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There has been a significant increase in IoT-related network traffic in recent years.
The surge in IoT has resulted in a more complex network environment than ever
before. In light of this, deep learning (DL)-based network traffic classification has
gained prominence, because of its powerful feature extraction capabilities for
complex problems. However, selecting hyperparameters for DL models, such as
network depth, lacks a theoretical basis and costs a lot of time. Often, the setting of
hyperparameters is not directly related to the inherent characteristics of the data
but relies on empirical knowledge. Traditionally, hyperparameters are adjusted
based on performance during model training, leading to a significant amount of
tuning work. To address these problems, this paper proposes a novel DL-based
anomaly network traffic classification algorithm. This algorithm estimates the
required hyperparameters by analyzing the spectrum obtained from Fourier
Transform of the input samples in advance, enhancing the efficiency of model
training for IoT network traffic classification. Our experiments reveal that the
complexity of the neural network is directly proportional to the spectrum of the
data being trained. As the presence of high-frequency components increases, the
complexity needed for the neural network parameters also rises. Based on the
conclusions drawn from our experiments, we can pre-determine appropriate
hyperparameters for the neural network, thereby saving over 70% of the time in
neural network parameter tuning.
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1 Introduction

The rapid development of the Internet of Things (IoT) has brought about immense
benefits, enabling a myriad of interconnected devices to communicate and share data
seamlessly. However, it has also buried considerable security risks. In the past, network
traffic, including abnormal traffic, was primarily generated by mature, strong endpoints with
robust security capabilities, such as smartphones. With the proliferation of IoT, any device,
no matter how small or simplistic, can potentially generate abnormal traffic. Furthermore,
many IoT devices often lack pre-installed security measures, posing significant challenges to
the detection of abnormal IoT traffic: On the one hand, the net-work is more susceptible to
attacks, as abnormal requests can be generated towards servers in numerous ways. On the
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other hand, the network environment becomes more complex,
leading to increased debugging costs for server developers.
Despite the efficient use of resources offered by sophisticated and
virtualized server systems, they face significant challenges in

classifying network traffic, especially given the scale and diversity
of IoT-generated traffic. The ability to classify network traffic
automatically and intelligently, detect abnormal traffic, uncover
previously unknown attack behaviors, and support network

FIGURE 1
Our algorithm idea: optimizing neural network parameters through Fourier transform.

FIGURE 2
The core process of proposed scheme. We adapt RELU model to fit the relationship between the average, maximum, variance and the most
appropriate neural network parameters.

TABLE 1 Data features.

Field Type Explanation

fieldid bigint Document number

label bigint File tags, 0-7represent different traffic

api string The interface that the file has called

tid bigint Thread number

index string Thread order

TABLE 2 First five lines of data.

Tid Index Fieldid Label API

2488 0 1 5 LdrLoadDII

2488 1 1 5 LdrGetProdureAddress

2488 2 1 5 LdrGetProdureAddress

2488 3 1 5 LdrGetProdureAddress

2488 4 1 5 LdrGetProdureAddress
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situational awareness has therefore become more critical than ever
in maintaining the stability and security of the entire network
environment within this rapidly evolving IoT landscape.

Traditional IoT network traffic classification mainly focuses
on four types, namely, statistics-based method, behavior learning
based method, deep packet inspection (DPI) based method and
port-based method [1]. Among them, with the characteristics of
avoiding handling encrypted traffic and satisfactory accuracy,
machine learning (ML) based on statistics or behavior method
has become a popular research direction. For specific
implementation, a set of traffic characteristics is firstly
designed, then the set of features and prepared tags are
modeled and trained therein, and finally, the trained model is
employed for discrimination. Compared with symbolic learning,
ML based statistics or behavior method has significant
advantages in terms of performance. Therefore, ML algorithms
represented by support vector machines (SVM) [2] and gradient
boosting trees [3] are widely considered in network traffic
classification. However, the performance of ML will be
significantly reduced in the scenarios, where the amount of
data is enormous because of the shortcoming in extracting
enough high-dimensional features.

As a branch of ML and a kind of statistical learning, the
predecessor of deep learning (DL), neural network, was founded
in the 1990s [4]. However, in the 1990s, computer computing
resources could not support the training of deep neural network,
so to obtain excellent performance is unavailable. In 2006, professor
Hinton put forward the theory of DL, which was gradually known by
the academic community [5]. By 2012, DL algorithm had achieved

significant performance than the second place in the ImageNet
competition [6], and from then on, a new generation of artificial
intelligence (AI) was booming. Convolutional neural network,
recurrent neural network, attention mechanism, transformer
[7–10] and other models based on DL emerge continuously, and
have achieved great success in voice, image and natural language
processing [11]. This provides a new technical route for network
traffic classification technology.

