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In recent years, 2-μm band lasers have developed rapidly due to their wide range
of usage. It is a challenging problem to realize the synchronization of multi-
wavelength multi-channel ultrashort pulses for many important applications. In
this paper, a 2-μm synchronous multi-wavelength fiber laser is proposed. The
laser was constructed based on cascaded Mamyshev regenerators. The multi-
cascade nonlinear broadening and offset filtering can act as a saturable absorber,
enabling mode locking, and resolving the issues of gain competition and
synchronous output encountered in traditional multi-wavelength lasers. A
stable synchronous multi-wavelength mode-locked laser was realized through
numerical simulation. The laser can provide six-channel ultrashort pulses with a
wavelength interval of 5 nm (the central wavelengths range from 2000 nm to
2025 nm). The peak power and duration of the output pulses are respectively
0.1–0.25 kW (intracavity peak power 0.4–1.1 kW for coupler ratio is 20:80) and
~1.1 ps. Design principles and the effects of various parameters such as the filter,
the fiber length, etc., on the optimization of the laser are analyzed and discussed.
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1 Introduction

Multi-wavelength lasers are widely used in biomedical imaging, fiber wavelength
division multiplexing, and optical instrument testing due to their separated output pulse
spectrum and multiple central wavelengths [1–3]. The overlapped multi-wavelength
pulses in the time domain can be used in pump-probe technique [4], stimulated Raman
scattering imaging [5–7], optical parametric chirped pulse amplification [8, 9] and
coherent combination of ultrashort pulses [10–13] to achieve various nonlinear effects.
The multi-wavelength pulse laser with the same repetition frequency must solve the
competition problem of gain fiber and the synchronization problem between different
wavelength pulses.

Different wavelength channels of traditional multi-wavelength lasers operate in parallel
using the same gain medium. It will lead to competition for gain between pulses of different
wavelengths. Generally, after a pulse of one wavelength forms a stable oscillation, pulses of
other wavelengths will be suppressed and cannot be generated. If the gain competition
betweenmulti-wavelength pulses cannot be avoided by suppressing the gain saturation of the
fiber [14, 15], introducing light intensity-dependent loss [16] or inhomogeneous broadening
mechanism of the gain spectra [17–19], only one wavelength pulse can be output. Even
continuous wave multi-wavelength lasers need to take technical measures to overcome this
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problem [20, 21]. As for the synchronization issues, the current
multi-wavelength lasers mainly have active [22], passive [23], and
active-passive combination [24] synchronization methods. The
active synchronization method is to control the laser pump
power or cavity length through electronic circuit feedback. The
system structure is complex and expensive, and the jitter of
electronic components will affect the pulse [25]. Lasers using
passive synchronization technology require cavity length
matching strictly, and the typical mismatch tolerance is in the
order of tens of microns [26], which causes the disturbance of
the external environment to have a great impact on the laser system.
These relatively complex methods bring problems to the practicality
of the laser. In addition, the ultra-short pulse laser usually has a wide
spectrum. When the center wavelength of the multi-wavelength
pulse is very close, the problem of spectrum overlap is also difficult
to solve for traditional multi-wavelength lasers.

The Mamyshev oscillator is based on the Mamyshev regenerator
[27], also known as the 2R regenerator. In order to avoid signal
degradation, one or more regenerators can be placed in the system.
The purpose of the regenerator is to restore the quality of the pulse
signal. The pulse signal with poor quality is broadened by self-phase
modulation in an optical fiber with nonlinear and then filtered by a
filter with a different center wavelength to generate a new
wavelength of the pulse. Because the Mamyshev cavity is a
single-ring cavity structure, the pulses of multiple wavelengths
are naturally synchronized. And the wavelengths are transformed
from each other by nonlinear broadening and offset filtering, so the
pulses are also coherent. In addition, the Mamyshev regenerator has
a strong ability to suppress noise signals. Compared with traditional
synchronous lasers with multi-cavity, the Mamyshev oscillator with
compact device arrangement does not require complex
synchronization devices and has a stronger anti-interference
ability to the external environment, thus offering a broad range
of potential applications.

