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This paper studies the influence of diverse strategy-updating timescales on the
evolution of cooperation, defection, and extortion strategies in a double-layer
lattice. Individuals can adjust the frequencies with which they updating their
strategies adaptively according to their fitness and interlayer information. On the
basis of Fermi dynamics, we find that information sharing between the two lattice
layers can effectively promote cooperative behavior in a double-layer lattice. In
each lattice layer, cooperation–extortion alliances can be formed to defend against
invasion by defection. We find that there exists an optimal value of the extortion
factor to promote the evolution of cooperation and that the frequency of
cooperation in a double-layer lattice is higher than that in a single-layer one.
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1 Introduction

The emergence of cooperation is a scientific problem widely studied in both natural and
social contexts. The prisoner’s dilemma (PD) game model provides a uniform framework in
which this phenomenon can be studied [1]. In the PD game model, a cooperator pays a
certain cost (c) to provide benefits (b) to an opponent, while a defector pays nothing, and the
corresponding Nash equilibrium is mutual defection. In the traditional PD game model, the
payoff of both sides depends on the strategy of the opponent, and the zero-determinant (ZD)
strategy ensures that the payoff of both sides is linear [2]. One important subset of the ZD
strategy is called the extortion strategy, in which it is unilaterally guaranteed that a player’s
own payoff is χ > 1 times that of its opponent. When the extortion strategy meets the
defection strategy, both of players gain zero, and the relationship between them is neutral
drifting. Hence, defection can invade an extortion population, which means that the
evolution of the extortion strategy is unstable within a well-mixed population [3].
Studies have suggested that the extortion strategy can act as a catalyst to promote the
emergence of cooperation in small well-mixed populations [4–7]. Therefore, the evolution of
cooperation in populations based on the extortion strategy deserves further study [8–11].

Network reciprocity provides a useful mechanism for escaping the dilemma of mutual
defection [12–14]. In networked games, each individual is located on a node of the underlying
interactive network and competes with those neighbors that are directly connected. In the PD
game, in regular spatial networks, cooperators can form tight clusters for defense from invasion
by defectors [15–24]. In heterogeneous scale-free networks, cooperators can easily occupy the
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hubs and establish positive feedback with their cooperative neighbors,
thereby ensuring the evolution of cooperation [25–30]. In multilayer
networks, the reciprocity between different layers greatly facilitates the
emergence of cooperation [31–41].

There are many other mechanisms to facilitate the evolution of
cooperation, such as those based on memory [42, 43] and timescales
[44, 45]. The process of an evolutionary game usually involves two
timescales: an interaction timescale, which describes how many times
individuals play the game, and a strategy-updating timescale, which
represents the frequency with which strategies are updated [46]. Most
previous studies have assumed that these two timescales are identical,
with individuals updating strategies immediately after playing a round
of games. However, some investigations have considered cases in
which the two timescales differ, which leads to a nontrivial
evolutionary path of cooperation [8, 10, 47–52].

This paper studies the evolution of cooperation in a double-layer
network where interactions occur on a shorter timescale than that on
which strategies are updated, i.e., individuals are allowed to hold on to
their current strategies and interact in several rounds of the PD game
before updating these strategies. In particular, we assume that the
strategy-updating timescale of an individual is dependent on both its
fitness and its current strategy. In this paper, the strategy-updating
timescale of each individual is associated with the performance of its
current strategy in the other layer of the network in such a way that the
higher the fitness of its strategy in the other layer, the longer is the time
interval in which the individual is able to retain its current strategy.
Under the reciprocity between the different layers of the network, the
individual is reluctant to change its current strategy even if a neighbor
with another strategy has a higher fitness. We study a networked
evolutionary PD game in a double-layer lattice with the aim of revealing
the interaction mechanism in the case of heterogeneous timescales. We
first introduce ourmodel and then present our numerical and analytical
results in detail. Finally, we present the conclusions of our work.