Deep Learning (DL) eliminates the need for manual feature
extraction, thus the performance of the model doesn’t hinge on an
engineer’s understanding of the problem. It can accomplish end-to-
end construction and prediction of algorithms. Unlike traditional
Machine Learning (ML) that only manages shallow learning, DL is
capable of extracting high-dimensional features. As we foresee a
future of increasingly complex IoT network traffic and rapidly
expanding data dimensions, DL proves to be more ro-bust and
flexible compared to traditional ML algorithms. While DL excels in
handling problems with homogeneous data types (e.g., language,
where each word is a character and belongs to the same kind of
data), it doesn’t display obvious advantages for problems with
heterogeneous data types (e.g., data from different aspects like
people’s height and weight). Therefore, the transformation of
network traffic data is an urgent issue we need to address. Our
solution to this issue is achieved by utilizing the network log data
generated by the server.

When network traffic data is in operation, corresponding log
files are generated. These files allow us to capture the behavior of a
certain type of traffic over a specific period of time. By learning these
behaviors and creating labels for the text data, we transform the

FIGURE 3
Frequency under different embedding.
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network traffic classification problem into a text classification
problem. This is one of the areas where deep learning excels.

However, in practice, we find that the ever-changing Internet of
Things (IoT) environment introduces a level of complexity to the

data composition. Every time we encounter a new environment, we
need to retrain a neural network model. This frequent retraining not
only consumes significant resources but also limits the efficiency of
our work in IoT traffic classification.

FIGURE 4
Training accuracy and corresponding loss with 50 MLP embedded.
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To address this issue, we need to promote the implementation
of suitable models and fine-tune them for different
environments. However, the task is not straightforward. Deep
Learning, though capable of operating tasks end-to-end, requires

substantial parameter adjustments during implementation. The
depth of the neural network is the first parameter to consider
when constructing the network. For a Convolutional Neural
Network (CNN), convolution kernels need to be preset; for a

FIGURE 5
Training accuracy and corresponding loss with 100 MLP embedded.
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Recurrent Neural Network (RNN), the number of stacked layers
and parameters for each layer need to be preset; and for a
Transformer, setting the number of multi-head attention
mechanisms is unavoidable. These parameters are initially set

using hyperparameters and adjusted progressively with the
training until the optimal model is achieved.

The selection of network depth is a crucial task as it directly
influences the complexity and training time of the model. If we could

FIGURE 6
Training accuracy and corresponding loss with 150 MLP embedded.
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develop a robust algorithm that could provide us with references for
deep learning parameter tuning in advance, based on the differences
in environmental data, we could greatly increase our efficiency in
IoT traffic classification. Therefore, we posit that such an algorithm

is a key solution to improving IoT traffic classification efficiency and
this paper aims to contribute to this area of re-search.

Generally speaking, as the number of layers in a neural network
increases, its ability to extract high-dimensional information

FIGURE 7
Training accuracy and corresponding loss with 200 MLP embedded.
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improves, enhancing model performance. However, an excessively
complex model can also introduce several issues, such as: 1. Gradient
vanishing and network degradation [12, 13]. 2. Increased training
time and data requirements, leading to a higher risk of overfitting.

Nevertheless, the network depth cannot be too shallow either, as a
shallow neural network can’t extract high-dimensional features and
may underperform even compared to traditional models in terms of
accuracy. Hence, having a neural network depth that is well-suited to

FIGURE 8
Training accuracy and corresponding loss with 50 CNN embedded.
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the data and the problem at hand is essential, which is the specific
problem studied in this paper: how to pre-construct a network that
fits with IoT traffic data? How to know the reference neural network
hyperparameters before training?

Our innovative inspiration comes from the design approach of
communication systems. The design of communication systems is
accomplished through Fourier transformation [14]. For a source
signal, after source coding, it is mapped to the frequency domain for

FIGURE 9
Training accuracy and corresponding loss with 100 CNN embedded.
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processing. This is because the match between the channel band-
width and the signal is very important. If the channel bandwidth is
less than the signal’s frequency range, the signal will lose crucial
information during transmission. Conversely, if the channel

bandwidth exceeds the signal’s frequency range, it not only
consumes additional precious spectrum resources but also
introduces more Gaussian white noise, degrading the signal
transmission quality. Therefore, the channel’s band-width and

FIGURE 10
Training accuracy and corresponding loss with 150 CNN embedded.
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the signal need to be matched, with the bandwidth size
generally designed after obtaining the maximum frequency
through the Fourier transform of the signal. For example,
the frequency of human speech signals generally does not

exceed 3 kHz, so the bandwidth of the voice system is
usually within this range [15].

