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This paper presents a more general cobweb model that incorporates the Hilfer
fractional derivative in either the demand or supply function or Markov process.
Themain contributions of this study include deriving the analytical solution for the
general model, analyzing the stability of the solution, introducing the equilibrium
position using Mittag–Leffler functions, and providing detailed graphical
illustrations to validate the effectiveness of the proposed model. The outcomes
generalize some known results.
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1 Introduction

In 1695, L’Hospital raised the question “dny/dxn if n = 1/2”? That is, “What if n is a
fraction”? “This is an apparent paradox from which, one day, useful consequences will be
drawn,” Leibniz replied [1]. Since then, the study of fractional derivatives gradually
increased. Because the differential operator and the integral operator are inverse to each
other, the fractional integral comes in. In short, the fractional integral is the extension of the
ordinary integral, which changes the integral order into any real or complex order [2–4],. In
the past decades, a large number of facts have proved that the fractional integral can be better
prepared than the ordinary integral to simulate real-world phenomena, such as in physics
[5–8] and in fluids mechanics[9,10], and more and more researchers like to use fractional
integration for mathematical modeling [11–13, 14].

Fractional differential equations can simulate real-life situations better than ordinary
differential equations [15]. There exist many different forms of fractional derivatives,
namely, the Riemann–Liouville (R–L) fractional derivative[16,17], the Atangana–Baleanu
fractional derivative[11,18,19], the Caputo–Fabrizio fractional derivative [20], the
Caputo–Liouville (C–L) fractional derivative[16,17], the conformable fractional
derivative[21,22], and so on. In the various types of fractional derivatives mentioned
previously, the notation of the R–L fractional integral with order μ(0 < μ < 1) is
fundamental [3,23–29].

Fractional derivatives play a significant role in economic modeling by providing a more
accurate representation of real-world economic phenomena. Unlike traditional integer-
order derivatives, fractional derivatives allow for the incorporation of memory effects and
long-range dependencies, which are often observed in economic time series data [30–32].
Fractional derivatives capture these characteristics by accounting for the non-Markovian
nature of economic processes, where past events and interactions can have a lasting impact

OPEN ACCESS

EDITED BY

Olaniyi Samuel Iyiola,
Clarkson University, United States

REVIEWED BY

Hamood Ur Rehman,
University of Okara, Pakistan
Rashid Jan,
University of Swabi, Pakistan

*CORRESPONDENCE

Zhaobiao Rui,
ruizhaobiao@chu.edu.cn

RECEIVED 25 July 2023
ACCEPTED 12 September 2023
PUBLISHED 02 October 2023

CITATION

Qin X, Rui Z and PengW (2023), Fractional
derivative of demand and supply
functions in the cobweb economics
model and Markov process.
Front. Phys. 11:1266860.
doi: 10.3389/fphy.2023.1266860

COPYRIGHT

© 2023 Qin, Rui and Peng. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 02 October 2023
DOI 10.3389/fphy.2023.1266860

https://www.frontiersin.org/articles/10.3389/fphy.2023.1266860/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1266860/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1266860/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1266860/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1266860&domain=pdf&date_stamp=2023-10-02
mailto:ruizhaobiao@chu.edu.cn
mailto:ruizhaobiao@chu.edu.cn
https://doi.org/10.3389/fphy.2023.1266860
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1266860


on future outcomes. This is particularly relevant in financial
markets, where the memory of past price movements and
trading behaviors can influence future market dynamics
[33–35]. One of the most significant models in economic
dynamics, the cobweb economic model, defines the equilibrium
price between supply and demand in a market over time
[21,36,37]. In the case of pork, for instance, fewer people raised
pigs last season due to some factor (such as the epidemic of disease
or the increase in the price of pig feed), so this season’s pork
production is bound to be low while the market demand remains
the same. As a result, the market price of pork is bound to increase.
After seeing increasing pork prices this season, more people
decided to start raising pigs, which resulted in a substantially
bigger supply of pork the following year. When supply outpaces
demand and market demand stays the same, pork prices fall as a
direct result. The farmers suffer from lower pork prices. As a result,
fewer people raised pigs last season. Farmers are frequently
powerless in the face of this, and the list goes on. Kaldor [38]
examined this phenomenon and discovered that the prices of pork
fluctuate like a spider’s web. He then provided a theoretical
explanation of this economic event and used the term “cobweb
theorem” to describe all economic occurrences that share this
characteristic. The “cobweb theorem” was improved and expanded
further in [39]. Later, Gandolfo [37] integrated the findings of
earlier studies with his own to create a monograph that has since
been the standard reference for scientists working on dynamical
models.