Previously, we have successfully realized a multi-wavelength
synchronous mode-locked laser under all normal dispersion
conditions at the 1-μm wavelength range using a Mamyshev

cavity [28]. However, the 2-μm wavelength range exhibits
significant anomalous dispersion. Therefore, we need to
investigate whether such lasers can be effectively implemented
under these conditions and how the substantial dispersion
difference might impact the laser’s design and usage.

2 Numerical simulation

2.1 System construction and result analysis

The schematic diagram of the six-wavelength laser system is
shown in Figure 1. The optical pulses transmit in a single ring
cavity to realize the conversion between different wavelengths
and the output of multi-wavelength pulses. The Mamyshev cavity
consists of six Mamyshev regenerator arms, and each arm
consists of a thulium-doped fiber (TDF) with anomalous
dispersion, a band-pass filter (BPF), and an output coupler
(OC). The output-input coupling ratio from OC1 to OC6 is 2:
8. A single-mode fiber (SMF) with anomalous dispersion and an
optical isolator are placed between each regenerator. Each
Mamyshev regenerator in the cavity works at a different
wavelength, and the nonlinear effect of the fiber is used to
broaden the spectrum of the optical pulse. The broadened
spectrum covers the next wavelength to be switched, and then
the filter is used to accomplish switching between the two bands,
which achieves multiple wavelengths output in a single-ring
cavity. The isolator is not only used to ensure single-direction
transmission but also to prevent the formation of local
continuous laser due to reflection at the node, especially when
using non-fiber components with collimators (such as filters).
SMF is used to simulate the tail fiber between regenerators (As
shown in Figure 1, the six sections of TDF, labeled TDF1-TDF6,
have lengths of 1 m each, and the six sections of SMF, labeled
SMF1-SMF6, have lengths of 0.1 m each. The total length of the
laser system is 6.6 m. In the numerical model, the filters and OC
are idealized components; therefore, the total length of the laser

FIGURE 1
Schematic diagram of a six-wavelength Mamyshev laser.
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system in the model is composed of six sections of TDF
and SMF.).

The pulse wavelengths in the fiber of the six-stage Mamyshev
regenerator are 2000nm, 2010 nm, 2020 nm, 2025 nm, 2015 nm,
and 2005 nm. The external seed pulse evolves in the cavity and
finally realizes the synchronous output of the six-wavelength pulses.

The fiber parameters are derived from commercial fibers. The
gain fiber is thulium-doped fiber of Nufern SM-TSF-9/125, and the
single-mode fiber is SMF-28. The fiber parameters are shown in
Table 1 and Table 2. The gain coefficient g0 of the TDF is 6.9 m

−1, the
gain bandwidth is 80 nm [29], and the saturation energy is
2 nJ. From BPF1 to BPF6 are Gaussian filters with a bandwidth
of 6.8 nm.

To simulate the propagation of the pulses in the fiber, the well-
known generalized nonlinear Schrödinger equation was used. This
includes the effects of attenuation, frequency dependent gain,
dispersion, self-steepening, optical shock, and the Raman
response [30–32]: (The dispersion and nonlinear coefficients are
shown in Tables 1, 2)
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+ a

2
A − g

2
A − ∑

k ≥ 2
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∂kA
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The profile of the gain spectrum was assumed to be Gaussian.
The saturation of the gain fiber was also considered, and thus the
gain coefficient in the frequency domain is:

g ω( ) � g0

1 + Epulse/Esat

e−
ω−ω0
ωb

( )2

(2)

where Epulse is pulse energy, Esat is the saturation energy (2 nJ), ω0

is the reference frequency for 2000 nm, and ωb is frequency for gain
bandwidth (for 80 nm bandwidth, ωb = 40). The time domain and
spectrum of pulse transmission in the laser system under stable state
are shown in Figure 2. The seed pulse used to start the laser is a
chirpless Gaussian pulse with 36 W peak power, 2000 nm center
wavelength, and 0.24 ps pulse width. In the simulation, the pulses
reach a stable state after 3 cycles in the laser. The pulse time-domain
evolution of the six-wavelength laser system is shown in Figure 3.
The main reason for the laser to reach a stable state quickly is the

TABLE 1 The Parameters of TDF.

Wavelength
(nm)

2000 2010 2020 2025 2015 2005

β2(ps2/km) −89.6 −91.5 −93.4 −94.4 −92.5 −90.6

γ(W−1/km) 0.908 0.896 0.884 0.878 0.890 0.901

TABLE 2 The Parameters of SMF.