Returning to our problem, after our IoT network traffic data
undergoes word embedding calculations, it becomes a numerical

FIGURE 11
Training accuracy and corresponding loss with 200 CNN embedded.
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matrix. This is similar to image grayscale values and can have its
frequency information calculated via Fourier transform. Following
this thought process, this paper proposes an IoT network traffic
classification scheme based on deep learning, with the neural
network’s hyperparameters obtained through Fourier transform
calculations.

The main contributions of this paper are as follows:
1. Since neural networks can only process numerical data, the

original text data can only be understood by the neural network after
going through word embedding. Therefore, we first perform word
embedding calculations on the original IoT traffic log data. By
adjusting the word embedding size in the word embedding layer,
we discuss the differences in the Fourier transform results of
different word vectors. Simulation results show that the larger
the word embedding dimension, the greater the product of the
Fourier transform spectrum. This way, in subsequent experiments,
we can adjust the frequency range of the original signal through the
dimensions of word embedding.

2. To explore the impact of different spectral data on neural
network parameters, this paper uses two types of neural networks:
multilayer perceptrons and one-dimensional convolutional neural
networks. We compare and analyze the optimal number of layers for
the two neural networks under different frequency data through
experiments. The results show that for multilayer perceptrons, the
higher the frequency, the more complex the neural network should
be, while for convolutional neural net-works, there is no obvious
connection between the two.

3. This paper discusses and analyzes the mathematical
relationship between neural network depth and the Fourier
transform spectrum. Simulation results show that there is a direct
linear relationship between them. Specifically, when the spectrum of
the Fourier transform doubles, the complexity of the neural network
will also double accordingly, and more than 10% additional
parameters need to be added. However, for convolutional neural
networks, the correlation is not significant. We speculate that this
may be due to the frequency smoothing performed by the
convolutional neural network on the word vector matrix. This
leads to our conjecture: perhaps the powerful generalization
ability of convolutional neural networks is achieved by removing
redundant high-frequency components. Maybe in future data
processing, we can remove high-frequency components before
processing, which can improve the generalization performance of
our neural networks.

The rest of the paper is arranged as follows. In Section 2, we
review the research related to network traffic classification, especially
the research progress of DL-driven network traffic classification. In
Section 3, the detailed idea and theoretical basis of our algorithm is
discussed. The performance of different neural networks is analyzed
through simulation in Section 4. Finally, Section 5 summarizes this
paper.

2 Related work

In the field of IoT network traffic classification, various
machine learning (ML) techniques such as Support Vector
Machines (SVM), K-Nearest Neighbors (KNN), Artificial
Neural Networks (ANN), and Random Forest have been

employed to enhance network performance [16–19]. However,
as these traditional ML methods primarily extract low-
dimensional features from input samples, they have
limitations in handling complex IoT network traffic data that
often contain both low-dimensional and high-dimensional
features.

This has led to the rising popularity of deep learning (DL)
techniques, which are capable of extracting both low-dimensional
and high-dimensional features simultaneously. DL-driven network
traffic schemes are showing potential for more robust and accurate
classification. For instance, deep neural networks have been
successfully applied in detecting abnormal network traffic [20].
Other studies have utilized DL methods based on the standard
template library (STL) on NSL-KDD dataset to achieve remarkable
performance [21]. Another approach involved the use of cyclic
neural net-works as a framework [22]. In addition to the above
influential work, there are also many other ML based studies
[23–25].There are also studies that apply integrated sensing and
communication technology to the Internet of Things, such as
Unmanned Aerial Vehicles (UAVs) and energy conservation [26,
27]. Roughly estimated, ML-assisted schemes take up close to 40% of
network traffic classification problem. Moreover, federated learning
[28], unsupervised domain adaptation [29], and enhanced versions
of convolutional neural networks [30] also have applications in the
Internet of Things (IoT) domain.

Although these studies have made significant progress in traffic
classification and multi-classification, their primary focus is on
improving network architecture or feature extraction. They have
not paid attention to the direct relationship between network
hyperparameters and traffic data, which results in considerable
tuning work in algo-rithm training.

Furthermore, with the development of the Internet of Things
(IoT), the types of network traffic data are becoming increasingly
complex, especially in the industrial field. The IoT connection
situations in different industrial scenarios are vastly different, so
each time the scenario changes, it is necessary to retrain the model
and repeat the process of model construction and parameter
adjustment.

