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Accurate segmentation of cardiac tissues and organs based on cardiac
computerized tomography angiography (CCTA) images has played an
important role in biophysical modeling and medical diagnosis. The existing
research on segmentation of cardiac tissues generally rely on limited public
data, which may lead to unsatisfactory performance. In this paper, we first
present a unique dataset of three-dimensional (3D) CCTA images collected
from multiple centers to remedy this shortcoming. We further propose to
efficiently create labels by solving the Laplace’s equation with given boundary
conditions. The generated images and labels are confirmed by cardiologists. A
deep learning algorithm, based on 3D-Unet model trained with a combined loss
function, is proposed to simultaneously segment aorta, left ventricle, left atrium,
left atrial appendage and myocardium from the CCTA images. Experimental
evaluations show that the model trained with a proposed combined loss
function can improve the segmentation accuracy and robustness. By efficiently
producing a patient-specific geometry for simulation, we believe that this
learning-based approach could provide an avenue to combine with biophysical
modeling for the study of hemodynamics in cardiac tissues.
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1 Introduction

In recent years, a number of informatic technologies have been applied to improve the
efficiency and accuracy for biophysical modeling and medical diagnosis. Quantitative
metrics, which become available due to the advancement of computer methods, have
been intensively applied for medical imaging, biophysical modeling, disease risk
management, etc. For instance, the myocardial mass is employed as an indicator to
assess coronary blood flow reserve [1]. The left atrial appendage opening area, fractal
dimension and other topological parameters are useful in analyzing the ischemic stroke
incidence. In addition, the right ventricle function is of great significance for diagnosing and
treating heart diseases such as pulmonary hypertension and the tetralogy of Fallot [2, 3].
Moreover, computational fluid dynamics modelling has been employed for cardiac flow
simulations to assess the hemodynamics [4]. In these examples, the accurate segmentation of

OPEN ACCESS

EDITED BY

Zhen Li,
Clemson University, United States

REVIEWED BY

Yixiang Deng,
Ragon Institute, United States
Zhigang Ren,
Guangdong University of Technology,
China

*CORRESPONDENCE

Qi Gao,
qigao@zju.edu.cn

Longjiang Zhang,
kevinzhlj@163.com

RECEIVED 25 July 2023
ACCEPTED 21 August 2023
PUBLISHED 31 August 2023

CITATION

Cai S, Lu Y, Li B, Gao Q, Xu L, Hu X and
Zhang L (2023), Segmentation of cardiac
tissues and organs for CCTA images
based on a deep learning model.
Front. Phys. 11:1266500.
doi: 10.3389/fphy.2023.1266500

COPYRIGHT

©2023Cai, Lu, Li, Gao, Xu, Hu and Zhang.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 31 August 2023
DOI 10.3389/fphy.2023.1266500

https://www.frontiersin.org/articles/10.3389/fphy.2023.1266500/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1266500/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1266500/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1266500&domain=pdf&date_stamp=2023-08-31
mailto:qigao@zju.edu.cn
mailto:qigao@zju.edu.cn
mailto:kevinzhlj@163.com
mailto:kevinzhlj@163.com
https://doi.org/10.3389/fphy.2023.1266500
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1266500


a specific organ or tissue from a cardiac computerized tomography
angiography (CCTA) image is a necessary startpoint for further
analysis and therefore plays an essential role.

Traditional methods, based on Ostu’s threshold segmentation
[5], transformed shape model [6], or Atlas-Based under-
segmentation [7], are commonly used to segment organs of
interest in CCTA images. However, it is not easy to extend these
methods to the segmentation tasks where the objects have complex
geometry or the images contain noises. In the last few years, deep
learning has been widely used to extract tissues and organs from
images of magnetic resonance imaging (MRI), computer
tomography (CT), ultrasound and ophthalmoscopy images, and
has been greatly successful [8–11]. For cardiac image segmentation,
Vigneault et al. [12] and Sander et al. [13] introduced different
approaches to segment cardiac MRI images in a public
dataset—2017MICCAI dataset. The former used the
convolutional neural network architecture and the latter adopted
a method based on (Bayesian) dilated convolutional network. Wang
et al. [14] also suggested that the 3D FCN network can perform well
in segmenting prostate MR images on different datasets. Moreover,
Huang et al. [15] proposed an improved training and inference
scheme based on nnUNet [16], and added a coarse-to-fine strategy
to reduce computational cost for achieving semi-supervised
abdominal organ segmentation. More recently, Huang et al. [17]
utilized the large-scale medical image segmentation dataset and
conducted a comprehensive and detailed evaluation based on the
large-scale model–the Segment Anything Model (SAM) [18], which
becomes a promising way to segment different organs
simultaneously. There are also some review articles summarizing
the advances in this topic [19].

