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Here, we consider the stochastic (2 + 1)-dimensional Heisenberg ferromagnetic
spin chain equation which is forced by the multiplicative Brownian motion in the
Stratonovich sense. We utilize the (G′/G)-expansion method and the mapping
method to attain the analytical solutions of the stochastic (2 + 1)-dimensional
Heisenberg ferromagnetic chain equation. Various types of analytical stochastic
solutions, such as the hyperbolic, elliptic, and trigonometric functions, have been
obtained. Physicists can utilize these solutions to understand a variety of important
physical phenomena because the magnetic soliton has been categorized as one
of the interesting groups of nonlinear excitations representing spin dynamics in
the semiclassical continuum Heisenberg systems. Moreover, we employ MATLAB
tools to plot 3D and 2D graphs for some obtained solutions to address the
influence of Brownian motion on these solutions.
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1 Introduction

In many branches of science and mathematics, nonlinear evolution equations (NLEEs)
play a crucial role in describing a wide range of phenomena that linear equations are unable
to adequately explain. These equations involve nonlinear terms that can lead to diverse and
often intricate behaviors, making their study both fascinating and challenging. NLEEs have
also found significant applications in various branches of physics and engineering. In fluid
dynamics, the famous Navier–Stokes equations describe the behavior of fluids which are
inherently nonlinear due to their viscosity and turbulent effects. Understanding and solving
these equations is essential for predicting weather patterns, optimizing industrial processes,
and designing efficient aerodynamics. Additionally, NLEEs have been instrumental in
quantum field theory, providing insights into particle physics and the dynamics of
elementary particles.

In mathematics, the study of NLEEs has led to the development of several powerful
analytical and numerical techniques. Some of these methods include Jacobi elliptic function
[1], (G′G)-expansion [2, 3], sine–cosine [4, 5], perturbation [6, 7], exp (−ϕ(ς))-expansion [8],
Hirota’s [9], tanh–sech [10, 11], and Riccati–Bernoulli sub-ODE methods [12].

On the other hand, stochastic NLEEs (SNLEEs) play a crucial role in various scientific
fields, including physics, finance, and probability theory. These equations incorporate
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random variations into deterministic equations, adding a stochastic
term that captures the inherent uncertainty in the system. The
addition of the stochastic term is of paramount importance as it
allows us to better model and understand real-world phenomena by
accounting for unpredictable factors and fluctuations. Furthermore,
the addition of stochastic terms helps capture the complexity and
nonlinearity of real-world systems. Many physical and financial
systems exhibit a nonlinear behavior, where small changes in the
initial conditions or parameters can lead to drastic and
unpredictable outcomes. Traditional deterministic NLEEs often
fail to accurately capture this nonlinear behavior. By introducing
stochastic terms, we can better model the inherent randomness and
nonlinearity of these systems, leading to more realistic and insightful
solutions.

It looks more significant when considering models of NLEEs
with random forces. Therefore, here, we consider one of the most
important models in the modern magnetic theory, the stochastic
Heisenberg ferromagnetic spin chain equation (SHFSCE), derived
using multiplicative Brownian motion in the Stratonovich sense,
which has the following form:

idψ + k1ψxx + k2ψyy + k3ψxy − k4 ψ
∣∣∣∣ ∣∣∣∣2ψ[ ]dt + iρψ◦dB � 0, (1)

where ψ is a complex stochastic function of the variables x, y, and t
and ki is the constant for i = 1, 2, 3, and 4. σ is the noise intensity, and
B is the Brownian motion in one variable t.