In such a context, it is particularly important to design network
hyperparameters that match the data characteristics in advance, as
this can promote faster model training and save engineers’
debugging time. However, there is still little theoretical basis for
setting these parameters. This paper aims to fill this gap, by
conducting experiments with two types of classical and basic
neural networks, multilayer perceptron (MLP) and convolutional
neural networks (CNN), and proposing our own hypotheses about
the experimental results while trying to establish a mathematical
relationship between the hyperparameters and the original data.

3 Motivation and system model

3.1 Motivation

In communication systems, the Fourier transform is a method of
converting signals from the time domain to the frequency domain.
Any function f(t) can be transformed into another corresponding
function F(ω) through this operation as follows:

Frontiers in Physics frontiersin.org12

Xiong et al. 10.3389/fphy.2023.1273862

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1273862


FT � F ω( ) � ∫
+∞

−∞
f t( )e−iwtdt (1)

where FT is called the image function of f(t), and f(t) is the image
primitive function of F(ω). |F(ω) | is the amplitude spectrum of f(t),
and F(ω) is the phase spectrum of f(t).

Once the frequency domain information is obtained, as long as
the sampling rate reaches twice the maximum frequency, the
original signal can be completely restored. Therefore,
communication systems often set the sampling rate as twice the
maximum frequency of the original signal to maximize the
utilization of spectral resources while ensuring the smooth
recovery of the original information by the receiver [31].

Assume that the time-domain signal is xc(t), if it is to be
sampled and converted into digital information, the sampled
signal can be represented by the impulse function s(t) (see (1)):

s t( ) � ∑
∞

k�−∞
δ t − nT( ) (2)

where s(t) is equal to 1 only when t = nT, and it is 0 in the rest of
time. The sampled signal xs(t) can be written as:

xs t( ) � s t( )xc t( ) � ∑
∞

n�−∞
x n[ ]δ t − nT( ) (3)

As long as (3) is satisfied, that is, the sampling frequency is twice
the maximum frequency, the signal information before sampling
can be completely restored.

Interestingly, the selection of hyperparameters in neural
networks bears similarities to the choice of the sampling rate in
communication theory. If the layers of a neural network are too few,
it might not extract enough high-dimensional abstract features,
leading to a lack of precision, which parallels the issue of a low
sampling rate. Conversely, if the neural network is too deep,
although precision can be ensured, a series of issues might arise,
such as overly complex models, high cost, and even the occurrence
of network degradation or gradient explosion caused by deep
networks, similar to the situation with a high sampling rate.

Moreover, through certain cases, we have noticed a connection
between the frequency of data and the complexity of the neural
network. For instance, for a uniformly single-colored image with a
frequency of 0, the required complexity of the neural net-work is
very low. A single-layer network is sufficient to fit and learn all the
information of the image. However, for images rich in color and with
numerous edges, a more complex neural network is needed to learn
the deep features they contain. The frequency domain of such
images will also show many high-frequency components.

However, unlike the sampling rate in communication systems
which is strictly calculated based on the Fourier transform, the
selection of hyperparameters in neural networks, such as the depth
of the network, often comes from practical experience and lacks
theoretical support.

Therefore, inspired by the sampling theorem, in this paper, we
attempt to establish a mathematical relationship between the
frequency of the original data and the appropriate depth of the
neural network. This established relationship could provide a
reference for our initial hyperparameter selection in future
scenarios.

3.2 System model

In the following sections, we will use the real network traffic data
generated by a sandbox program as an example to elucidate the
fundamental principles of our algorithm. Our objective is to obtain
the spectrum information of the original data via Fourier transform,
and rapidly construct a neural network with a degree of matching
based on this spectral data.

Given that our data originates from log data, which exists in
text format, it is essential to perform word embedding prior to its
processing by the neural network model. Through word
embedding, we can convert text-based data into numerical
vectors.

Embedding is a critical concept in deep learning, particularly in
fields such as natural language processing (NLP). The core idea
behind embeddings is to translate discrete objects such as words or
categories into a continuous vector space.

The motivation for using embeddings comes from the
challenge of representing symbolic data in a format that can
be processed by a neural network. As many types of data, like
text, are not natively numerical, they cannot be directly fed into a
machine learning model. Embeddings offer a solution to this
problem by mapping these discrete symbols into a continuous
and typically lower-dimensional space. This mapping is based
on the context or meaning of the symbols, thereby preserving the
semantic relationships among the symbols in a numerical
format.