Despite the advances mentioned above, the current studies
generally rely on public datasets (e.g., 2018 Atrial Segmentation
Challenge [20]) released in deep-learning researches due to the
limitation of medical data (e.g., limited medical images and
difficulties in data collection) and time-consuming preparation of
training labels. Especially, for myocardium segmentation task,
manual labeling is usually required in pre-processing step, thus
make it difficult to apply supervised learning strategy for
myocardium segmentation. To address this problem, a unique
dataset, including the 3D CCTA images and the corresponding
masks for multiple tissues and organs, is established in this paper.
Moreover, we proposed an automatic labeling method based on
solving the Laplace’s equation, in order to avoid the troublesome
procedure in data preparation.

With the unique dataset, our goal in this paper is to design a deep
learning model which can simultaneously segment five cardiac
tissues and organs, including aorta, left ventricle (LV), left atrium
(LA), left atrial appendage (LAA) and myocardium (Myoc), which
has been rarely done before. These tissues and organs are important
indicators for disease diagnosis. For example, it is reported that the
LAA disfunction is responsible for more than 90% of the ischemic
strokes. Therefore, accurate segmentation of these organs can assist
the researchers with biophysical simulation and help the
cardiologists with proper diagnosis. To achieve this, we employ a
3D-Unet model in this paper and modify it to generate five different
outputs, corresponding to five organs of interest. We also propose an
appropriate loss function for training the 3D-Unet model according
to a systematic study. The experimental results show that the well-

trained model can provide segmentation of five different tissues and
organs with high accuracy and robustness.

The rest of this paper is organized as follows. The unique dataset,
including the CCTA images and the labels for segmentation, is
introduced in Section 2. In addition, the 3D-Unet model with the
combined loss function and the evaluationmetrics are also described
in Section 2. The experimental results are demonstrated in Section 3,
with a systematic study in the loss function. Discussion and
conclusion are given in Sections 4, 5, respectively.

2 Materials and methods

2.1 Dataset

In this paper, we collect 116 sets of CCTA data from multiple
hospitals, that will be used for 3D segmentation of cardiac tissues
and organs. Each sample image data has a dimension of N × P × Q,
representing N slices with each slice containing P × Q pixels. In this
work, particularly, each image data is generally composed of
170–330 slices, with each slice containing 512 × 512 pixels. To
apply supervised learning strategy, the labeled ground-truth mask is
required for each image. In the following, we introduce two sets of
masks according to different labeling methods for aorta, LV, LAA
and LAA and Myoc.

2.1.1 Dataset for aorta, LV, LA, and LAA
segmentation

Instead of using traditional two-dimensional image annotation
for each slice, the organs segmentation in this work is directly based
on the three-dimensional structure. The rough geometric models,
including the aorta, LV, LA, and LAA, were obtained from 3D
CCTA images based on an annotation algorithm [21]. The region
growing method is applied according to the CCTA gray value with a
threshold of 226, since the geometries of these four organs are
generally independent and enclosed by consistent brightness.
Moreover, to obtain more precise segmentations, the three-
dimensional geometric models of organs are mapped to the
original CCTA image, and then corrected manually by the
cardiologists. The dataset for aorta, LV, LA, and LAA
segmentation is referred to the first sample set. An example in
this dataset is shown in Figure 1, including several 2D image slices
and the whole 3D segmented geometry, where different tissues and
organs are marked in different colors.