A deterministic Heisenberg ferromagnetic equation (DHFE)
has been created to interpret magnetic ordering in ferromagnetic
materials. It plays an important role in the modern magnetic
theory, which describes nonlinear magnet dynamics and is used
in optical fibers. Due to the importance of DHFE, many authors
have attained the exact solution for this equation by using various
methods, such as Hirota’s bilinear method [13, 14], Darboux
transformation [15–17], sub-ODE method [18], sine-Gordon
and modified exp-function expansion methods [19], auxiliary
ordinary differential equation [20], Jacobi elliptic functions [21],
F-expansion method combined with Jacobi elliptic functions
[22], and generalized Riccati mapping method and improved
auxiliary equation [23], while many authors have investigated the
analytical solutions of fractional DHFE by using various
methods, including exp (−ϕ(ς))-expansion and extended tanh
function [24], new extended generalized Kudryashov [25], and
generalized Riccati equation mapping methods [26].

The main motivation of this work is to obtain the analytical
stochastic solutions of Eq. 1 using the (G′/G)-expansion and

FIGURE 1
(i–iii) 3D profile of the solution |ψ(x, y, t)| defined in Eq. 32, with θ3 � −5, ŵ � 0.5, and σ = 0, 1, 2. (iv) 2D profile of Eq. 32 with various values of σ.
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mapping methods. Physicists could utilize the acquired solution to
interpret a variety of fascinating physical phenomena because the
magnetic soliton has been categorized as one of the interesting
groups of nonlinear excitations representing spin dynamics in the
semiclassical continuum Heisenberg systems. Moreover, we show
the influence of Brownian motion on the behavior of these solutions
using MATLAB tools to exhibit some graphical representations.

The remainder of this article is organized as follows: in
Section 2, we define the Brownian motion and state the
relationship between the Stratonovich and Itô integrals. In
Section 3, we derive the wave equation of SHFSCE (1). In
Section 4, we apply the (G′G)-expansion method to attain the
analytical stochastic solution of SHFSCE (1). In Section 5, we
discuss the influences of Brownian motion on the analytical
solutions of SHFSCE (1). Finally, we outline the article’s
conclusions in Section 6.

2 Brownian motion

Brownian motion refers to the random movement of
microscopic particles suspended in a fluid. It was first

observed by the Scottish botanist Robert Brown in 1827 when
he noticed pollen grains jiggling randomly in water under a
microscope. This discovery paved the way for the development
of the kinetic theory of gases and had a profound impact on our
understanding of the physical world. Brownian motion has
applications in a wide range of scientific disciplines. In
physics, it has been used to determine fundamental constants,
such as Avogadro’s number, by measuring the displacement of
particles in a known volume under known conditions. In
chemistry, it has been utilized to study the diffusion of
molecules, enabling the determination of molecular sizes and
diffusion coefficients. In biology, it has been employed to study
the movement of microscopic organisms and the dynamics of
biological macromolecules.

Now, let us define the Brownian motion B(t) as follows:

Definition 1. The stochastic process B(t), t≥ 0 is called Brownian
motion if it satisfies the following criteria:

1. B(0) � 0.
2. B(t) has independent increments.
3. B(t) is continuous in t.

FIGURE 2
(i–iii) 3D profile of the solution |ψ(x, y, t)| defined in Eq. 33, with θ3 = −5 and σ = 0, 1, 2 (iv) 2D profile of Eq. 33 with various values of σ.
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4. The increments B(t) − B(s) are normally distributed with
variance t − s and mean 0.
We need the following lemma:

Lemma 1. E(eρB(t)) � e
1
2ρ

2t for any real number ρ.
We note that there are two widely used versions of stochastic

integrals, Stratonovich and Itô [27, 28]. Modeling issues usually
dictate determination of the acceptable version; however, once
the version is selected, a comparable equation of the other
version can be established with the same solutions. Thus, it is
possible to switch between Itô (denoted by ∫t

0
fdB) and

Stratonovich (denoted by ∫t
0
f◦dB) integrals using the

following relationship:

∫t

0
f s,Xs( )dB s( ) � ∫t

0
f s,Xs( )◦dB s( ) − 1

2
∫t

0
f s,Xs( ) ∂f s,Xs( )

∂x
ds,

(2)
where f is assumed to be sufficiently regular and {Xt, t ≥0} is a
stochastic process.