Following closely in the footsteps of [40], this work deals with a
more general cobweb economic model while taking the Hilfer
fractional derivative into consideration. We provide the general
model’s analytical solution and evaluate its stability. The present
outcomes generalize the results of [41] and [40].

The remainder of this work is structured as follows: In Sections
2, 3, some fundamental concepts and theorems on the fractional
derivative and cobweb theory are provided. The solution to this
model is presented in Section 4, after which its stability is examined
and the equilibrium point is calculated. One numerical example and
comprehensive descriptions of graphical representations based on
the concept are given in Section 5. Some findings are provided in
Section 6.

2 Preliminaries on fractional derivatives

We recall the basic definitions and properties of the fractional
integrals and the fractional derivatives which will be needed in the
following.

Definition 2.1. [2,3,42,43] Let μ ∈ C,R(μ) � [μ] + 1,
g: (a, b) → R be an integrable or differentiable function.

The right R–L fractional integral of order μ (0 < μ < 1) has the
following form:

RLIua+g( ) x( ) � 1
Γ u( )∫

x

a
x − t( )u−1g t( )dt. (1)

The right R–L fractional derivative of order μ (μ ∈ C) has the
following form:

RLDu
a+g( ) x( ) � DnDμ−ng( ) x( ) � d

dx
( )n

In−ua+ g( ) x( )

�
1

Γ n − u( )
d

dx
( )n∫x

a
x − t( )n−u−1g t( )dt,

ifμ ∉ N, n � R u( ),
g n( ) x( ), ifμ � n ∈ N.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

The right C–L fractional derivative of order μ (μ ∈ C) takes the
following form:

CLDu
a+g( ) x( ) � Dμ−nDng( ) x( ) � In−ua+ g n( )( ) x( )

�
1

Γ n − u( )∫
x

a
x − t( )n−u−1g n( ) t( )dt,
ifμ ∉ N, n � R u( ),

g n( ) x( ), ifμ � n ∈ N.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

where [μ] denotes the largest integer that do not exceed μ, soR(μ) �
[μ] + 1 means the smallest integer greater than μ, and Γ(·) denotes
the Gamma function.

Definition 2.2. [2,3,42,43] Let μ ∈ C, R(μ)> 0, g: (a, b) → R be
an integrable or differentiable function.

The left R–L fractional integral of order μ (0 < μ < 1) has the
following form:

RLIub−g( ) x( ) � 1
Γ u( )∫

b

x
t − x( )u−1g t( )dt. (4)

The left R–L fractional derivative of order μ (μ ∈ C) has the
following form:

RLDu
b−g( ) x( ) � − d

dx
( )n

In−ub− g( ) x( )

�
1

Γ n − u( ) −1( )n d

dx
( )n∫b

x
t − x( )n−u−1g t( )dt,

ifμ ∉ N, n � R μ( ),
g n( ) x( ), ifμ � n ∈ N.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(5)

The left C–L fractional derivative of order μ (μ ∈ C) takes the
following form:

CLDu
b−g( ) x( ) � In−ub− −1( )ng n( )( ) x( )

�
1

Γ n − u( )∫
b

x
t − x( )n−u−1 −1( )ng n( ) t( )dt,
ifμ ∉ N, n � R μ( ),

g n( ) x( ), ifμ � n ∈ N.

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (6)

The generalized R–L fractional derivative, also called the Hilfer
fractional derivative [1,40], is defined as follows:

Definition 2.3. [1,15,44] Dμ,]
a+ and Dμ,]

a− of order μ (0 < μ < 1) and
type ] (0 ≤ ] ≤ 1) with respect to x defined by, respectively,

Dμ,]
a+g( ) x( ) � RLI

] 1−μ( )
a+

d

dx
RLI

1−]( ) 1−μ( )
a+ g( )( ) x( )

� RLI
] 1−μ( )
a+ Dμ+]−μ]

a+ g( )( ) x( ) (7)
and
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Dμ,]
a−g( ) x( ) � −RLI

] 1−μ( )
a−

d

dx
RLI

1−]( ) 1−μ( )
a− g( )( ) x( )

� −RLI
] 1−μ( )
a− Dμ+]−μ]

a− g( )( ) x( ) (8)

are called the right-sided and left-sided Hilfer fractional derivatives,

where (RLI(1−])(1−μ)a ± g)(x) is the R–L fractional integral of function

g(x) of the order (1 − ])(1 − μ), given by (1) and (4).
From Definition 2.3, we can find that if ] = 0,

Dμ,0
a±g( )(x) � ± RLI0a ±

d

dx
RLI(1−μ)a ± g( )( )(x) � ±

d

dx
RLI(1−μ)a ± g( )(x),

and it turns into the R–L fractional derivative of order μ [(2)
and (5)].