2.1.2 Dataset for Myoc segmentation
The labelled masks of Myoc for neural network training can also

be established by annotation software as in the first sample set.
However, the grayscale value of the myocardium image is
considerably lower than other parts containing more blood, and
thus the accuracy of threshold segmentation is meager.
Consequently, it could be problematic for operators to modify
the three-dimensional myocardium geometry. Therefore, a
manual labeling process on the 2D slices is necessary and is
employed by drawing the outer boundary of Myoc based on the
first sample dataset.

To enhance labeling efficiency in this work, the aforementioned
manual marking is only activated every five slices in a 3D image.
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Subsequently, giving the first and the last annotation masks, the
intermediate fourMyoc annotation images are automatically created
by solving the Laplace’s equation, which is a partial differential
equation commonly-used to describe the diffusion process, e.g., [22].
In other words, the Laplace’s equation allows us to determine the
propagated fields (i.e., intermediate four masks) from given
boundary conditions (i.e., the first and last images by manual
labeling). The mathematical expression of the Laplace’s equation
is given by:

Δu � ∂2u
∂x2

+ ∂2u
∂y2

� 0 (1)

where u is the grayscale value of the CCTA image in our case; x, y
are the coordinates of the CCTA image. To solve Eq. 1 numerically,
discretization of the Laplace operator is needed, and it is
implemented by the following finite-difference form:

u x, y( ) � u x − 1, y( ) + u x + 1, y( ) + u x, y − 1( ) + u x, y + 1( )
4

(2)

Assume that two masks of Myoc are obtained by manually
drawing the boundaries on the 2D slices, as shown in Figures 2A, F.
The areas representing the tissues or organs are with non-zero
values; otherwise, the value is 0. To generate the intermediate masks
of Myoc between two slices, we first set the boundary value of the
first image as 1, while the boundary value of the other image is 255.
By solving Eq. 1 and Eq. 2 based on these boundary conditions, a
diffusion map representing the propagation field is generated, as
shown in the left panel in Figure 2. Subsequently, we define the
brightness thresholds as [52, 103, 154, 205], to generate the
intermediate masks from the diffusion map. The resulting 3D
masks of one example are illustrated in Figures 2B–E. We also
note that the spacing of five slices to perform such a process is a
tradeoff between the accuracy and computational cost. In addition,

FIGURE 1
Example of four different tissues and organs. (A) Two-dimensional slices. First row: five original CT slices. Second row: the annotation results of the
corresponding tissue organ. (B) A three-dimensional geometric model. The aorta, LV, LA, and LAA are represented in red, green, light blue and dark blue
colors, respectively.

FIGURE 2
The process of solving the Laplace’s equation for obtaining theMyoc segmentations. The yellow and red lines in (A–F) represent outer boundary and
inner boundary, respectively. The white areas in (A,F) are the manual segmentations of Myoc in two slices, while the white areas in (B–E) are the
interpolated Myoc areas calculated by solving the Laplace’s equation.
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we approximate the locations of the intermediate four masks since
the geometry of myocardium is generally smooth and homogeneous.

In addition, a comparison between the manually-created masks
of Myoc and the masks obtained by solving Laplace’s equation is
demonstrated in Figure 3, where the outer boundaries of Myoc are
marked in pink and red colors. We find that the two sets of images
are very similar. However, we note that our proposed labeling
method is much more efficient. The 3D geometry is also
displayed in Figure 3, including all tissues and organs of interest
(i.e., the aorta, LV, LA, LAA, and Myoc). Eventually, with the
original CCTA images and the corresponding masks mentioned
above, we created a full dataset that can be applied for supervised
learning of a segmentation model.

2.2 Data pre-processing

2.2.1 Image scaling
First of all, the actual physical distance of the image data in each

direction is calculated according to the resolution of the original
CCTA image (e.g., spacing of slice and spacing of pixel). Next, an
interpolation procedure, such as linear interpolation of image data,
is used to uniformly interpolate the image to the resolution of 1 mm
in all directions so as to ensure that the unit space distance of each
medical image data in all directions is identical. Finally, each image
data group as a whole is scaled. To ensure that the size of the scaled
image does not exceed 128 pixels, the scaling ratio of each image data
set is: ratio = 128/max(L, W, H), where L, W and H represent the
length, width, and height of the image respectively. For those
dimensions less than 128 pixels, the missing image elements are
supplemented with 0.