3 The wave equation of SHFSCE

To derive the wave equation of SHFSCE, we employ the next
wave transformation:

ψ x, y, t( ) � u η( )e iθ−σB t( )−σ2t( ), η � η1x + η2y + η3t,

θ � θ1x + θ2y + θ3t,
(3)

where u is a real deterministic function and ηi and θi for all i = 1, 2,
and 3 are constants. We note that

ψxx � η21u
′′ + 2iη1θ1u′ − θ21u[ ]e iθ−σB t( )−σ2t( ),

ψyy � η22u
′′ + 2iη2θ2u′ − θ22u[ ]e iθ−σB t( )−σ2t( ),

ψxy � η1η2u
′′ + i η1θ2 + η2θ1( )u′ − θ1θ2u[ ]e iθ−σB t( )−σ2t( ),

(4)

and

dψ � η3u′ + iθ3u + 1
2
σ2u − σ2u( )dt − σudB[ ]e iθ−σB t( )−σ2t( )dt

� η3u′ + iθ3u( )dt − 1
2
σ2udt + σudB( )[ ]e iθ−σB t( )−σ2t( )dt,

(5)

FIGURE 3
(i–iii) 3D profile of the solution |ψ(x, y, t)| defined in Eq. 43, with θ3 = −5 and σ = 0, 1, 2. (iv) 2D profile of Eq. 43 with various values of σ.
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where the term +1
2σ

2u represents the Itô correction. By using Eq. 2 in
the differential form, we obtain

dψ � η3u′ + iθ3u( )dt − σu◦dB[ ]e iθ−σB t( )−σ2t( )dt. (6)
Substituting Eq. 3 into (1) and utilizing Eqs 4, 5, we obtain the
following equation for the imaginary part:

η3 + 2k1η1θ1 + 2k2η2θ2 + k3η1θ2 + k3η2θ1( )u′ � 0, (7)
where we assume that

η3 � −k1η1θ1 − 2k2η2θ2 − k3η1θ2 − k3η2θ1.

Furthermore, we derive the following equation for the real part:

u′′ − Z1e
2σB t( )−2σ2t( )u3 − Z2u � 0, (8)

where

Z1 � k4
k1η21 + k2η22 + k3η1η2

and Z2 � θ3 + k1θ
2
1 + k2θ

2
2 + k3θ1θ2

k1η21 + k2η22 + k3η1η2
.

Taking expectation on both sides of Eq. 8, we attain

u′′ − Z1u
3e−2σ

2tE e2σB t( )( ) − Z2u � 0, (9)
where u represents the deterministic function. Using Lemma 1, Eq. 9
attains the following form:

u′′ − Z1u
3 − Z2u � 0. (10)

4 Exact solutions of SHFSCE

To find the solutions of Eq. 10, we apply the (G′/G)-expansion
[2] and mapping methods. Subsequently, we attain the solutions of
SHFSCE (1).

4.1 (G′/G)-expansion method

To begin, let us assume that the solution of Eq. 10 has the
following form:

u �∑N
i�0

bk
G′
G
[ ]i, (11)

where b0, b1, ..., bN denote unknown constants, such that bN ≠ 0, and
G solves

G′′ + λG′ + ]G � 0, (12)
where λ and ] are undefined constants. By balancing u3 with u′′ in
Eq. 10, we obtain

N � 1. (13)
From Eq. 13, we can rewrite Eq. 11 as

u � b0 + b1
G′
G
. (14)

Substituting Eq. 14 into Eq. 10 and utilizing Eq. 12, we obtain

2b1 − Z1b
3
1( ) G′

G
[ ]3 + 3λb1 − 3Z1b0b

2
1( ) G′

G
[ ]2

+ λ2b1 + 2b1] − 3Z1b1b
2
0 − Z2b1( ) G′

G
[ ]

+ ]λb1 − Z1b
2
0b1 − Z2b0( ) � 0.