Wavelength
(nm)

2000 2010 2020 2025 2015 2005

β2(ps2/km) −83.1 −84.9 −86.8 −87.8 −85.9 −84.0

γ(W−1/km) 0.547 0.535 0.524 0.519 0.530 0.541

FIGURE 2
Intracavity pulse evolution diagram. (A) spectrum, (B) time-domain.

Frontiers in Physics frontiersin.org03

Gong et al. 10.3389/fphy.2023.1273027

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1273027


powerful pulse-shaping ability of the Mamyshev regenerator. The
pulses in the laser system are converted to each other at different
wavelengths, and finally, the optical pulses at 2010 nm, 2020 nm,
2025 nm, 2015 nm, 2005 nm, and 2000 nm are output stably.

The output of the six-wavelength time domain pulse,
spectrum, and time-frequency diagram are shown in Figure 4,
Figure 5, and Figure 6. After the TDF parameters are properly
selected, the BPF filtering position is at the flat part of the pulse
broadening spectrum, which can make the laser run stably.
Under other fiber lengths, it is necessary to adjust the
relevant parameters of TDF and the filtering position of BPF
to achieve stable output pulses of the system.

The laser system in the steady state can obtain pulses with the
same repetition rate and approximately linear chirp from the output
of the OC. The peak power and pulse width of the pulses are shown

in Table 3. The length of the laser ring cavity is 6.6 m, corresponding
to a repetition rate of about 31.3 MHz.

2.2 Design principles and stability
characteristics

The main principle of the Mamyshev cavity formed by
cascaded Mamyshev regenerators is using nonlinear effects to
broaden the spectrum to cover the target wavelength, then
achieving pulse regeneration by filtering. The spectrum
obtained by this nonlinear broadening is not very flat. In
order to make the laser more stable, it is usually necessary to
set the parameters of the gain fiber reasonably and make the
filtering position of BPF located at the flat part of the broaden
pulse spectrum. As a gain fiber, the ytterbium-doped fiber in 1-
μm band and the erbium-doped fiber in 1.5-μm band are normal
dispersion, while the thulium-doped fiber in 2-μm band is
anomalous dispersion. Compared with the 1-μm and 1.5-μm
bands, the pulse broadened spectrum in the 2-μm Mamyshev
cavity is more rugged (Figure 7; Supplementary Figure S1), so it is
significant to study the stability of the laser system.

The stability of the laser system can be comprehended by
studying its energy transfer function (ETF) or power transfer
function (PTF) [33]. Figure 8 is a schematic diagram showing
how to analyze the laser output characteristics through the
transfer function curve. We use the research method for one-
dimensional mapping in the field of nonlinear dynamics to
analyze the output and stability of the laser. (For details, please
refer to our previous article [34]). We know that the laser is a

FIGURE 3
Intracavity pulse time domain evolution map in six-wavelength system. The central wavelengths of the six wavelengths are (A) 2000, (B) 2010, (C)
2020, (D) 2025, (E) 2015, and (F) 2005 nm.

FIGURE 4
Six-wavelength output spectrum.
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feedback system, and the pulses of the mode-locked laser circulate
again and again in the laser cavity. The transfer function describes
the relationship between a given pulse and the pulse obtained after
completing one cycle of the cavity (That is, disconnect the ring-

shaped laser from a certain point, and then inject a pulse from that
point to observe the output pulse that returns to that point after
passing through the laser cavity.). Figure 8 uses the horizontal axis to
represent the peak power of input pulses and the vertical axis to

FIGURE 5
Six-wavelength time domain diagram (intracavity pulse after OC with 20% output ratio).

FIGURE 6
Six-wavelength time-frequency diagram. The central wavelengths of the six wavelengths are (A) 2010, (B) 2020, (C) 2025, (D) 2015, (E) 2005, and (F)
2000 nm.
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represent the peak power of output pulses. These two values are
analogous to “xn” and “xn+1” in one-dimensional mapping systems
commonly studied in nonlinear dynamics [35]. The well known
cobweb diagram for studying the logistic map is also based on this
approach. This enables us to utilize this nonlinear dynamics research
method to analyze the laser’s output and stability. For example, the
typical PTF curve is shown in Figure 8 [28]. The PTF curve of a
stable laser system has two intersections with Pin = Pout. It can be
seen that the peak power of the input pulse which is lower than point
A will return to zero after multiple cycles in the cavity; when the peak
power of the seed pulse injected into the laser is higher than point A,
the pulse will gradually approach point B after evolution in the laser
system, and finally stabilize at point B.