2.2.2 Data augmentation
Before being fed into the neural network, the input-output

images may be processed with the following operations for data
augmentation [23, 24]: random rotation, flipping, affine
transformation, and gamma transformation, with the possibility
of 50% for each. Random rotation can be carried out by any angle.
Here, we choose 90°, 180°, or 270°. Random flip can randomly flip the

scaled sample set with respect to the X, Y or Z-axis. For affine
transformation, the coordinates may be translated by 0–15 pixels in
all directions and rotated by 0°–5°. The coefficient of gamma
transformation is randomly sampled between 0.5 and 2.5 to
correct the brightness of the input images.

2.2.3 Normalization
The disparity in image data distribution is noticeable due to the

diversity of image acquisition, making it more difficult for the
network model to learn features with great generalization
capacity. In this paper, the pixel value X is normalized by Eq. 3
so that each input image meets the standard normal distribution:

X � x −mean x( )
δ x( ) (3)

Here, x is the grayscale value of the CCTA image, mean(x) is mean
value and δ(x) is the standard deviation (SD) of the pixel brightness.

2.3 3D-Unet

Following [25, 26], the 3D-Unet employed in this paper is
composed of a feature extraction network, feature fusion network
and feature connection. The architecture of the 3D-Unet is
illustrated in Figure 4C. Firstly, the feature extraction network,
consisting of several feature extraction units, is expected to
extract features from input image data. The feature fusion
network is then used to execute network up-sampling on the
output data of the feature extraction unit. Different levels of
residual connection as well as the jump connection comprise the
feature connection, which allows the network to preserve different
feature scales.

More specifically, a feature extraction unit is composed of a few
convolution blocks and the first residual connection. It is designed to
extract and down-sample the features from images (shown in the
first half in Figure 4C). The first convolution block has a
convolutional layer with 3D kernels in a size of 3 × 3 × 3 and a
stride of 2 in each direction, followed by the instance normalization
[27] and LeakyRelu activation function. Here, instance

FIGURE 3
Manual labeling and Laplace’s equation-solving labeling for Myoc segmentation. The Myoc segmentation in the first row are all manually marked
(pink lines). The Myoc segmentation in the second row are calculated by the Laplace’s equation (red lines), where (A,F) are the two given reference labels;
(B–E) are obtained by Laplace’s equation calculation. (G) A three-dimensional structure including the aorta, LV, LA, LAA, and Myoc.
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normalization is employed in this paper instead of traditional batch
normalization processing, since the mean and SD of each batch are
generally unstable due to the introduction of extra image noise [28].
Furthermore, the LeakyReLU activation function is applied to
construct nonlinear feature maps during feature extraction.
Subsequently, the output of the first convolution is further
processed by two convolutional layers and a dropout layer [29],
before being concatenated with the output of the first convolution
(i.e., first residual connection) and passed to the next level of feature
extraction unit, as demonstrated in Figure 4C. In this work, we
employ five layers of feature extraction, and the numbers of
convolutional kernels used in different levels are [16, 32, 64,
128, 256].

On the other hand, the feature fusion unit in the second half of
3D-Unet is composed of an up-sampling layer, the jump connection
and two convolution blocks. In 3D-Unet model, the first and second
residual connections and the jump connection are used to
concatenate features with same resolution but from different
processing stages, helping to avoid the gradient disappearance
during 3D-Unet training and accelerate the convergence [30].
Moreover, we note that the image segmentation can be achieved
at pixel level. If the image resolution of the input data is the same as
that of the expected output of 3D-Unet network, the numbers of
feature extraction and fusion units can remain constant. In this
work, the numbers are both 5.

The training process of the segmentation network is also
depicted in Figure 4. We transform 3D CCTA image data and

label (after pre-processing) into images supplied to 3D-Unet model.
As mentioned, we collect 116 data items in total, where 88 data sets
are used for network training, 20 for validation and 8 for testing. The
input dimension of the network is [128, 128, 128, 1], while the
output dimension is [128, 128, 128, 5], where the five channels
correspond to five different organs of interest. Eventually, we obtain
a heart partition model which can be used to segment the aorta, LV,
LA, LAA, and Myoc from general CCTA images.