Equating each coefficient of [G′G]i (i = 3, 2, 1, and 0) by zero, we obtain

2b1 − Z1b
3
1 � 0,

3λb1 − 3Z1b0b
2
1 � 0,

λ2b1 + 2b1] − 3Z1b1b
2
0 − Z2b1 � 0,

and

]λb1 − Z1b
3
0 − Z2b0 � 0.

We obtain the following equation by solving these equations:

b1 � ±

��
2
Z1

√
, λ � λ, b0 � ±

λ���
2Z1

√ , ] � λ2

4
+ Z2

2
. (15)

The roots of auxiliary Eq. 12 are

−λ
2

±

���−Z2
2

√
.

Depending on Z2, a variety of situations might arise, which are as
follows:

Case 1: If Z2 = 0, then

G η( ) � c1 exp
−λ
2
η( ) + c2η exp

−λ
2
η( ),

where c1 and c2 are constants. Hence, by using Eq. 14, the solution of
Eq. 10 is

u η( ) � ±
λ���
2Z1

√ ±

��
2
Z1

√
−λ
2
+ c2 exp −λ

2 η( )
c1 exp −λ

2 η( ) + c2η exp −λ
2 η( )⎡⎢⎣ ⎤⎥⎦. (16)

As a result, SHFSCE (1) derives the solution

ψ x,y,t( )�± λ���
2Z1

√ +
��
2
Z1

√
−λ
2
+ c2 exp −λ

2 η( )
c1 exp −λ

2 η( )+c2ηexp −λ
2 η( )⎡⎢⎣ ⎤⎥⎦⎧⎨⎩ ⎫⎬⎭e iθ−σB t( )−σ2t( ),

(17)
where η = η1x + η2y − (2k1η1θ1 + 2k2η2θ2 + k3η1θ2 + k3η2θ1)t and θ =
θ1x + θ2y + θ3t.

Case 2: If Z2 <0, then

G η( ) � c1 exp
−λ
2
+
���−Z2
2

√( )η[ ] + c2 exp
−λ
2
−
���−Z2
2

√( )η[ ].
Therefore, the solution of Eq. 10 is

u η( ) � ±
λ���
2Z1

√ ±

��
2
Z1

√ c1
−λ
2
+
���−Z2

2

√( )exp −λ
2
+
���−Z2
2

√( )η( )
c1 exp

−λ
2
+
���−Z2

2

√( )η( ) + c2 exp
−λ
2
−
���−Z2

2

√( )η( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+
c2

−λ
2
−
���−Z2
2

√( )exp −λ
2
−
���−Z2

2

√( )η( )
c1 exp

−λ
2
+
���−Z2

2

√( )η( ) + c2 exp
−λ
2
−
���−Z2
2

√( )η( )
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (18)
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Consequently, the solution of SHFSCE (1) is

ψ x, y, t( ) � ±
λ���
2Z1

√ +
��
2
Z1

√ c1
−λ
2
+
���−Z2
2

√( )exp −λ
2
+
���−Z2

2

√( )η( )
c1 exp

−λ
2
+
���−Z2
2

√( )η( ) + c2 exp
−λ
2
−
���−Z2

2

√( )η( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
+

c2
−λ
2
−
���−Z2

2

√( )exp −λ
2
−
���−Z2

2

√( )η( )
c1 exp

−λ
2
+
���−Z2
2

√( )η( ) + c2 exp
−λ
2
−
���−Z2

2

√( )η( )
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭e iθ−σB t( )−σ2 t( ) .

(19)

Case 3: If Z2 >0, then

G η( ) � exp
−λ
2
η( ) c1 cos

��
Z2
2

√
η( ) + c2 sin

��
Z2
2

√
η( )[ ].