Moreover, if ] = 1,

Dμ,1
a±g( )(x) � ± RLI(1−μ)a ±

d

dx
RLI0a ±g( )( )(x) � ± RLI(1−μ)a ± g′( )(x),

and it turns into the C–L fractional derivative of order μ [ (3) and (6)].
More applications of Dμ,]

a± could be found in the work of Hilfer [45].
In order to obtain the analytical solution of the model with the

Hilfer fractional derivative, we use the Mittag–Leffler function given
by Definition 2.4.

Definition 2.4. [3,40,42,46] The Mittag–Leffler functions Eα(z) and
Eα,β(z) are given as follows:

Eα z( ) � ∑∞
k�0

zk

Γ αk + 1( )

Eα,β z( ) � ∑∞
k�0

zk

Γ αk + β( ) z, α, β ∈ C;R α( )> 0( ). (9)

Hence, Eα,1(z) � Eα(z), E1,1(z) � ∑∞
k�0

zk

Γ(k+1) � ez, and
furthermore,

E1(z) � ez, E2(z2) � cosh z, E2(−z2) � cos z,

E0,1(z) � 1
1 − z

, E1,2(z) � ez − 1
z

, E2,1(z) � cosh( �
z

√ ),
E2,2(z) � sinh z

z
.

Next, we present some properties of Mittag–Leffler functions
proved in some existing literature.

Lemma 2.1. [47] Let 0< α< 2, πα2 < θ <min {π, απ}, ∀ h ∈ Z+ (Z is the
integer set); there exists

Eα(z) � −∑h
k�1

z−k

Γ(1 − αk) + O(|z|−1−h) |z|→ ∞, θ ≤ |arg(z)|≤ π( ).

Lemma 2.2. [48] If 0 < α, β < 2, αβ < 2 and παβ
2 < θ <min {π, αβπ},

then ∀ h ∈ Z+,

Eα,β(z) � −∑h
k�1

z−k

Γ(β − αk)
+ O(|z|−1−h) |z|→ ∞, θ ≤ |arg(z)|≤ π( ).

Lemma 2.3. [40] When z → ∞, then the results of Lemma 2.1 and
Lemma 2.2 reduce to 0; that is,

lim
z→∞

Eα(−z) � lim
z→∞

−∑h
k�1

(−z)−k
Γ(1 − αk) + O(| − z|−1−h)⎛⎝ ⎞⎠ → 0

and

lim
z→∞

Eα,β(−z) � lim
z→∞

−∑h
k�1

(−z)−k
Γ(β − αk) + O(| − z|−1−h)⎛⎝ ⎞⎠ → 0,

Lemma 2.4. [1,3,44] The Laplace transform of the Hilfer fractional
derivative of g(t) satisfies

L Dμ,]
0+g( ) t( ): s{ } � sμL g t( ): s{ } − s] μ−1( ) RLI

1−]( ) 1−μ( )
0+ g( ) 0+( ),

(10)
where L of Laplace transform is

L{g(t): s} ≔ ∫∞

0
e−stg(t)dt ≕ G(s)

and

RLI(1−])(1−μ)0+ g( )(0+) ≔ RLI(1−])(1−μ)0+ g( )(t)∣∣∣∣∣t→0+

and

L tβ−1Eα,β λtα( ): s{ } � sα−β

sα − λ
, (11)

L 1 − Eα λtα( ): s{ } � −λ
s sα − λ( ), (12)

with R(s)> 0,R(α)> 0, λ ∈ C and |λs−α| < 1.

3 Cobweb economic model

In this section, we give some definitions and theorems of cobweb
models.

Gandolfo [37] studied the cobweb models with (13) and (14)
(see also in [41,49]).

D t( ) � a + bp t + 1( ), demand
S t( ) � a1 + b1p t( ), supply
D t( ) � S t( ). market clearing

⎧⎪⎨⎪⎩ (13)

where p(t) is the market price at time t and p (t + 1) is the market
price at time t + 1. D(t), S(t) is the market demand and market
supply at time t, respectively.

