 断开 断开 . . . 断开 M = 0

闭合 闭合 断开 断开 . . . 断开 M = 1

闭合 闭合 闭合 断开 . . . 断开 M = 2

. . . . . . . . . . . . . . . . . . . . .

FIGURE 11
Physical circuits of system (8).
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C i( ) � P1 i( ) ⊕ K2 i( ) (17)

5.2 Encryption performance analysis

In order to prove the effectiveness and security of the above
encryption algorithm, the following tests are carried out on the
MATLAB R2017a platform. In the experiment, four 256 ×
256 medical images were used as original images, which were

brain image, virus image, lung image, and chest image, as shown
in Figures 13Ai–Aiv. The key space, histogram, correlation
coefficient, information trail, key sensitivity, noise and data loss
attacks of the encryption system are analyzed below.

(1) Keyspace analysis. The secret key space is an important index to
evaluate the encryption system. Generally speaking, the larger
the key space of the encryption system, the stronger the
resistance to external brute force attacks. The designed
encryption algorithm uses the above 11 parameters as the

FIGURE 12
Experiment results. (A) 3 × 3-structure attractor. (B) 4 × 5-structure attractor.

FIGURE 13
Encryption results. (Ai–iv)Original images. (Bi–iv)Histograms of the original images. (Ci–iv) Encrypted images. (Di–iv)Histograms of the encrypted images.
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secret key, making it difficult to decrypt illegally. In the
experiment, all bytes are double-precision data, so the secret
key space of the encryption system is (1016)11 = 10176 ≈ 2528.
Obviously, this key space is much larger than the minimum key
space value of 2100 to resist various brute force attacks.

(2) Histogram analysis. Histogram is a key index to evaluate the
intensity distribution of pixel values in an image. The more
average the histogram distribution of the image, the stronger
the resistance to statistical attacks. Figure 13 shows the
original image, the original image histogram, the
encrypted image, and the encrypted image histogram of
the four medical images respectively. Figures 13Ci–Civ
look confusing and completely lose the information of the
original images. In addition, by comparing Figures 14Bi–Biv
and Figures 13Di–Div, we can see that the histogram of the
encrypted image is very different from that of the original
images. The histogram distribution of the original image is
completely inconsistent and uneven, while the histogram
distribution of the encrypted image is very average.
Therefore, the designed encryption algorithm has good
security against statistical analysis attacks.

(3) Correlation analysis. The correlation coefficient is an important
index of image robustness. It represents the correlation between
two adjacent pixels in an image. Usually, the correlation
coefficient of the original image in all directions is relatively
large, close to 1. The correlation of the encrypted image should
be as small as possible, close to zero. In general, the correlation
coefficient of the image can be calculated by the following
formula

ρxy �
∑N
i�1

xi − E x( )( ) yi − E y( )( )������������∑N
i�1

xi − E x( )( )2
√ �������������∑N

i�1
yi − E y( )( )2√ (18)

where x and y represent two adjacent pixel values, and N represents
the total number of pixels. E(x) and E(y) represent the average values
of pixels xi and yi, respectively. In order to calculate the correlation
coefficient between the original image and the encrypted image,
10,000 pixels are randomly selected for analysis. Table 4 shows the
phase relation values of the four original images and the encrypted
images. As can be seen from Table 4, although the correlation
coefficients of the four original images are close to 1 in the vertical,
horizontal, and diagonal directions, after encryption, the correlation
coefficients of the four encrypted images are very close to 0.
Therefore, the designed encryption algorithm can greatly reduce
the correlation of images, so as to effectively resist statistical attacks.

(4) Entropy analysis. Information entropy is an important index to
describe the degree of image uncertainty. In general, the larger the
information origin value, the higher the randomness of the image
information. An ideal value for grayscale images is 8. Therefore, a

FIGURE 14
Test results of key sensitivity. (Ai–Di) Accurate decrypted images with right secret keys. (Aii–Dii) Inaccurate decrypted images with wrong secret
keys.

TABLE 4 Correlation coefficient and information origin between the original
image and the encrypted image.

Images Horizontal Vertical Diagonal Entropy

Brain Original 0.963966 0.964300 0.936475 6.3463

Encrypted 0.009911 0.000687 −0.009079 7.9980

Virus Original 0.965515 0.961770 0.940575 6.0599

Encrypted −0.007801 0.003794 0.000667 7.9974

Lung Original 0.943080 0.954554 0.917790 7.1008

Encrypted −0.001244 0.000561 −0.002912 7.9975

Chest Original 0.960183 0.920840 0.899727 7.4130

Encrypted −0.000161 0.001065 −0.002258 7.9975
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good encryption algorithm shouldmake the information descent of
the encryption graph as close to 8 as possible. Information origin
can be calculated by the following formula

H P( ) � ∑2N−1

i�0
P xi( )log2

1
P xi( ) (19)

where N represents the bit depth of image P, and P(xi) represents the
occurrence probability of pixel xi. Table 5 shows the information origin
values of the four original and encrypted graphs. Obviously, compared
with the origin of the original graph, the origin value of the encrypted
graph is not only greatly improved, but also very close to the ideal value of
8. Therefore, the encryption algorithmhas good encryption performance.