Mathematically, this is done by creating a lookup table with
parameters that are learned during the training process. Suppose we
have a vocabulary of size “v”. Each symbol in this vocabulary is
mapped to a unique vector in the embedding space. We can
represent this mapping using an embedding matrix W:

W � w1, w2, . . . , wv[ ] (4)
where v is the size of the vocabulary, and wi is the i vector
representation for the symbol i in the vocabulary.Given a symbol
x (represented by its index in the vocabulary), we can retrieve its
corresponding vector representation by:

x_embedded � W x[ ] (5)
where x is the index of the symbol in the vocabulary.

In this way, embeddings convert symbols into numerical
vectors, making them amenable to processing by neural
networks.In the deep learning framework PyTorch, the
dimensionality of word embeddings can be adjusted on the fly.
The same data can form different word embeddings, hence
different spectral diagrams, depending on the size of the
embedding dimension set.

The overall design concept of our paper is to modify the
dimension of word embeddings to obtain different spectral
representations of the same data. We then tune the neural
network to fit these data, exploring the relationship between the
most suitable network depth and the spectral diagram. After
collecting data on the relationship be-tween the spectral diagram
and the depth of the neural network through experiments, we use
simple algorithmic models to fit the relationship between them and
draw our conclusions.
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4 Proposed scheme

4.1 Methodology

In our proposed method, we first generate the word embeddings
of our data, denoted as e. We then innovatively introduce positional
encoding, p, and category encoding, c. The final representation of
our data, f, is the concatenation of these three components,
represented mathematically as:

f � e;p; c[ ] (6)
where; represents concatenation of vectors. In this formula, p and c
are computed independently, ensuring they add distinct value to the
final encoding f.

For positional encoding p, we employ a variant of sine and
cosine functions to capture the relative positioning of words. Each
dimension i of the positional encoding vector p for a given position
pos in the sentence is calculated as follows:

p pos, 2i( ) � sin pos/ 10000 2i/dmodel( )( )( ) (7)
p pos, 2i + 1( ) � cos pos/ 10000 2i/dmodel( )( )( ) (8)

Here, pos iterates over the positions in the sentence and i over
the dimensions of the word embedding space. The terms 2i and 2i +
1 denote even and odd indices respectively.

For category encoding c, we leverage a one-hot encoding
scheme, giving us a binary vector of size ncategories, where
ncategories is the total number of potential categories in the IoT
data. Each category corresponds to a unique index in this vector,
marked by a 1, with the remaining positions set to 0.For instance, in
a case with 5 possible categories, if the current data belongs to the
third category, the category encoding c would be [0, 0, 1, 0,
0].Generally, the one-hot encoding can be defined
mathematically as:

c i[ ] � 1 if category �� i else 0 for i in range ncategories( ) (9)

In this, category represents the category of the current data.
After preprocessing the data, we obtained data objects that can

be split and sorted as needed. The core of our algorithm will be
discussed in this section. The Fourier Transform is commonly used
in some engineering disciplines, such as communications. It can
acquire frequency-domain information from time-domain signals.
By applying the Fourier Transform to communication signals, we
can determine the maximum sampling rate required for encoding.
The Fourier Transform is also widely used in imaging, providing a
reference for the design of graphic filters.

Network traffic data, after being preprocessed as mentioned
earlier, is transformed into numerical data. Traditionally, neural
network learning is conducted in batches. If we input data one by
one, the neural network might experience significant shocks due to
individual differences and fail to converge. Therefore, after
obtaining word vectors through word embedding, category
coding, and position encoding, we connect multiple word vectors
(determined by the batch size) to obtain a word vector matrix. As
every piece of traffic data will turn multi-dimensional after
dictionary mapping, the superposition of multiple traffic data
forms a two-dimensional matrix, similar to grayscale image values.

In image processing, researchers often assess the effects of filters
and other image processors by observing their spectra. If there are
many high-frequency components in the image spectrum, the image
is more complex, requiring more bandwidth for transmission, and
contains more information. Therefore, we speculate that the results
of the Fourier Transform can be used as a reference for the amount
of information in the data. On the other hand, in the construction of
DL models, there is less research on the choice of hyperparameters.
Generally, some empirical parameters are directly chosen (often
quite complex), and overfitting problems are reduced through
regularization methods. The model’s adjustments are entirely
completed by the training itself, and the pre-set initial parameters
have no substantive basis.