The laser ring cavity is disconnected between SMF1 and OC1,
and the normalized output pulse is injected into the input of the
system breakpoint. The peak power of the pulse obtained at the

output of each breakpoint is recorded. The curve drawn in the
coordinate diagram is the PTF curve of the Mamyshev cavity. As
shown in Figure 9, the intrinsic pulse peak power of the laser system
is about 0.83 kW which is the second intersection point of the PTF
curve and Pin = Pout.

2.3 Influence of the filter bandwidth

The change of the filter bandwidth in the Mamyshev cavity
will lead to the change of the time domain and frequency domain
profile of the optical pulse after filtering, and then affect the
amplification and spectrum broadening process of the gain fiber
and the single mode fiber, which will affect the stability of the
laser system.

As shown in Figure 10, when the filter bandwidth increases
from 6.8 nm to 7.2 nm, the laser system can still reach a stable
state, and the peak power of the intrinsic pulse is comparable,
but the fluctuation of the PTF curve is acuter as the filter
bandwidth increases. If the filter bandwidth continues to
increase, the laser system will not be able to output a stable
pulse. When the filter bandwidth is further reduced from
6.8 nm, the gain in the laser system will be less than the loss,
the pulse will eventually disappear after evolution in the cavity,
and the system will stop oscillating. It can be seen that compared
with the 1-μm band, lasers working in the 2-μm band have more
stringent requirements on the filter bandwidth, and the working
range of the filters is significantly smaller. This is a problem that
must be paid attention to in the design and use of 2-μm lasers. In
actual use, it is recommended to use a tunable filter, which can
be fine-tuned according to the actual situation to meet the
operating conditions of the laser.

TABLE 3 The peak power and pulse duration of the six-wavelength.

Wavelength (nm) 2005 2000 2010 2020 2025 2015

Peak power (kW) (Intracavity power after each OC) 0.537 0.447 0.680 1.070 0.801 0.952

Pulse width (ps) 1.17 1.04 1.12 1.15 1.12 1.12

FIGURE 7
Pulse spectra evolution before and after the BPF (The spectral
evolution plots for all six wavelengths can be found in Supplementary
Figure S1.

FIGURE 8
Peak power transfer function of ring fiber laser system [28].
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From the pulse broadened spectrum (The spectral intensity
normalized to the peak value.) of the laser system in Figure 11,
the reason for the change of the PTF curve can be obtained. The
increase of the filter bandwidth makes the pulse broadened

spectrum at the filtering position become uneven. The rugged
broadened spectrum eventually leads to the fluctuation of the
PTF curve and poor system stability.

2.4 Influence of the SMF length in the cavity

The change of SMF length in the cavity will change the stability
of the system, so it is necessary to research the influence of SMF
length on the stability of the system by PTF curve. Figure 12 is the
input-output PTF diagram of the six-wavelength system with
different SMF lengths. The laser system can reach a stable state
under four SMF lengths. With the increase of SMF length, the PTF
curve shows an overall downward trend, and the fluctuation of the
PTF curve is more intense.

Meanwhile, the width of the pulse broadened spectrum
gradually decreases, as shown in Figure 13. In this process,
the peak power of the intracavity pulse decreases, and the
nonlinear spectrum broadening of the pulse reduces, which
can induce the flat position of the pulse broadened spectrum
to deviate from the filtering position. Therefore, the length of
the SMF affects the stability of the laser system by the position of
offset filtering.

FIGURE 9
Peak power transfer function of the six-wavelength Mamyshev
laser system.

FIGURE 10
Peak power transfer function of the Mamyshev laser system with
different filter bandwidths.

FIGURE 11
Pulse broadened spectrum of the Mamyshev laser system with
different filter bandwidths.

FIGURE 12
Peak power transfer function of the Mamyshev laser system with
different SMF lengths.