(5) Sensitivity analysis. The sensitivity of the key is an important index to
evaluate the security performance of encryption algorithms. A good
encryption algorithm should be as sensitive to the key as possible.
When the keys a, b, c, d, ρ, φ0, and N are fixed and the values of the
keys x10, x20, x30, and x40 are changed, the key sensitivity of the four
images ismeasured. The experimental results are shown in Figure 15.
For the small change of the secret key, even with the disturbance of
10–16, the decrypted image still cannot decrypt the encryption
diagram correctly. As shown in Table 6, compared with the
existing similar work, the secret key sensitivity value of the image
encryption algorithm based on multi-scroll memristor HNN in
literature [34] is 10−9, and the secret key sensitivity value of the
image encryption algorithm based on multi-scroll chaotic system in
literature [35] is 10−12. The designed image encryption algorithm
based on multi-structure attractor memristor HNN has great
advantages in terms of secret key sensitivity.

(6) Data loss and noise attacks. Noise and data loss attacks can be used
to evaluate the robustness of cryptosystems. On the one hand, the
image is prone to sudden and strong noise interference in the
transmission process, which will produce noise and affect the
correct decryption of the image. Therefore, for image encryption
systems, resisting noise attacks is a very important performance
index. Here, different proportions of salt and pepper noise are
added to the encrypted image, as shown in Figures 15Ai–Aiii. Then
the secret key is used to decrypt the encrypted image, as shown in
Figures 15Bi–Biii. It can be observed that although some pixels of
the decrypted image are changed after the addition of salt and
pepper noise, most of the main information of the original image
can still be obtained. Therefore, the noise has very little effect on the
decryption process of the designed encryption algorithm. On the
other hand, it is easy to lose some data in the process of encrypted
image transmission. Therefore, a good encryption algorithm
should be robust to partial data loss. Here, the data of different
sizes of the encryption graph is cut out, as shown in Figures
15Ci–Ciii. Then, using the secret key to decrypt it, the results are
shown in Figures 15Di–Diii. Obviously, although the encrypted
graph has lost some data information, it can still recovermost of the
original image information through the decryption process.

Therefore, the experimental results show that the designed
encryption algorithm has strong resistance to data loss attacks.

(7) Encryption time analysis. Regardless of the security performance,
encryption time is also very important, especially in emergency
medical care applications. The time test of the scheme is operated
using MATLAB R2017a on a PC with Windows 10 64-bit
operation system, 2.5 GHz CPU, and 8 GB RAM. All medical
images are tested, and the comparison results of one round of
encryption execution time are listed in Table 7. It is clear that the
execution time of our scheme is shorter than the other schemes.

The above experimental results show that the designed medical
image encryption algorithm based on amulti-structure chaotic attractor

TABLE 5 Comparison of information entropy of different encryption schemes.

References [31] [34] [35] [39] [61] This work

Entropy 7.9898 7.9976 7.9979 7.9975 7.9976 7.9980

FIGURE 15
Test results of data loss and noise attacks. (Ai–iii) The encrypted
images with 1%, 10%, and 25% salt and pepper noise, respectively.
(Bi–iii) Corresponding decrypted images. (Ci–iii) The encrypted
images with 1/32, 1/16, and 1/4 data loss, respectively. (Di–iii)
Corresponding decrypted images.

TABLE 6 Comparison of key sensitivity of different encryption schemes.

References [32] [34] [35] [39] [62] This work

Key sensitivity 10–12 10–9 10–12 10–6 10–15 10–16

TABLE 7 Comparison results of the encryption time.

References Images Time (s)

This work Brain (256 × 256) 0.125

Virus (512 × 512) 0.273

Lung (768 × 768) 0.854

[32] Lena (256 × 256) 0.241

[34] Lena (256 × 256) 0.876

[35] Lena (256 × 256) 0.546
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has a larger key space and higher key sensitivity, can effectively resist
various internal and external attacks, and can be applied to protect
image data better in practical information communication.

6 Conclusion

Based on the chaotic property of the Hopfield neural network and
the memristor synapse control method, a grid multi-structure attractor
chaotic system is proposed in this paper. Its complex and varied chaotic
structure provides a new idea for the study of new grid chaotic
attractors. The basic dynamic analysis, such as equilibrium point,
Lyapunov exponential spectrum, power spectrum, bifurcation
diagram, and Poincare cross section, shows that the multi-structure
chaotic attractor has the characteristics of simple implementation, few
control parameters, complex unit topology, expandable unit structure,
and complex chaotic dynamics. At the same time, based on the chaotic
circuit design method, the circuit simulation of the chaotic attractor is
realized, and the feasibility of the system circuit is verified. Finally,
combined with the study of chaotic image encryption theory, an image
encryption scheme based on the grid multi-structure attractor is
designed. The experimental results show that the new grid multi-
structure chaotic attractor has certain advantages in encrypted
communication and has a good application prospect. The next step
will consider introducing multiple memristor synapses into neural
networks to construct n-dimensional grid multi-structure chaos
attractors to improve the complexity of chaotic systems.
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