Hence, we innovatively propose a method to adjust
hyperparameters related to the complexity of the neural network
through the Fourier Transform. If there are many high-frequency
components in the results of the Fourier Transform, the complexity
of the neural network will increase because the data contains more
information. Conversely, if there are fewer high-frequency
components in the results of the Fourier Transform, the
complexity of the neural network will not be high because there
is less information in the data. From the perspective of images,
intuitively, if an image is uniformly grayscale, there is no need to use
a complex neural network. A single-layer RELU can extract its
features because the data is very simple, and its corresponding
spectrum is zero. If an image has a large number of different
objects, it will inevitably generate a lot of edge information, and
the results of the Fourier Transform will have many high-frequency
components. The complexity of the neural network needed to learn
this image will increase significantly because it contains too much
information. The overall concept of our method is shown in
Figure 1.

Subsequently, we leverage a single-layer RELU model to capture
the relationship between the average, maximum, variance, and the
most suitable neural network pa-rameters. Despite its simplicity, the
RELU function is versatile, capable of modeling both linear and non-
linear relationships. It can be seen as a single-layer neural network.
Our approach employs a linear function as outlined in the following
equation:

z l( ) � W1
l( )X l−1( ) +W2

l( )Y l−1( ) +W3
l( )Z l−1( ) + b0

l( ) (10)
a l( ) � RELU z l( )( ) (11)

RELU z( ) � max 0, z( ) (12)
Here, X represents the maximum frequency, Y the average

frequency, Z the variance, and b0 the offset. The output value
corresponds to the predicted network parameter. The model
parameters are updated through backpropagation based on
experimental results and model predictions. Our experimental
result utilizes the network parameter value corresponding to the
first instance where the derivative of the network parameter with
respect to model performance is zero. Owing to the model’s
simplicity, a prediction model can be obtained after just ten
training iterations. The conceptualization of our algorithm is
depicted in Figure 2.

Our model parameter updates are facilitated through the back-
propagation algorithm. The specific procedure involves computing
the discrepancy between the actual value (optimal network
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parameter) and the predicted value (anticipated network parameter)
after every forward propagation cycle. This process helps us record
the error. Subsequently, we calculate the reciprocal of each
parameter in the single-layer RELU model. The parameter
exhibiting the maximum derivative is then updated. The
mathematical representation of this process is provided in the
equations below:

ωl � ωl − α
∂C w, b( )

∂ωl
(13)

bl � bl − α
∂C w, b( )

∂bl
(14)

C � y − y,( ) (15)
The details of proposed scheme are concluded as follows in

Algorithm 1.

Input: Network traffic text log x

Output: Optimal number of network layers z

1: Word embedding x = embedding(x)

2: Get data characteristic statistical X, Y, Z = FT(x)

3: Predict the best network parameters: y′ = RELU(X, Y, Z)

4: Obtain the really best parameters through manual

tuning through experiments: y

5: For y− < y0 and y0 is the error performance requirement

6: Calculationerror: y− = y − y′
7:

Weightupdate: ω
l ← ωl − α ∂C(w,b)

∂ωl (ω is the weight matrix of X,Y,Z)
8: end for

9: Z = RELU(x)

Algorithm 1. Train the model and obtain the optimal
parameters.

4.2 Data preprocessing

In this section, we will delve into the handling of the Internet of
Things (IoT) network traffic data that we confront.

Our data reveals that we have 273 data calling interfaces. To
begin with, we construct a vocabulary of 273 dimensions, with each
element corresponding to the call information of an individual API.
Once this vocabulary is established, we obtain a map-ping from the
API to the respective vector through the construction of a key-value
pair data structure within the dictionary. This mapping serves as the
mechanism to convert all API call information into vectors.

Following that, we employ a Deep Learning (DL) framework
based on Pytorch to facilitate subsequent model training and testing.
The previously constructed dataset is considered as the input for
building our dataset object. The purpose of constructing this object
is twofold. On one hand, it facilitates further processing on Pytorch.
On the other, it allows us to add magic methods, which are methods
that get triggered automatically under certain conditions without
explicit calls, and commonmethods such as dictionary length checks
during the construction process.

Lastly, for ease of dataset segmentation in subsequent use, we
transform the processed data structure into a data loader via
Pytorch. The primary goal of this transformation is to obtain

objects that can be directly handed over to the neural network
algorithm through the fit function.

Additionally, it allows for direct modifications of common
neural network parameters during training. For instance, it can
control whether the dataset is shuffled with each iteration, and it can
determine the volume of data used for a single training session.