D t( ) � a + bp t( ), demand
S t( ) � a1 + b1 p t( ) + cp′ t( )( ), supply
D t( ) � S t( ), market clearing

⎧⎪⎨⎪⎩ (14)

where p(t) + cp′t) denotes the expected price at time t; that is, the price
that producers anticipate will remain stable after output is realized at the
time of production is initiated. The commonly used form of p(t) + cp′t) is
p(t) + c (p (t + 1) − p(t)) [49], and c > 0 measures the consumer’s price
sensitivity to the price difference. The implications behind (13) and (14)
are described as follows. In the demand function, a is themarket potential
and b is the consumer’s price sensitivity coefficient. The larger b means
the more sensitive consumers, and a small piece price drop may attract a
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large portion of consumers to make the consumption. To make the
analysis realistic, we assume that a > 0, b < 0. In reality, as prices increase,
supply increases throughout the supply curve, and as prices decline,
supply decreases along the supply curve, so we set a1 > 0, b1 > 0 in the
supply function to make the analysis realistic. Both functions (13) and
(14) are linear; the output from the beginning of the period appears at the
conclusion of each period, and themarket sets its price.When production
manifests after a period, the price used to determine it is undoubtedly the
price from the previous period. Supply responds to price with a one-
period lag, whereas demand is dependent on the current price. In each
period, the price is set by themarket so that demand consumes exactly the
amount that is supplied, leaving no producer with unsold product and no
consumer with unmet need (i.e., D(t) = S(t)).

Based on (13), Gandolfo [37] improved the model by taking the
following form:

D t( ) � a + b p t( ) + p′ t( )( ),
S t( ) � a1 + b1p t( ),
D t( ) � S t( ).

⎧⎪⎨⎪⎩ (15)
FIGURE 1
Basic cobweb model with an integer derivative.

FIGURE 2
Graph of p(t) for different values of fractional-order μ with C0> pe. (A) Graph of p(t) with v = 0 (Riemann-Liouville), C0 = 4. (B) Graph of p(t) with v =
0.4, C0 = 4. (C) Graph of p(t) with v = 0.7, C0 = 4. (D) Graph of p(t) with v = 1 (Caputo-Liouville), C0 = 4.
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Lemma 3.1. [40,41]The solutions of (13), (14), and (15) are

p t( ) � p0 − pe( ) b1
b

( )t

+ pe;

p t( ) � p0 − pe( )e b−b1
b1c

( )t + pe;

p t( ) � p0 − pe( )e b1−b
b( )t + pe,

respectively, where p0 ∈ R is the initial price of p(t) and pe � a1−a
b−b1 is

called the equilibrium value.
It can be verified that only when |b1b |< 1, |b−b1b1c

|< 1, |b1−bb |< 1, the
solutions of (13), (14), and (15) converge to the equilibrium value pe.
Since b < 0 and b1 > 0, they are divergent if b1b < − 1; steady if b1b � −1;
and damped if −1< b1

b ≤ 0. Figure 1 plots the solutions when
−1< b1

b ≤ 0,−1< b−b1
b1c

≤ 0 and −1< b1−b
b ≤ 0.

Chen et al. [41] considered the basic cobweb model [(14) and
(15)] with the C–L fractional derivative as follows:

D t( ) � a + bp t( ),
S t( ) � a1 + b1 p t( ) + c·CLDμ

0+p t( )( ),
D t( ) � S t( ).

⎧⎪⎨⎪⎩
D t( ) � a + b p t( )+CLDμ

0+p t( )( ),
S t( ) � a1 + b1p t( ),
D t( ) � S t( ).

⎧⎪⎨⎪⎩
(16)

where 0< μ≤ 1, a, b, a1, b1, c ∈ R, b ≠ 0, b ≠ b1 and CLDμ
0+p(t) are

given in (3).
Chen et al. [41] obtained the main results of (16) and studied the

stability of the solution. Srivastava et al. [40] generalized Chen et al.’s
[41] conclusion, and they considered the fractional derivatives as
follows:

D t( ) � a + b p t( ) +Dμ,]
0+p t( )( ),

S t( ) � a1 + b1p t( ),
D t( ) � S t( ).

⎧⎪⎨⎪⎩
D t( ) � a + bp t( ),
S t( ) � a1 + b1 p t( ) + c ·Dμ,]

0+p t( )( ),
D t( ) � S t( ).