Hence, the solution of Eq. 10 is

u η( ) � ±
λ���
2Z1

√ ±

��
2
Z1

√
−λ
2
+
−c1

��
Z2
2

√
sin

��
Z2
2

√
η( ) + c2

��
Z2
2

√
cos

��
Z2
2

√
η( )

c1 cos
��
Z2
2

√
η( ) + c2 sin

��
Z2
2

√
η( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

(20)
Thus, the solution of SHFSCE (1) is

ψ x, y, t( ) � λ���
2Z1

√ ±

��
2
Z1

√
−λ
2
+[⎧⎨⎩

+
−c1

��
Z2
2

√
sin

��
Z2
2

√
η( ) + c2

��
Z2

2

√
cos

��
Z2

2

√
η( )

c1 cos

��
Z2

2

√
η( ) + c2 sin

��
Z2
2

√
η( )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭e iθ−σB t( )−σ2t( ),

(21)

where η = η1x + η2y − (2k1η1θ1 + 2k2η2θ2 + k3η1θ2 + k3η2θ1)t and
θ = θ1x + θ2y + θ3t.

Special cases
Case 1: Substituting c2 = 0 and λ = 0 into Eq. 21, we obtain

ψ x, y, t( ) � ±

��
Z2
Z1

√
tan

��
Z2
2

√
η( )⎞⎠e iθ−σB t( )−σ2t( ). (22)

Case 2: Substituting c1 = 0 and λ = 0 into Eq. 21, we obtain

ψ x, y, t( ) � ±

��
Z2
Z1

√
cot

��
Z2
2

√
η( )e iθ−σB t( )−σ2t( ). (23)

Case 3: If we substitute c1 = c2 = 1 and λ = 0 into Eq. 21, then

ψ x, y, t( ) � ±

��
Z2
Z1

√
sec

���
2Z2
√

η( ) + tan
���
2Z2

√
η( )[ ]e iθ−σB t( )−σ2t( ).

Case 4: Substituting c1 = c2 = 1 and λ � ���
2Z1

√
into Eq. 21, we derive

ψ x, y, t( ) � ± 1 ∓ 2

��
Z2
Z1

√
1

1 + cot
���
2Z2

√
η( )( )⎡⎢⎣ ⎤⎥⎦e iθ−σB t( )−σ2t( ). (24)

Case 5: Substituting c1 = c2 = 1 and λ � − ���
2Z1

√
into Eq. 21, we obtain

ψ x, y, t( ) � ∓ 1 ± 2

��
Z2
Z1

√
1

1 + tan
���
2Z2

√
η( )( )⎡⎢⎣ ⎤⎥⎦e iθ−σB t( )−σ2t( ). (25)

Case 6: Substituting c1 = c2 = 1 and λ = 0 into Eq. 19, we derive

ψ x, y, t( ) � ±

����
−Z2
Z1

√
tanh

���−Z2
2

√
η( )e iθ−σB t( )−σ2t( ). (26)

Case 7: Substituting c1 = 1, c2 = −1, and λ = 0 into Eq. 19, we derive

ψ x, y, t( ) � ±

����
−Z2
Z1

√
coth

���−Z2
2

√
η( )e iθ−σB t( )−σ2t( ), (27)

where η = η1x + η2y − (2k1η1θ1 + 2k2η2θ2 + k3η1θ2 + k3η2θ1)t and θ =
θ1x + θ2y + θ3t.

Remark 3. Eqs 22–27 with σ = 0 coincide with the results reported
in [24].

4.2 Mapping method

Let the solutions of Eq. 10 take the following form:

Ψ η( ) � ℓ0 + ℓ1φ η( ), (28)
where ℓ0 and ℓ1 denote the undetermined constants and φ solves the
first elliptic equation:

φ′ �
�����������
r + qφ2 + pφ4
√

, (29)

where the parameters r, q, and p all denote real numbers.
Substituting Eq. 28 into Eq. 10, we obtain

2ℓ1p − Z1ℓ
3
1( )φ3 − 3Z1ℓ0ℓ

2
1φ

2 + ℓ1q − 3Z1ℓ
2
0ℓ1 − ℓ1Z2( )φ

+ Z2ℓ0 − Z1ℓ
3
0( ) � 0.