2 Methods

We consider the PD game staged in a double-layer lattice where
each layer is a 100 × 100 square lattice with periodic boundary
conditions. The two lattices are not physically connected, while
their interdependence is one-to-one, and will be introduced as part
of the strategy updating described below. In each layer of the lattice,
individuals choose one of three strategies: unconditional cooperation
(C), unconditional defection (D), or extortion (Eχ) and interact with
their k = 4 von Neumann neighbors. The long-term payoff matrix of
the three strategies can be obtained as follows [5]:

(1)

Here, χ > 1 is the extortion factor: the larger the value of χ, the more

extortioners exploit their partners. In contrast to the neutral drifting
relationship between extortion and defection, a cooperator can obtain
a small but positive benefit from its extortionate neighbor and form a
snowdrift-like relationship, i.e., the best response to the extortionate
neighbor is to choose cooperation. The parameter b determines the
benefit factor: the larger the value of b, the more difficult it is for
cooperation to emerge. By setting b − c = 1, there are only these two
parameters in the payoff matrix.

We assume that strategy updating can only be carried out
between neighbors in the same layer of the lattice, rather than
between networks in different layers. That is, at each step t, the
individual i in the upper layer of the lattice updates its strategy
according to the probability

pi t( ) � 1
1 + ηi max 0, fi( ). (2)

Here fi represents the fitness of individual i, which is calculated
according to the payoff matrix. If individual i decides to update its
strategy, it will randomly select a neighbor j from the four neighbors
in the upper layer of the lattice and learns j’s strategy with
probability

W Si ← Sj( ) � 1

1 + exp fi − fj( )/κ[ ]. (3)

Here, Si (Sj) is the current strategy of i (j), and κ represents the
rationality of the individual, and generally is set as κ = 0.1 [47].
Individual i′ in the lower layer of the lattice performs the same
strategy-updating step. ηi is the strategy-updating timescale factor of
the individual i and is calculated by

ηi � 1 +max 0,
fi + ∑m∈Γi′ ,Sm�Sifm

1 +∑m∈Γi′ ,Sm�Si1
⎛⎝ ⎞⎠. (4)

Here, Γi′ is the set consisting of individual i′ and its neighbors in the
other layer of the lattice corresponding to i. It can be seen that the
strategy-updating timescale factor η of the individual is closely related
to the current strategy of that individual, and it is related to the fitness
of the individual and the fitness of the current strategy in the other
layer of the lattice. If the current strategy of the individual can obtain a
higher fitness in the other layer of the lattice, feedback of interlayer
information will make the individual tend to maintain its current
strategy and delay the updating of this strategy.

Initially, each individual has an equal chance to choose one
behavior from the strategies C, D, and Eχ. In this paper, we perform
20 independent runs in the double-layer lattice to eliminate
randomness in the process of updating strategies. Each time, we
obtain the frequencies of different strategies for each layer lattice
through averaging over the last 10 000 generations after the transient
state of 90 000 generations. Below, we presents results and an
analysis to reveal how cooperation evolves in the presence of
defection and extortion strategies in the double-layer lattice.

3 Results

First, we study the influence of the interlayer information
sharing mechanism on the evolution of the three strategies in the
double-layer lattice when the extortion factor is relatively small (χ =
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1.5). Figure 1 shows the influence of the interlayer information
sharing mechanism on the frequencies of the cooperation, defection,
and extortion strategies. The trends of the strategy frequencies are
the same in both layers, and so here we only present the results for
one of them. As can be seen in Figure 1A, in the case of η = 1,
i.e., when there is no information sharing between the two layers of
the lattice, the strategy-updating timescale factor is only related to

the fitness of the individuals. With increasing benefit factor b, the
frequency of cooperation rapidly drops to zero, and the frequency of
defection rapidly rises to one, while the frequency of the extortion
strategy is always zero, and an extortion strategy cannot exist in the
network. Interestingly, when the interlayer information sharing
mechanism is introduced, the frequency of cooperation is greatly
promoted, as is shown in Figure 1B. As b increases, an extortion

FIGURE 1
Frequencies of cooperation, defection, and extortion strategies as functions of benefit factor b for an extortion factor χ = 1.5. (A) No interlayer
information sharing mechanism. (B) Information sharing between the two layers of the lattice.

FIGURE 2
Average fitnesses 〈f〉 and frequencies F of cooperation, defection, and extortion strategies as functions of the time step t for an extortion factor χ =
1.5 and a benefit factor b = 1.1. (A,B) No interlayer information sharing mechanism. (C,D) Information sharing between the two layers of the lattice.
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strategy can emerge in the network. When b is large (b = 2), the
cooperation and extortion strategies vanish, and defection
dominates the network.