⎧⎪⎨⎪⎩
(17)

where Dμ,]
0+p(t) is the Hilfer fractional derivative given by (7),

a, b, a1, b1, c ∈ R, b ≠ 0, b ≠ b1, 0< μ≤ 1, and 0 ≤ ] ≤ 1.
In this paper, we consider the cobweb model (17) with the Hilfer

fractional derivative Dμ,]
a+ in the supply function and in the demand

function together as the following form:

D t( ) � a + b p t( ) + θ ·Dμ,]
0+p t( )( ),

S t( ) � a1 + b1 p t( ) + θ1 ·Dμ,]
0+p t( )( ),

D t( ) � S t( ).

⎧⎪⎨⎪⎩ (18)

FIGURE 3
Graph of p(t) for different values of fractional-order μwith C0< pe. (E) Graph of p(t)with v = 0 (Riemann-Liouville),C0 = 0.2. (F) Graph of p(t)with v =
0.4, C0 = 0.2. (G) Graph of p(t) with v = 0.7, C0 = 0.2. (H) Graph of p(t) with v = 1 (Caputo-Liouville), C0 = 0.2.
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whereDμ,]
0+p(t) is the Hilfer fractional derivative given by (7). We set

a> 0, b< 0, a1 > 0, b1 > 0; θ, θ1 ∈ R; 0 < μ ≤ 1; and 0 ≤ ] ≤ 1.
Our model generalizes some knownmodels such as those in [41]

and [40]. Specifically, when θ = 0, ] = 1, (18) reduces to the first half
of (16); when θ1 = 0, ] = 1, (18) reduces to the last half of (16); when
θ1 = 0, θ = 1, (18) turns into the first half of (17); and when θ = 0, (18)
turns into the last half of (17).

4 Cobweb model with the Hilfer
fractional derivative

In this section, we calculate the solution of the cobweb model
(18) and study the stability of the solution.

Theorem 4.1. The following equation solves the cobweb model (18):

p t( ) � C0t
γ−1Eμ,γ λtμ( ) − ξ

λ
+ ξ

λ
Eμ λtμ( ), (19)

where

γ � μ + ] − μ], λ � b1 − b

bθ − b1θ1
, ξ � a1 − a

bθ − b1θ1
,

and C0 ∈ R satisfies

C0 � RLI
1−]( ) 1−μ( )

0+ p( ) 0+( ) � RLI
1−]( ) 1−μ( )
0+ p( ) t( )

∣∣∣∣∣∣∣t→0+
.

Proof: By simplifying the model (18), we obtain

a + b p t( ) + θ · Dμ,]
0+p( ) t( )( ) � a1 + b1 p t( ) + θ1 · Dμ,]

0+p( ) t( )( ),
so

bθ − b1θ1( ) Dμ,]
0+p( ) t( ) � a1 − a( ) + b1 − b( )p t( ).

If bθ − b1θ1 ≠ 0, we have

Dμ,]
0+p( ) t( ) � a1 − a

bθ − b1θ1
+ b1 − b

bθ − b1θ1
p t( ).

FIGURE 4
Graph of p(t) for different types of fractional derivatives with C0> pe. (I) Graph of p(t) with μ = 0.1, C0 = 4. (J) Graph of p(t) with μ = 0.4, C0 = 4. (K)
Graph of p(t) with μ = 0.7, C0 = 4. (L) Graph of p(t) with μ = 1, C0 = 4.
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Letting ξ � a1−a
bθ−b1θ1 and λ � b1−b

bθ−b1θ1, we have

Dμ,]
0+p( ) t( ) � λp t( ) + ξ. (20)

Taking the Laplace transform of (20), we have

L Dμ,]
0+ p( ) t( ): s{ } � λL p t( ): s{ } + L ξ: s{ }.

Using the Laplace transform formula (10) for the Hilfer
fractional derivative, we have

sμL p t( ): s{ } − s] μ−1( ) RLI
1−]( ) 1−μ( )

0+ p( ) 0+( ) � λL p t( ): s{ } + ξ

s
.

Merging items of the same type, we have

sμL p t( ): s{ } − λL p t( ): s{ } � s] μ−1( ) RLI
1−]( ) 1−μ( )
0+ p( ) 0+( ) + ξ

s
,

and then,

L p t( ): s{ } � s] μ−1( ) RLI
1−]( ) 1−μ( )
0+ p( ) 0+( )
sμ − λ

+ ξ

s sμ − λ( ).