2.4 Combined loss function

Deep-learning segmentation frameworks rely not only on the
choice of network structure but also on the choice of loss function.
For example, in medical image segmentation, the Dice loss function
[31] can evaluate the similarity between the predicted annotation
information of the neural network and the actual annotation
information. Although the accuracy of Dice loss function is
relatively high in most cases, the topological structure of the
segmented object has not been taken into account, which leads to
insufficient stability and structural errors in the annotation
information predicted by the neural network. In particular, the
segmentation for objects with small size or non-smooth boundary is
not satisfactory. Compared with the Dice loss function, the
centerlineDice (clDice) loss function [32] can better balance the
overall accuracy of pixel-level segmentation. In addition, training
with clDice loss also leads to a firm consistency of the topological

FIGURE 4
Flowchart of the proposed cardiac partition framework. (A)Workflow in this paper, where the 3DCCTA image is the input and themodel outputs the
3D segmentations of five cardiac organs. (B) Mask labeling for aorta, LV, LA, LAA (first image) and Myoc (second image). (C) Architecture of 3D-Unet.
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structure between the label and predicted result. In other words, the
clDice loss function enhances the stability of image segmentation. By
taking into account both the characteristics of Dice and clDice loss
functions, we propose a combined loss (CL) for our image
segmentation task to balance the accuracy and stability when
performing segmentation for five organs together.

The Dice loss function is as follows:

Dice � 1 − 2 ×
VL ∩ VP

VL +| |VP| | (4)

while the clDice loss function is calculated through the following
equation:

clDice � 2 ×
Tprec SP, VL( ) × Tsens SL + VP( )
Tprec SP, VL( ) + Tsens SL + VP( ) (5)

In Eqs 4, 5, VL is the actual labeling information, VP is the
labeling information predicted by the neural network, and their
dimensions are [128, 128, 128] for one tissue or organ of interest; SL
and SP are the results of image corrosion on the corrosion VL and
VP, respectively. Moreover, Tprec(SP, VL) � |SP ∩ VL |

|SP| is a false
positive, Tsens(SL, VP) � |SL ∩ VP|

|SL| is a false negative, characterizing
the similarity between the topological structures.

In this paper, we consider a loss function combining the Dice
and clDice (Dice_clDice) loss functions, which is given by:

Dice clDice � a*Dice + 1 − a( )* clDice (6)
where a ∈ [0, 1] is the weight value of different loss terms. Note
that we aim to segment multiple cardiac organs in one inference.
According to our experiments, we find that for the segmentation
of large organs (e.g., aorta, LV, and LA), training with a single
Dice loss function (Eq. 4) can provide satisfactory results.
However, for organs with small size (e.g., LAA), the Dice_
clDice loss function (Eq. 6) is necessary to improve the
segmentation accuracy. Therefore, instead of using an
identical loss function for training, we propose to apply
separate loss functions for different outputs of the neural
network. In particular, we eventually employ a combined loss
function as follows:

CL � Dice i≤ 3
a*Dice + 1 − a( )*clDice i> 3 and i≤ 5

{ (7)

where i represents the index of the network outputs. In particular,
i � 1, 2, 3 mean the output layers for aorta, LV and LA, respectively;
i � 4 and 5 denote the outputs of LAA and Myoc, respectively. It is
shown in the experimental results that the model trained with CL
achieves the best performance.

2.5 Evaluation metrics

In order to evaluate the developed deep learning model from
different perspectives, multiple indicators including the Dice
similarity coefficient (DSC), precision (Pre.), Recall, and
Hausdorff distance (HD) [33], are all used to assess the
image segmentation performance. The DSC represents the
overlap ratio between the network segmentation result and
the reference segmentation result. The DSC is defined as
follows:

DSC � 2TP
FP + 2TP + FN

(8)
where TP, TN, FP, and FN denote the number of true positive, true
negative, false-positive, and false-negative pixels, respectively.
Similarly, the Pre. and Recall are defined as follows:

Pre. � TP

TP + FP
(9)

Recall � TP

TP + FN
(10)

In addition, Hausdorff distance is more sensitive to the
segmented boundary, thus can better evaluate the topological
similarity. It is defined as:

dH X, Y( ) � max maxx∈Xminy∈Y d x, y( ), maxy∈Yminx∈X d x, y( ){ }
(11)

where X and Y are the actual boundary and the predicted boundary,
respectively; d(x, y) represents the Euclidean distance. A high value
of dH(x, y) corresponds to the low matching degree of the two
samples.