We then analyze the evolution of the average fitness 〈f〉 and strategy
frequency F over timewithout andwith an interlayer information sharing
mechanism. At first, the three strategies are randomly distributed in the
network. Because the values of b and χ are both small (b= 1.1 and χ=1.5),
cooperators have the highest fitness, as shown in Figure 2A. In the
absence of an interlayer information sharing mechanism, an individual
only adjusts the strategy-updating timescale according to its own fitness.
The frequency of cooperation reaches its peak quickly at around t = 20, as
shown in Figure 2B. At the same time, the average fitness of cooperators
in the network reaches its maximum. Since the value of χ is relatively
small at this time, extortioners tend to share payoff with cooperators, and
the neighbors who encounter extortion and defection get nothing.
Cooperators get a small but positive payoff from extortioners and a
positive payoff from their cooperative neighbors. Hence, cooperators can
invade extortionate clusters, and the extortion strategy will gradually
diminish and eventually die out.When the extortion strategy dies out and
cooperation faces defection alone, the average fitness of the cooperators in
the network drops sharply to a negative value. Finally, cooperation dies
out in the network, while defection takes over the whole network.

When the interlayer information sharing mechanism is introduced,
the fitness of the current strategy in the other layer of the lattice needs to
be taken into account when an individual updates its strategy. With the
evolution of the time step, as is shown in Figure 2C, the average fitness of
cooperators in the network becomes higher than those of extortioners
and defectors. It can be seen from Figure 2D that the frequency of

cooperation first increases and then decreases, the frequency of
defection first fluctuates slightly and then increases, and the
frequency of the extortion strategy gradually decreases. At about t =
800, cooperation and defectionwane andwax, and the extortion strategy
is less prominent in the network. Since the average fitness of extortion
strategies in the network is positive, it can be inferred that the few
extortioners that survive are primarily close to cooperators. Finally,
cooperation, defection, and extortion strategies coexist in the network.

Next, we observe the evolution of strategies without interlayer
information sharing through a set of strategy distribution patterns at
different time intervals. Figure 3 describes the distribution of the
cooperation, defection, and extortion strategies in the network when
t = 1, 20, 100, and 10 000. Blue, red, and green represent the
cooperation, defection, and extortion strategies, respectively.
Initially, as shown in Figure 3A, the three strategies are randomly
mixed in the network. Cooperators with high fitness can persist and
spread their cooperative behaviors to their neighbors under
regulation of the strategy-updating timescale. As shown in
Figure 3B, cooperation has spread to the positions originally
belonging to the extortion strategy. Since cooperative pairs in the
network are randomly established at this time, and their mutual
support is very fragile, cooperation cannot be maintained in the
absence of large cooperative clusters. Under the influence of the fast
Fermi updating rules and the rationality κ of the individual,
cooperation is gradually reduced, as shown in Figure 3C. In the
absence of the extortion strategy, it is difficult for cooperation to
defend against defection. In the final state, defectors occupy the
whole network, as shown in Figure 3D.

FIGURE 3
Strategy distribution pattern at different time steps without an interlayer information sharing mechanism for b = 1.1 and χ = 1.5. Blue, red, and green
represent the cooperation, defection, and extortion strategies, respectively. The time steps are (A) t = 1, (B) t = 20, (C) t = 100, and (D) t = 10 000.
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In the same way, we analyze the distribution of strategies that
introduce interlayer information sharing mechanism between layers by
using the spotmap. At the initial time (t= 1), cooperation, defection, and
extortion strategies are randomly distributed in the network, as shown in
Figure 4A. Because the fitness of cooperation is high, under adjustment
of the strategy-updating timescale, cooperators can persist and spread
their cooperative behaviors. When t = 100 and t = 200, cooperation
gradually invades the extortion strategy, as shown in Figures 4B, C.
Owing to the regulation of the information sharing mechanism between
layers, a few extortioners can be connected with the cooperators to

survive. However, after cooperators with high fitness form an alliance
with extortioners, they can effectively resist invasion by defectors. Finally,
the three strategies coexist in the network, as shown in Figure 4D.