Setting (RLI(1−])(1−μ)0+ p)(0+) � C0, we have

L p t( ): s{ } � C0 · s] μ−1( )
sμ − λ

+ ξ

s sμ − λ( ).

Using the application of Eqs (11), (12), we have

ξ

s sμ − λ( ) �
ξ

−λ ·
−λ

s sμ − λ( ) � −ξ
λ
· L 1 − Eμ λtu( ): s{ }

and

s] μ−1( )
sμ − λ

� sμ−γ

sμ − λ
� L tγ−1Eμ,γ λtu( ): s{ },

where μ − γ = ](μ − 1), so γ = μ + ] − μ], and we arrive at

L p t( ): s{ } � C0L tγ−1Eμ,γ λtu( ): s{ } − ξ

λ
L 1 − Eμ λtu( ): s{ }. (21)

Finally, by employing the inverse Laplace transform of (21), it
can be found that

FIGURE 5
Graph of p(t) for different types of fractional derivatives withC0< pe. (M)Graph of p(t) with μ=0.1, C0 = 0.2. (N)Graph of p(t) with μ=0.4, C0 = 0.2. (O)
Graph of p(t) with μ = 0.7, C0 = 0.2. (P) Graph of p(t) with μ = 1, C0 = 0.2.
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p t( ) � C0t
γ−1Eμ,γ λtu( ) − ξ

λ
+ ξ

λ
Eμ λtu( ),

where γ = μ + ] − μ].

Theorem 4.2. When θ > 0, θ1 > 0, the solution of (18) converges to
the equilibrium value pe, which satisfies

pe � a1 − a

b − b1
.

Proof: In model (18), we assume a > 0, b < 0, a1 > 0, b1 > 0 to
make our analysis in line with reality. From Theorem 4.1, we know
that λ � b1−b

bθ−b1θ1 and ξ � a1−a
bθ−b1θ1.

When θ > 0, θ1 > 0, then λ < 0. Since 0 < μ ≤ 1, λtμ → −∞ (t→
∞), and in light of Lemma 2.3, when λtu → −∞, we have

lim
t→∞

Eμ λtμ( ) � 0.

Hence

lim
t→∞p t( ) � lim

t→∞ C0t
γ−1Eμ,γ λtμ( ) − ξ

λ
( ). (22)

Since γ = −(1 − μ)(1 − ]) + 1, γ ∈ (0, 1], and we make the analysis
from two aspects:

i) When γ = 1, from (22), we have

lim
t→∞

C0t
0Eμ,1(λtμ) � lim

t→∞
C0Eμ(λtμ) � 0.

Hence, we obtain

lim
t→∞

p(t) � −ξ
λ
.

ii) When 0 < γ < 1, tγ−1 → 0 (t→∞) and λtμ → −∞ (t→∞). In
light of Lemma 2.3,

lim
t→∞

C0t
γ−1Eμ,γ(λtμ) → 0.

Hence, we obtain

lim
t→∞

p(t) � −ξ
λ
.

Overall,

lim
t→∞

p(t) � −ξ
λ
� a1 − a

b − b1
� pe,

which completes the proof of Theorem 2.2.
The stability conditions θ > 0 and θ1 > 0 play a crucial role in

determining the stability of the equilibrium price (pe) in a market.
We provide the explanation as follows.

First, the condition θ > 0 is related to the price elasticity of
demand. It indicates that the demand function is negatively
sloped, meaning that as the price increases, the quantity
demanded decreases. This condition ensures that the market
is responsive to changes in price, and it reflects the typical
behavior observed in most markets. When θ > 0, it implies that
an increase in price will lead to a decrease in demand, which
helps maintain stability in the market. If θ were to be negative, it
would imply an upward-sloping demand curve, which could
lead to instability and oscillations in the market. Second, the
condition θ1 > 0 is associated with the price elasticity of supply.

It signifies that the supply function is positively sloped,
indicating that as the price increases, the quantity supplied
also increases. This condition ensures that suppliers are willing
to increase their production in response to higher prices,
maintaining stability in the market. If θ1 were negative, it
would imply a downward-sloping supply curve, which could
lead to instability and fluctuations in the market.

In terms of market stability, when both θ > 0 and θ1 > 0 hold, the
market tends to reach a stable equilibrium price where demand and
supply are balanced. In this scenario, any temporary imbalances
between demand and supply will be corrected through price
adjustments, ensuring market stability.