4.3 Evaluation metrics

We approach the evaluation of our model from two distinct
angles. The first is through the “loss” metric, depicted as follows:

logloss � − 1
N

∑
N

j

∑
M

i

yij log Pij( ) + 1 − yij( )log 1 − Pij( )[ ] (16)

where M represents the number of classifications, N denotes the
number of samples in the test set, yij describes whether the i sample
is category j (1 is yes, 0 is no), and Pij indicates the probability that
the i is predicted to be category j.

Given the focus of this paper on abnormal flow detection, the
importance of positive samples cannot be overstated. In many
instances, identifying anomalies can account for up to 90% of the
task at hand. Consequently, we employ the AUC (Area Under the
Curve) as a secondary evaluation metric. It is calculated as follows:

AUC � TP + TN

TP + TN + FP + FN
(17)

In this formula, TP and TN symbolize the probabilities of
correctly predicting positive and negative samples, respectively.
Meanwhile, FP signifies the likelihood of predicting a positive
sample incorrectly (i.e., a false positive), and FN refers to the
probability of predicting a negative sample incorrectly (i.e., a
false negative). Both of these metrics, loss and AUC, are
assigned equal weight, each contributing 50% to the overall
evaluation.

5 Experiments and discusions

5.1 Data description

The primary aim of this study is to classify abnormal network
traffic. We have collected and desensitized eight categories of real
data from the internet. These categories include normal traffic and
seven types of abnormal traffic: ransomware, cryptocurrency mining
programs, DDoS, worm viruses, infectious viruses, backdoor
software, and Trojan programs. Here’s a brief introduction to
each type of abnormal traffic.

Ransomware, a unique malware, is often classified as an “access
blocking at-tack” [32]. It differentiates itself from other viruses
through its mode of manipulation and infection. Ransomware can
either directly lock the victim’s computer or systematically encrypt
files on the hard disk, rendering users unable to access their
information without paying a ransom. They often masquerade as
harmless files or typical links to lure people into downloading them.

Cryptocurrency mining programs have emerged with the
increasing market value of cryptocurrencies such as Bitcoin.
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These programs silently use CPU resources for mining while
hiding in various system processes, making them hard to
detect.

DDoS attacks are types of denial of service attacks and are highly
dependent on network conditions [33]. These attacks aim to
incapacitate servers through an over-whelming amount of
requests. Worm viruses can be subdivided into two types based
on their objectives: denial of service viruses, which are similar to
DDoS attacks, and viruses that run massive amounts of junk code.
The defining feature of worm viruses is their ability to replicate and
execute themselves without user intervention.

Infectious viruses can partition and encrypt their programs and
attach them to various host programs. Their ability to latch onto
multiple host programs at once makes them highly covert and
destructive. Backdoor software, added to legitimate software, can
steal user personal information or even remotely control the
computer. These programs launch with the operating system
startup and are difficult to detect.

Lastly, Trojan programs can pilfer local information or control
rights through external influence [34]. While they do not self-
replicate or infect other programs, they can result in serious
consequences under the control of external personnel, such as
destruction, file theft, and direct remote control of the computer.

The data we examine consists of five features, as outlined in
Table 1. Files can have a large number of API calls; for training
consistency, we record only the first 5000 calls for files with more
than 5000 calls. There is no ordinal relationship between different
thread tids. The index represents the global order of a single file’s
execution in the sandbox. Hence, the same thread or different
threads might execute the API multiple times, which does not
ensure continuity.

In an effort to offer a more intuitive understanding of the data
we’re working with, we’ve presented the initial five rows of the
dataset in Table 2. This extract illustrates that file 1 falls under the
fifth category (infectious virus), having invoked the API Ldr-
LoadDII once, and LdrGetProcedureAddress four times, all
within the thread with an ID of 2488.

To optimize our neural network model’s effectiveness, we’ve
devised a systematic data partitioning strategy:

1. Stratified Sampling: Given the multiple categories in our
dataset, some of which might be underrepresented, we employ
stratified sampling. This ensures that the sample distribution of
each category remains consistent across training, validation, and
testing splits.

2. 70/15/15 Rule: We allocate 70% of the data for training, 15%
for validation (for hyperparameter tuning and preventing
overfitting), and the remaining 15% for final model evaluation.

3. 5-Fold Cross-Validation: To bolster model robustness and
evaluation precision, we implement 5-fold cross-validation. For each
fold, four parts are used for training and one for validation, ensuring
each data point is validated against, enhancing our evaluation’s
comprehensiveness.

5.2 Simulation results

For this study, we have chosen to use Pytorch [33], a leading
deep learning framework that is widely popular in the field. Our

hardware setup consists of a unique RTX3080 GPU display
device with 32 GB of memory, supplemented by an I-9 Intel
processor.