We have analyzed and compared the evolution of strategies without
and with an interlayer information sharing mechanism in the case of a
relatively small extortion factor. Now, we change it to χ = 5.0 to further
study the influence of the extortion strategy on cooperation under
adjustment of the interlayer information sharing mechanism. As
shown in Figure 5A, in the absence of an information sharing
mechanism, a relatively high extortion factor can greatly promote the

FIGURE 4
Strategy distribution patterns at different time steps with an interlayer information sharing mechanism for b = 1.1 and χ = 1.5. Blue, red, and green
represent the cooperation, defection, and extortion strategies, respectively. The time steps are (A) t = 1, (B) t = 100, (C) t = 200, and (D) t = 100 000.

FIGURE 5
Frequencies F of cooperation, defection, and extortion strategies as functions of the benefit factor b for χ = 5.0. (A)No interlayer information sharing
mechanism; (B) Information sharing between the two layers of the lattice.
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evolution of cooperation strategies. With increasing benefit factor b, the
frequency of cooperation first decreases, then increases, and then
decreases, the frequency of extortion strategy keeps increasing, and
the frequency of defection first increases and then decreases sharply
to zero.When b ≥ 1.2, defection vanishes, and cooperation and extortion
strategies coexist in the network. Comparison with Figure 1A shows that
when the extortion factor is increased, extortion strategies can emerge in
the network and help cooperation evolve. Reference [10] have found that
in a single-layer lattice, when individuals adjust the strategy-updating
timescale according to fitness under a high extortion factor, a variable
strategy-updating timescale can help cooperation reduce the speed of
strategy updating after a high fitness has been obtained, thus promoting
the formation of a cooperation–extortion strategy alliance in the network.
In this way, the frequency of cooperation can be increased. Henceforth in
this paper, we will no longer consider evolution without information
sharing between layers, but will focus on interlayer information feedback.

When the interlayer information sharing mechanism is introduced,
with increasing benefit factor b, the frequency of cooperation first
increases slightly and then decreases, the frequency of the extortion
strategy increases continuously, while the frequency of defection
decreases to zero, as shown in Figure 5B. When b ≥ 1.2, cooperation
and extortion strategies coexist in the network. As can be seen from
comparison with Figure 5A, when the interlayer information sharing
mechanism is introduced, the frequency of cooperation increases, while

the threshold for extinction of defection stays the same. Comparison
with Figure 1B shows that with the increased extortion factor, extortion
strategies can emerge in the network, and the frequency of cooperation is
greatly increased, while defection cannot exist in the network
when b ≥ 1.2.

Next we analyze the evolution of the strategies and their pairs with
time. The three strategies of cooperation, defection, and extortion can
form six different pairs in the network, namely, cooperation–cooperation
(C–C), cooperation–defection (C–D), cooperation–extortion (C–Eχ),
defection–defection (D–D) pair, defection-extortion (D–Eχ), and
extortion–extortion (Eχ–Eχ) pairs. Figures 6A, B show the evolution of
the upper layer of the lattice, and Figures 6C, D show the evolution of the
lower layer. It can be seen that the frequencies of the strategies and
strategy pairs evolve similarly over time in the upper and lower layers of
the network. At first, the three strategies are distributed randomly and
occupy one-third of the network, as shown in Figures 6A, C.
Meanwhile, as shown in Figures 6B, D, C–C, D–D, and Eχ–Eχ pairs
each account for one-ninth, and the remaining three strategy pairsC–D,
D–Eχ, and D–Eχ each account for two-ninths. Since the values b = 1.3
and χ = 5.0 are both large, cooperation is invaded by the defection and
extortion strategies, and therefore the frequency of cooperation
decreases, while the frequencies of defection and extortion strategies
increase, and those ofC–C,C–D andC–Eχ pairs decrease. At around t =
10, the rate of decline ofC–C andC–Eχ pairs slows down to give a stable

FIGURE 6
Evolution of strategies and strategy pairs in a double-layer lattice for b = 1.3 and χ = 5.0. (A,B) Results in the upper layer of the lattice. (C,D) Results in
the lower layer.
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period, while the proportion of C–D pairs is still decreasing, which
indicates that some individuals adopting an extortion strategy form a
stable cooperation–extortion strategy alliance structure with the
remaining cooperators in the network. As time passes, the
cooperation–extortion strategy alliance gradually comes to occupy

part of the network and begin to spread, and hence the frequency
of cooperation begins to rise, while the frequency of defection begins to
decline, and the frequencies of C–C and C–Eχ pairs gradually increase.
Finally, cooperation and extortion strategies coexist in the lattice, while
defection vanishes.