3 Experimental results

3.1 Training settings

With the data and model prepared, we can train the neural
network to perform the segmentation task. In this work, we
implement the 3D-Unet model in python based on Tensorflow
library. The computational platform includes AMD Ryzen 5 3600X
6-Core Processor with 64 GB RAM, and an Nvidia Geforce RTX
2080Ti with 12 GB RAM. The training of the network parameters is
done by using the Adam optimizer [34] and by taking 150 epochs
with a mini-batch size of 1, due to the memory limitation for 3D
images. The learning rate is initialized by 0.01 in the first 100 epochs
and then is reduced by 70% every 25 epochs. During the training, we
also evaluate the model performance on the validation dataset
(including 20 data items), which can help us determine the
hyper-parameters. When the model training is complete, post-
processing steps are required to restore the network output to
the original image size (i.e., image re-scaling) and to remove the
background outliers (median and gaussian filtering).

3.2 Assessment on the loss function

In this section, we compare the 3D-Unet models trained with
different loss functions. During the training process, the aorta, LV,
LA, LAA, and Myoc tissue and organs are segmented on the
validation set to evaluate the accuracy of the models. In addition
to the Dice loss (Eq. 4) and the Dice_clDice loss (Eq. 6), we construct
two combined loss functions, denoted by CL_LAA and CL_LAA_
Myoc. The “CL_LAA” represents the combined loss function where
only the LAA segmentation is optimized by Dice_clDice loss, while
the “CL_LAA_Myoc” denotes the combined loss given exactly in Eq.
7. The weighting coefficient in the loss functions is set as a = 0.7. The
loss values and the accuracy metrics during the training process are
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demonstrated in Figure 5, where we can see the proposed model
with combined loss functions outperforms the others including
those with Dice and Dice_clDice losses. The model with “CL_
LAA_Myoc” is slightly better than that with “CL_LAA,”
providing a lower loss value and higher accuracy in 3D
segmentation.

Quantitatively, the proposed model, after training, predicts
higher DSC values for all the segmentations of cardiac organs, as
shown in Figure 6. Specifically, the mean DSC values for aorta,
LV, and LA are much higher than 0.9, the mean DSC value for
Myoc is 0.879, and the mean value for atrial appendage is 0.894.
Compared to the model trained with Dice_clDice loss, the
model infers the segmentation results of the whole heart

partition, the mean DSC value was improved by 0.7%, and
the SD value was reduced by 0.3%; the mean Pre. value is
increased by 1.2% and SD value is decreased by 0.5%. For the
model with Dice_clDice loss function, the maximum value of
Hausdorff distance for myocardium segmentation is 25, while
the maximum value for the new model is 12. The mean and SD
of the HD index of the heart segmentation results for the new
model are 1.865 and 1.55, respectively. Moreover, the index
value of HD calculated by the new model in image segmentation
was much lower. All the indicators shown in Figure 6
demonstrate that the proposed combined loss function is
effective to improve the segmentation results for multiple
cardiac tissues and organs.

FIGURE 5
The loss function and accuracy on the validation dataset during model training. Here, “CL_LAA” denotes the combined loss function where only the
LAA segmentation is optimized by Dice_clDice loss; “CL_LAA_Myoc” denotes the combined loss given in Eq. 7. The weighting parameter a for Dice_
clDice, CL_LAA, and CL_LAA_Myoc is 0.7.