Equating each coefficient of φk to zero, we derive

2ℓ1p − Z1ℓ
3
1 � 0,

−3Z1ℓ0ℓ21 � 0,

ℓ1q − 3Z1ℓ
2
0ℓ1 − ℓ1Z2 � 0,

and

−Z2ℓ0 − Z1ℓ
3
0 � 0.

Solving these equations, we obtain

ℓ0 � 0, ℓ1 � ±

���
2p
Z1

√
, -1 � 0, q � Z2. (30)

Substituting into Eq. 28, we derive the solutions of Eq. 10 in the
following form:

u η( ) � ±

���
2p
Z1

√
φ η( ), for p

Z1
> 0.

Consequently, the solutions of SHFSCE (1), utilizing Eq. 3, are

ψ x, y, t( ) � ±

���
2p
Z1

√
φ η( )e iθ−σB t( )−σ2t( ), for p

Z1
> 0. (31)

Depending on p and Z1, a variety of cases might arise, which are as
follows:

Case 1: If p =, ŵ2, q � −(1 + ŵ2), and r = 1, then the solution of
Eq. 29 is φ(η) = sn(η). Hence, Eq. 31 becomes

ψ x, y, t( ) � ± ŵ

��
2
Z1

√
sn η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (32)

When ŵ → 1, then Eq. 32 changes to
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ψ x, y, t( ) � ±

��
2
Z1

√
tanh η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (33)

Case 2: If p = 1, q � 2ŵ2 − 1 and r � −ŵ2(1 − ŵ2), then the
solution of Eq. 29 is φ(η) = ds(η). Thus, Eq. 31 becomes

ψ x, y, t( ) � ±

��
2
Z1

√
ds η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (34)

When ŵ → 1, then Eq. 34 changes to

ψ x, y, t( ) � ±

��
2
Z1

√
csch η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (35)

If ŵ → 0, then Eq. 34 tends to

ψ x, y, t( ) � ±

��
2
Z1

√
csc η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (36)

Case 3: If p = 1, q � 2 − ŵ2, and r � (1 − ŵ2), then the solution
of Eq. 29 is φ(η) = cs(η). Hence, Eq. 31 becomes

ψ x, y, t( ) � ±

��
2
Z1

√
cs η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (37)

When ŵ → 1, then Eq. 37 transfers to Eq. 35. If ŵ → 0, then Eq. 37
tends to

ψ x, y, t( ) � ±

��
2
Z1

√
cot η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (38)

Case 4: If p = ŵ2

4 , q � (ŵ2−2)
2 , and r � 1

4, then the solution of Eq. 29
is φ(η) � sn(η)

1+dn(η). Thus, Eq. 31 becomes

ψ x, y, t( ) � ± ŵ

���
1
2Z1

√
sn η( )

1 + dn η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (39)

When ŵ → 1, then Eq. 39 transfers to

ψ x, y, t( ) � ±

���
1
2Z1

√
tanh η( )

1 + sech η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (40)

Case 5: If p = (1−ŵ2)2
4 , q � (1−ŵ2)2

2 , and r � 1
4, then the solution of

Eq. 29 is φ(η) � sn(η)
dn+cn(η). Hence, Eq. 31 becomes

ψ x, y, t( ) � ± 1 − ŵ2( ) ���1
2Z1

√
sn η( )

dn + cn η( )e iθ−σB t( )−σ2t( ), for Z1 > 0.

(41)
If ŵ → 0, then Eq. 41 tends to

ψ x, y, t( ) � ±

���
1
2Z1

√
sin η( )

1 + cos η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (42)

Case 6: If p = 1−ŵ2

4 , q � (1−ŵ2)
2 , and r � (1−ŵ2)

4 , then the solution of
Eq. 29 is φ(η) � cn(η)

1+sn(η). Thus, Eq. 31 takes the following form:

ψ x, y, t( ) � ±

������
1 − ŵ2

2Z1

√
cn η( )

1 + sn η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (43)

If ŵ → 0, then Eq. 43 tends to

ψ x, y, t( ) � ±

���
1
2Z1

√
cos η( )