Our first step is to obtain the spectrum of the raw data, where all
the data (including training and testing sets) is needed. After word
embedding, the original IoT text data transforms into vectorized
data and a collection of multiple vectorized data constitutes a matrix.
As a matter of fact, the Fourier transform can directly compute and
perform spectral analysis on two-dimensional matrix. Since our text
data is also two-dimensional after vectorization, it can utilize the
Fourier transform.

To directly investigate the influence of spectral distribution on
neural network parameters, we embedded the vectorized data in
different dimensions using the same preprocessing method. We
specifically chose dimensions of 50, 100, 150, and 200. After this
round of processing, we obtained different spectra for the same data
(the dimension size of word embedding directly affects the results of
the Fourier transform). If vectors with different spectra but the same
raw data lead to different neural network fitting parameters, it means
the Fourier transform can guide the choice of hyperparameters. Our
experiment results of word embedding and spectra are shown in
Figure 3.

We first used the MLP neural network to test our results. MLP is
the original neural network, capable of fitting both linear and
nonlinear relationships through data training. We used 70% of
the data set for training the MLP and 30% of the training set for
testing, employing a 5-fold cross-validation algorithm to obtain
experimental results. The features of the dataset are specific activity
information of network traffic, and the labels are the types of
network traffic (such as ransomware, worm virus, normal traffic,
etc.). After training and testing, we can determine the performance
of the MLP with different parameters on this issue. We used logloss
and AUC for evaluation.

Figures 4–7 show some of the experimental results (All the
detailed experimental results can be found in the appendix),
utilizing accuracy and loss to discern the network’s best
parameters. The comparison across these four figures reveals
that with the escalation of the word embedding layer (i.e., as
the high-frequency components of the Fourier transform
increase), the network’s optimal parameters also grow, and the
degree of overfitting is generally lower in the final few data models.
We record this outcome and train it in a straightforward single-
layer neural network, discovering that as the spectrum doubles, the
optimal network parameters also double, with a subsequent rise of
approximately 10%. Through the MLP experiment on traffic
classification, we validate our hypothesis: data bearing higher
high-frequency components of the spectrum require more
complex networks for learning.

Following this, we persist with experiments using a one-
dimensional convolutional network. Contrary to typical CNNs
that convolve in both length and width dimensions, a one-
dimensional CNN only convolves in a single dimension. This
approach is often employed in the field of natural language
processing (NLP) [35]. This aligns with conventional
understanding, given that language comprises individual words,
and information can be captured by convolving along the word
occurrence sequence. Convolution within a word holds no physical
meaning. As our network traffic data has been transposed into text
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data, it becomes a natural language processing problem. Some
experimental outcomes are illustrated in Figures 8, 9, 10, 11
through 11 (All the detailed experimental results can be found in
the appendix).

Our simulation results reveal an unexpected pattern: unlike the
MLP network, the optimal parameters for the one-dimensional
CNN remain largely consistent across varying word embedding
dimensions for the same dataset. This deviates from our
hypothesis, which proposed that more complex spectral data
could be harnessed by increasingly complex networks. Upon
reflection, we understand this anomaly to be rooted in the
nature of CNN’s convolutional process itself, which serves to
smooth data and distill local information. This act of
smoothing inherently attenuates the original data’s frequency.
Given that our convolutional kernel size remains constant
throughout all experiments, and the only variable being the
number of network layers, the original data post-smoothing
share identical spectrums. Consequently, the most fitting
network layer count for the same data in a CNN scenario
shows no significant variations.

6 Conclusion

Addressing the challenge of classifying abnormal traffic in the
Internet of Things (IoT), this paper presents a novel optimization
scheme for network parameter selection, which was devised through
the analysis and processing of the spectrum of input samples. Our
study reveals that for the Multi-Layer Perceptron (MLP) network,
the complexity of the network model has a positive correlation with
the spectrum of the input data. Conversely, for the Convolutional
Neural Network (CNN), the smoothing effect of convolution
operation leads to the word embedding having a less significant
impact on the optimal model parameters when the input data
exhibits high similarity.

Through rigorous simulations, we have validated the efficacy
of our proposed schemes. These strategies have notably enhanced
the efficiency and precision of ab-normal IoT traffic
classification, indicating their immense potential for practical
applications.

The insights from this research not only offer a new
perspective for abnormal IoT traffic classification but also
hold profound implications for the field at large. Looking
ahead, we plan to explore the applicability of these methods to
similar problems, with a view to further optimizing the strategies
proposed herein.
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