FIGURE 6
Comparison of models with different loss functions on the validation set. The Dice similarity coefficient (A), precision (B) and Hausdorff distance (C)
are demonstrated for aorta, LV, LA, LAA, and Myoc. The mean and standard deviation are also illustrated in the figures.
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To visualize the topological structures, the segmentation results
of a testing example predicted by different models are illustrated in
Figure 7, showing seven 2D slices in a 3D image.We can find that the
size, shape and contrast of different organs (i.e., aorta, LV, LA, LAA
and Myoc) vary against different slices. As demonstrated in the
fourth–seventh rows, the proposed method is more accurate in
predicting the segmentation details compared to the 3D-Unet
models with Dice and Dice_clDice loss functions. In particular,
the models with Dice and Dice_clDice loss functions fail to segment
the LV, which is surrounded by Myoc, in the last slice shown in
Figure 7. On the contrary, the proposed model is able to distinguish
the LV and Myoc accurately, since the designed loss function can
preserve details for the Myoc, correspondingly, can preserve the LV.

Furthermore, we note that the weighting coefficient in the
combined loss can affect the segmentation result to some extent.
Therefore, we perform a systematic study to investigate the influence
of using different weight parameters. The results of the cardiac
segmentation were evaluated by using the mean and SD values of
DSC on the validation set. All the resulting values are given in
Table 1, together with the results of using identical Dice loss and

Dice_clDice loss. As shown in the table, although the best metrics for
different tissues or organs are given by different settings, the
combined loss function provides better overall performance
(i.e., higher average DSC values). It is clearly seen that the Dice_
clDice loss can predict better segmentation for LAA, as the LAA is
relatively a small structure. The combined loss (CL_LAA_Myoc)
outperforms the others. In particular, the experimental results show
that when a = 0.7, the average values of the DSC are the highest. As
our target in this paper is to segment multiple tissues and organs
simultaneously in one network inference and we care about the
overall performance, the model with CL_LAA_Myoc (a = 0.7) is
eventually employed.

3.3 Testing results

After training the neural network with proper parameters, we
can apply the well-trained 3D-Unet model to perform 3D
segmentation of five different tissues and organs by providing a
3D CCTA image. The segmentation results of the proposed model,
evaluated by using the mean and SD of various indicators (DSC,
Pre., Recall and HD), are listed in Table 2. The results show that the
average DSC value of aorta is the highest (mean: 0.961, SD: 0.008),
whereas that of the LAA is the lowest (mean: 0.882, SD: 0.021). Once
again, we note that the LAA is with small size and intricate geometry,
thus minor difference in the shape may result in large difference in
the DSC. For the Myoc segmentation, which is an attractive task in
the community, we achieve relatively good performance. The
average Pre. value of Myoc, average Recall value and the average
HD value are 0.867, 0.994 and 2.9, respectively. Overall, the average
DSC of the five organs, given by the proposed model, can reach
0.924; and the Recall is all close to 1, which is promising in practical
applications.

A testing example is demonstrated in Figures 8, 9, where several
2D slices are shown in Figure 8 and the overall 3D geometric
structures are shown in Figure 9. It can be seen in the figures
that the labels and the segmentation results of the proposed 3D-Unet
model are in great agreement, indicating the effectiveness of our
proposed method.

4 Discussion

In this paper, we propose to use a deep learning model for the
segmentation of multiple cardiac organs, including the aorta, LV,
LA, LAA, and Myoc. The contributions are multifolds. Firstly, we
novelly propose to perform myocardium labeling by solving the
Laplace’s equation, which dramatically improves the efficiency for
preparing the training data. Instead of making masks manually for
all slices, only a small portion of slices in a 3D CCTA image are
labeled manually, and the masks of the intermediate slices are
created automatically, which takes about 1.8 s to generate the
intermediate 4 masks per solving an equation. The fully-manual
labeling method and the proposed semi-automatic manual labeling
method provide similar segmentation masks; the DSC between two
sets of mask is about 0.934. Moreover, the masks created by solving
the Laplace’s equation have been confirmed by the cardiologists and
are suitable to be the reference in disease diagnosis. Second, we

FIGURE 7
Segmentation results of sample slices from a testing set. First
column: the original CT slices of aorta, LV, LA, LAA, and Myoc. Second
column: sample labels are marked by software as well as solving the
Laplace’s equation. Third–fifth columns: the heart segmentation
results from 3D-Unet models with different loss functions.
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propose a 3D-Unet model trained with a combined loss function.
The combined loss function (Eq. 7) employs different objective
functions for different output layers in the neural network
(i.e., different organs of interest), which allows us to improve the
overall performance of the 3D-Unet. The main reason to design a
combined loss function is that we aim to segment multiple cardiac
tissues and organs in the same time. Compared to using five different
models for five organs, using a single network for five organs can
provide more information for the cardiologists, and it is much more
efficient and necessary when the model is embedded in real-time
applications.