FIGURE 13
Pulse broadened spectrum of the Mamyshev laser system with
different SMF lengths.
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2.5 Influence of the output coupler

To investigate the influence of couplers on the output
characteristics of the laser, we conducted calculations for the
output characteristics of all wavelengths of the laser under
various coupling ratios. As depicted in Figure 1, the laser system
comprises six couplers (OC1~OC6). We only adjusted the coupling
ratio of OC1, while maintaining the coupling ratios of the other five
couplers (OC2~OC6) at a constant value (in/out = 80/20). This
approach was adopted to facilitate a more comprehensive analysis to
observe and compare the impact on the output at each wavelength
when a coupler in the system changes.

Figure 14 presents output and intracavity peak Power of OC1
(2000 nm), OC5 (2015 nm) andOC6 (2005 nm) under different output
coupling ratios of OC1. This illustrates the variation in pulse output
peak power for this stage and the last two stages as the OC1 coupling
ratio changes. (In the Supplementary Tables S1, S2 provide the peak
pulse power and pulse width inside the laser cavity for all six
wavelengths under different coupling ratios.) The variation in the
output coupling ratio at OC1 has a notable and direct impact on
the output power at OC1 (2000 nm), while the influence on other
wavelengths is minimal, with no significant changes observed in pulse
peak values or pulse widths (Table 4; Supplementary Tables S1, S2).

The stability of the intra-cavity power is primarily attributed to
the implementation of wavelength switching through nonlinear
broadening and offset filtering, where the filter selectively extracts
the spectrum within the widened filter bandwidth. When the pulse
power within the cavity ensures sufficient spectral broadening,
variations in power have a minimal impact on the subsequent
stages. While an increase in the output coupling ratio at
OC1 results in a reduction of power retained within this coupler,
its influence on the subsequent stage remains relatively modest
within a certain range. Of course, excessively increasing the output
coupling ratio can lead to a significant reduction in the pulse power
retained within the cavity after passing through this coupler.
Consequently, the spectral broadening becomes too narrow to
cover the offset filter of the subsequent stage, causing the laser to
cease functioning. We observed that when the output coupling ratio
at OC1 exceeds 35%, the laser cannot operate properly.

3 Conclusion

In this paper, a 2-μm six-wavelength synchronous ultrashort
pulse fiber laser based on Mamyshev regenerator is studied. The
output of six-wavelength synchronous pulses is realized by using

FIGURE 14
(A) Output and (B) intracavity peak power of OC1 (2000 nm), OC5 (2015 nm) and OC6 (2005 nm) under different output coupling ratios of OC1.

TABLE 4 The intracavity peak power of the six-wavelength under different output coupling ratios of OC1.

Output coupling ratios of OC1 65% 70% 75% 80% 85% 90% 95%

Peak power (kW) (Intracavity power after OC1)(2000 nm) 0.401 0.412 0.427 0.447 0.471 0.500 0.535

Peak power (kW) (Intracavity power after OC5)(2015 nm) 0.934 0.942 0.948 0.951 0.952 0.950 0.945

Peak power (kW) (Intracavity power after OC6)(2005 nm) 0.587 0.565 0.548 0.536 0.531 0.533 0.543
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multi-stage cascade Mamyshev regenerator with anomalous
dispersion. The principle is nonlinear spectral broadening and
offset filtering to realize the regeneration of different wavelength
pulses. There are six Mamyshev regenerator arms in the ring
cavity laser, and each arm has a respective gain fiber and filter
corresponding to a different wavelength. Therefore, there is no
interference and gain competition between multiple wavelengths
in the cavity, and the system does not require additional
synchronization devices. Six-wavelength pulses with the same
repetition rate are naturally synchronous and coherent. In
addition, the influence of filter bandwidth and SMF length on
system stability is researched by the PTF curve because of the
fluctuation of the spectrum after optical pulse broadening. The
pulse broadened spectrum in fiber lasers with anomalous
dispersion usually fluctuates greatly, which has a great
challenge for the design of multi-wavelength Mamyshev lasers
with a given wavelength. Adjusting the appropriate parameters to
make the offset filter position at the flat position of the broadened
spectrum is a necessary condition for the stable operation of the
system.
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