FIGURE 7
Strategy distribution patterns at different times in a double-layer lattice for b = 1.3 and χ = 5.0. (A–D) Results in the upper layer of the lattice. (E–H)
Results in the lower layer. The time steps are (A,E) t = 1, (B,F) t = 20, (C,G) t = 100, and (D,H) t = 10 000.

FIGURE 8
Frequencies of (A) cooperation (FC), (B) defection (FD), and (C) extortion (FEχ ) strategies as functions of the extortion factor χ. The dashed lines are the
results for a single-layer lattice.
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Although the trends of the frequencies of strategies and pairs in the
two lattice layers are similar, we find that the strategy distribution in the
upper and lower layers of the network is asymmetrical. Figure 7 shows
the strategy distribution patterns of the upper and lower layers at
different time steps. Figures 7A–D show the results for the upper
layer and Figures 7E–H those for the lower layer. Initially, the
strategies are randomly distributed in the network, as shown in
Figures 7A, E. It can be seen from the payoff matrix (1) that in the
beginning, the defection and extortion strategies gain more from
cooperation, and cooperation is invaded by the defection and
extortion strategies. As shown in Figures 7B, F, at around t = 20, the
surviving cooperators are mainly associated with extortioners. Once the
fitness of a cooperator becomes high, the cooperator slows down its rate
of strategy renewal and forms an alliance with an extortioner to spread
across the network. At around t = 100, in the cooperation–extortion
strategy alliance, the extortion strategy protects cooperation from being
invaded by defection, and hence defection cannot get in touch with
cooperation and gain benefit from it, while the extortion strategy on the
border can resist invasion by defection, because it can gain greater benefit
from internal cooperation, as shown in Figures 7C, G. Finally, as shown
in Figures 7D, H, extortion and cooperation strategies coexist in the
network, while defection can no longer survive in the network.

We finally study the effects of the extortion factor χ on the
frequencies of cooperation (FC), defection (FD), and extortion (FEχ)
strategies for different values of the benefit factor b. With increasing χ, as
shown in Figure 8A, FC changes nonmonotonically, first rising and then
decreasing, and there is an optimal extortion factor to promote the
evolution of cooperation. In the cases b = 1.1 and 1.3, FD gradually
decreases to zero, as shown in Figure 8B, whileFEχ gradually increases, as
shown in Figure 8C.When b = 1.5,FEχ first increases and then decreases
with increasing χ, and defection can re-emerge in the network at larger
values of χ. The choice of appropriate values for the extortion factor can
promote the growth of cooperation in the double-layer lattice.

The dashed lines in Figure 8 show the results for a single-layer lattice.
We find that no matter whether a lattice is single-layer or double-layer,
there exists an optimal extortion factor χ for which cooperation have the
highest frequency.However, for the same value of the benefit factor b, the
optimal value of χ in a single-layer lattice is higher than that in a double-
layer lattice, which means that in a single-layer lattice, a greedy extortion
strategy is needed to resist invasion by defection.Meanwhile, we find that
when the value of χ is small, in contrast to the defection-dominant
network that arises in a single-layer lattice, cooperation, defection, and
extortion strategies can coexist in a double-layer lattice. At each value of
χ, the frequency of cooperation in a double-layer lattice is higher
than that in a single-layer lattice. Therefore, under adjustment of
the strategy-updating timescale, a double-layer lattice is more
conducive to the emergence of cooperation than a single-layer
lattice.

4 Discussion

In this paper, we have studied the effects of extortion strategies
on the evolution of cooperation in a double-layer lattice. Individuals
can adjust the strategy-updating timescale according to their fitness
and the current performance of their strategy in the other layer of the
network. Strategy updating occurs only in the same layer lattice, and
interlayer information sharing will affect the speed of strategy

updating. Our results show that when the extortion factors in the
two layers of the lattice are the same, the trend of strategy evolution
in the upper and lower layers is similar. When the extortion factors
in a double-layer lattice are small, the diversity in the strategy-
updating timescale, that is, enabled by the double-layer network
structure greatly promotes the level of cooperation compared with
what can be achieved in the absence of an interlayer information
sharing mechanism. Finally, we find that the extortion factor has a
nonmonotonic effect on the emergence of cooperation in the
network. An appropriate value for the extortion factor can
promote the evolution of cooperation in the network, and a
double-layer lattice is more conducive to the evolution of
cooperation than a single-layer network.
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