To compare the difference between integer derivatives and
fractional derivatives, we consider the basic cobweb model with
integer derivatives in supply and demand function together as the
following form:

D t( ) � a + b p t( ) + θ · p′ t( )( ),
S t( ) � a1 + b1 p t( ) + θ1 · p′ t( )( ),
D t( ) � S t( ).

⎧⎪⎨⎪⎩ (23)

where a, b, a1, b1, θ, θ1 ∈ R, b ≠ 0, b ≠ b1.

Theorem 4.3. assume that pe � a1−a
b−b1 is the equilibrium price with

bθ − b1θ1 ≠ 0. Then, the solution of (23) is

p(t) � (p0 − pe)e( b1−b
bθ−b1θ1)t + pe,

where p0 ∈ R is the initial price of p(t).
Proof: By simplifying (23), we obtain

a + b p t( ) + θ · p′ t( )( ) � a1 + b1 p t( ) + θ1 · p′ t( )( ),
and then,

bθ − b1θ1( )p′ t( ) � a1 − a( ) + b1 − b( )p t( ).
If bθ − b1θ1 ≠ 0, we have

p′ t( ) � a1 − a

bθ − b1θ1
+ b1 − b

bθ − b1θ1
p t( ),

and letting ξ � a1−a
bθ−b1θ1 and λ � b1−b

bθ−b1θ1, we have

p′ t( ) � λp t( ) + ξ, (24)
and for ordinary differential equation p′t) = λp(t), we have p(t) =
heλt, where h is a constant. Applying the constant variation method,
the solution of (24) is

p t( ) � h1 − ξ

λ
e−λt( )eλt,

where h1 is a constant.
Taking initial condition p (0) = p0 into account, we obtain

h1 � p0 + ξ
λ; then,

p t( ) � p0 + ξ

λ
( )eλt − ξ

λ
.

Letting pe � −ξ
λ � a1−a

b−b1 , the solution of model (23) is

p(t) � (p0 − pe)e( b1−b
bθ−b1θ1)t + pe.
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5 Numerical analysis

In this section, we make the numerical analysis to implement the
aforementioned outcomes.

Example 1. We consider the following cobweb model:

D t( ) � 40 − 10 p t( ) + 2.5 ·Dμ,]
0+p t( )[ ],

S t( ) � 2 + 9 p t( ) + 3.3 ·Dμ,]
0+p t( )[ ],

D t( ) � S t( ).

⎧⎪⎨⎪⎩
where p0 ∈ R.

To solve Example 1, we apply the outcomes of Theorem 4.3. In
the line with [41] and [40], we set a = 40, b = −10, θ = 2.5, a1 = 2, b1 =
9, θ1 = 3.3 in model (23), and we obtain

λ � − 19
54.7

, ξ � 38
54.7

.

It is clear that the stability condition θ > 0, θ1 > 0 is satisfied, so
pe � −ξ

λ � 2. To simplify the calculation, we set δ = (1 − μ)(1 − ]), so
γ − 1 = −δ and

p(t) � C0t
−δEμ,γ(λtμ) − ξ

λ
+ ξ

λ
Eμ(λtμ),

where

C0 � RLI(1−μ)(1−])0+ p( )(0+) � RLIδ0+p( )(0+)
� lim

x→0+
1

Γ(δ)∫
x

0
(x − t)δ−1p(t)dt.

Srivastava et al. [40] examined how different types of fractional
derivatives of the same order affected p(t). As a supplement, we look
into how various fractional derivative types affect the cobweb model.
Additionally, we take into account how the initial price p0 may have
an impact on the outcomes.

Because of the arbitrariness of p0 ∈ R, we can obtain C0 = C0

(p0) > pe or C0 < pe by setting the appropriate value of p0. Therefore,
we will discuss the two cases in the following for the purpose of
checking how (19) converges to pe.

Case 1: Let ] be the fixed type of fractional derivative in this
case. We discuss different fractional orders μ of p(t) by means of
Figure 2 and Figure 3 to explicate C0 > pe and C0 < pe,
respectively.