1 + sin η( )e iθ−σB t( )−σ2t( ), for Z1 > 0. (44)

Case 7: If p = 1, q = 0, and r = 0, then the solution of Eq. 29 is
φ(η) � c

η. Hence, Eq. 31 becomes

ψ x, y, t( ) � ±

��
2
Z1

√
c

η
e iθ−σB t( )−σ2t( ), for Z1 > 0. (45)

Case 8: If p � −1, q � 2 − ŵ2, and r � (ŵ2 − 1), then the solution of
Eq. 29 is φ(η) = dn(η). Thus, Eq. 31 becomes

ψ x, y, t( ) � ±

���
−2
Z1

√
dn η( )e iθ−σB t( )−σ2t( ), for Z1 < 0. (46)

When ŵ → 1, then Eq. 46 transfers to

ψ x, y, t( ) � ±

���
−2
Z1

√
sech η( )e iθ−σB t( )−σ2t( ), for Z1 < 0. (47)

If ŵ → 0, then Eq. 46 tends to

ψ x, y, t( ) � ±

���
−2
Z1

√
e iθ−σB t( )−σ2t( ), for Z1 < 0. (48)

Case 9: If p � −ŵ2, q � 2ŵ2 − 1 and r � (1 − ŵ2), then the
solution of Eq. 29 is φ(η) = cn(η). Hence, Eq. 31 becomes

ψ x, y, t( ) � ± ŵ

���
−2
Z1

√
cn η( )e iθ−σB t( )−σ2t( ), for Z1 < 0. (49)

When ŵ → 1, then Eq. 46 transfers to Eq. 47.
Case 10: If p � ŵ2−1

4 , q � (ŵ2+1)
2 , and r � (ŵ2−1)

4 , then the
solution of Eq. 29 is φ(η) � dn(η)

1+sn(η). Thus, Eq. 31 has the
following form:

ψ x, y, t( ) � ±

������
ŵ2 − 1
2Z1

√
dn η( )

1 + sn η( )e iθ−σB t( )−σ2t( ), for Z1 < 0. (50)

Case 11: If p � −1
4 , q � (ŵ2+1)

2 , and r � −(1−ŵ2)2
4 , then the solution of

Eq. 29 is φ(η) = ŵcn(η) ± dn(η). Hence, Eq. 31 becomes

ψ x, y, t( ) � ±

���
−1
2Z1

√
ŵcn η( ) ± dn η( )[ ]e iθ−σB t( )−σ2t( ), for Z1 < 0.

(51)
When ŵ → 1, then Eq. 51 transfers to Eq. 47.

5 Brownian motion’s influence

In this section, we address the influence of Brownian motion
on solutions of SHFSCE (1). We provide numerous graphical
representations to demonstrate the influence of Brownian
motion on the behavior of these solutions. First, let us fix the
parameters k1 = 2.5, k2 = k3 = 1.5, k4 = 0.5, and η1 = η2 = θ1 = θ2 =
1. MATLAB is used to plot some solutions, such as [22], for x ∈ [0,
4], y = 1, and t ∈ [0, 4] and for various σ values (noise intensity) as
follows:
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When examining the surface at σ = 0, it is apparent from Figure 1,
Figure 2, and Figure 3 that there is a fluctuation and that the surface is not
smooth. When noise is added and its intensity is increased by a factor of
σ = 1 and 2, the surface becomes substantially flatter after minor transit
patterns. This demonstrates that the Brownian motion influences the
solutions of SHFSCE and stabilizes them at zero.

6 Conclusion

In this article, we considered SHFSCE (1) forced by multiplicative
Brownian motion. The stochastic solutions to this problem were
obtained using two separate methods: the (G′/G)-expansion
approach and the mapping method. These solutions are much more
accurate and helpful in comprehending several critical complicated
physical processes. Some previously obtained solutions, such as
those described in [24], were extended. Finally, we used MATLAB
tools to show the influence of multiplicative Brownian motion on the
solutions of SHFSCE using graphical representations.
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