After some calculation, it can be verified that when C0 > pe,
p(t) has the memoryless property or Markov property. First, the
graphs in Figure 2 concerning the R–L fractional derivative (] =
0) and the families of Hilfer fractional derivative with types ] for
which 0 < ] < 1 are divergent and unstable at the beginning t0 by
observing Figure 2 and Figure 3. Under the condition of C0 > pe,
the curve of p(t) goes down very fast at the initial time t0 and
then p(t) becomes stable along with the increase in t; finally, p(t)
converges to the equilibrium point pe decreasingly. On the other
hand, the value of p(t) drops rapidly in the case of C0 < pe in a
very short period of time near t0. However, the curve of p(t)
increases again and becomes stable with the increase in t. In the
end, it converges to the equilibrium pe increasingly. Second, the
smaller the μ of the fractional order is, the slower the p(t)
converges to pe. Third, the image of the C–L fractional
derivative (] = 1) is different from that of the R–L fractional
derivative (] = 0) and the families of Hilfer fractional derivative

with types 0 < ] < 1, which seems to be more consistent with the
derivative of integral order.

Case 2: This case discusses different types of fractional
derivatives of p(t). We let the fractional-order μ be fixed
first, such as setting μ = 0.1, 0.4, 0.7, 1 and C0 = 4, 0.2
remain unchanged as previously mentioned. The case of C0 =
4 > pe is shown in Figure 4. The case of C0 = 0.2 < pe is shown in
Figure 5.

Before the discussion, we give two forms of (Dμ,]
a±p)(x)when μ =

0 and μ = 1. According to (7) and (8), we have

Dμ,]
a±p( ) x( ) �

± RLI]a ±

d

dx
RLI 1−]( )

a ± p( )( ) x( ) � p x( ), μ � 0,

± RLI0a ±

d

dx
RLI0a ±p( )( ) x( ) � p′ x( ), μ � 1.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
If μ = 0, model (18) turns into

D t( ) � a + cp t( ),
S t( ) � a1 + c1p t( ),
D t( ) � S t( ).

⎧⎪⎨⎪⎩ (25)

It can be found that p(t) � a1−a
c−c1 is the solution of (25) with c ≠ c1.

From Figure 4 and Figure 5, we can find that, as μ decreases (μ→
0), the curves of p(t) with C–L fractional derivative become more
vertical, which is consistent with model (25). Second, if μ = 1, the
fractional derivative turns into the ordinary derivative, so the curves
(integer-order and types ] for which ] = 0, 0.2, 0.4, 0.6, 0.8, 1) in
Figure 4 and Figure 5D coincide with each other, which ensures the
compatibility of our model. Third, Figures 4B, C, and Figures 5B, C
show that the higher the fractional derivative order μ, the faster the
p(t) converges to pe. Finally, we can also verify Case 1 from
Figure 5A of Case 2.

6 Conclusion

This study focuses on exploring the solution of the cobweb
economic model by integrating the Hilfer fractional derivative
Dμ,]

a+ into both the demand and supply functions and the Markov
process. By manipulating the parameters present in the model,
a range of cobweb models can be created, each associated with
different types of fractional derivatives and fractional orders.
To obtain analytical solutions for these cobweb models, we use
the Laplace transform method. Additionally, we conduct a
thorough stability analysis of these solutions and compute
the equilibrium points. For this purpose, we can gain a
better understanding of the dynamics of the cobweb
economic model under different conditions and parameters,
which can be useful for policymakers and economists in making
informed decisions.

The results of our investigation demonstrate that the C–L
fractional derivative, when compared to the R–L fractional
derivative and the families of Hilfer fractional derivatives with
types 0 < ] < 1, displays a high level of practical robustness and
retains a significant number of desirable properties that are
characteristic of integer derivatives. As a result, the C–L
fractional derivative emerges as a more appropriate choice for
effectively modeling and analyzing the cobweb economic model.
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Our findings suggest that the C–L fractional derivative can provide
more accurate and reliable results, making it a valuable tool for
economists and policymakers in understanding the dynamics of
economic systems. The outcomes contribute to the ongoing
development of fractional calculus and its applications in
economic modeling, providing insights into the behavior of
complex economic systems.

Overall, this study has made substantial contributions to the
field by examining the behavior of the cobweb economic model
when influenced by the Hilfer fractional derivative in both the
demand and supply functions. The analytical solutions
obtained, along with the stability analysis and computation
of equilibrium points, have yielded valuable insights into the
dynamic nature of the model. Moreover, our findings highlight
the numerous advantages offered by the C–L fractional
derivative, further emphasizing its practical significance and
its ability to preserve key properties commonly associated with
traditional, integer derivatives. These findings have important
implications for economic modeling and analysis, as they
provide economists and policymakers with a more accurate
and reliable tool for understanding and predicting the
behavior of economic systems. By shedding light on the
benefits of the C–L fractional derivative, this study
contributes to the advancement of fractional calculus and its
applications in the field of economics.
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