There are some related works performing cardiac
segmentation in the literature. For example, Jun Guo et al.
[35] performed 3D Myoc segmentation for CCTA images
using a 3D deeply supervised attention U-net model, and it
was reported that the average HD index was about 6.840. The
whole dataset contains 100 patient-specific cases. In this paper,
the mean and SD of the HD index for Myoc segmentation are
2.9 and 1.042, respectively. Although the testing data are
different, these values are much smaller and indicate better

generalization of our model. Li et al [36] came up with an 8-
layer residual U-Net with deep supervision for the segmentation
of LV in CCTA images, achieving a Pred. value of 0.938 ± 0.113.
They also trained and tested the model for a self-collected dataset.
Our method achieves an average Pred. value of 0.949 ± 0.017,
which suggests better performance of our approach. In addition,
Chen et al. [37] proposed multi-task learning for left atrial
segmentation on gadolinium-enhanced magnetic resonance
imaging scans (GE-MRIs) collected from the 2018 Atrial
Segmentation Challenge. The average DSC of the LA was
reported as 0.901 while the average DSC of the LA calculated
in this work is 0.953. We should note here that the
aforementioned deep learning models were designed to
segment only one tissue or organ in one inference, while our
proposed model can perform segmentation for multiple tissues
and organs simultaneously. Compared with the aforementioned
experimental results from other studies related to cardiac
segmentation, the proposed model in this work has advantages
in terms of the accuracy and robustness. The segmentation
results can play a crucial role in assisting biophysical
modeling by providing accurate and detailed information
about the biological structures within an image. In particular,
the accurate segmentation enables patient-specific simulation of
the fluid flow inside the cardiac tissues and organs by providing a
geometry. The results from both healthy and pathological
samples can be compared and used to understand how
diseases affect the biological structures and the
hemodynamics, which will eventually help with disease
diagnosis for cardiologists.

We note that there are some newly-developed learning-based
segmentation methods that can achieve state-of-the-art
performance on public datasets. For examples, the nnU-Net
[16], which is a general framework with adaptive data
augmentation, was developed and validated on ten different
datasets provided by the medical segmentation decathlon.
However, training the nnU-Net may consume more memory

TABLE 1 Validation results with different weight parameters a in the loss function. The mean and SD values of DSC are shown here to evaluate the segmentation
performance of cardiac organs on the validation set. The best result for each column is demonstrated in bold.

Organ loss Aorta LV LA LAA Myoc Average

Dice 0.969 ± 0.007 0.936 ± 0.039 0.946 ± 0.027 0.858 ± 0.077 0.879 ± 0.037 0.918 ± 0.037

Dice_clDice (a = 0.7) 0.960 ± 0.023 0.934 ± 0.035 0.945 ± 0.028 0.895 ± 0.042 0.860 ± 0.054 0.919 ± 0.036

CL_LAA (a = 0.1) 0.957 ± 0.010 0.922 ± 0.036 0.946 ± 0.033 0.865 ± 0.048 0.884 ± 0.026 0.915 ± 0.031

CL_LAA (a = 0.3) 0.977 ± 0.006 0.931 ±0.038 0.944 ± 0.030 0.844 ± 0.053 0.885 ± 0.045 0.916 ± 0.034

CL_LAA (a = 0.5) 0.967 ± 0.011 0.914 ± 0.038 0.944 ± 0.035 0.885 ± 0.038 0.866 ± 0.032 0.915 ± 0.031

CL_LAA (a = 0.7) 0.974 ± 0.007 0.933 ±0.039 0.947 ± 0.026 0.878 ± 0.046 0.885 ± 0.068 0.923 ± 0.037

CL_LAA (a = 0.9) 0.955 ± 0.059 0.915 ±0.042 0.950 ± 0.025 0.875 ± 0.049 0.815 ± 0.047 0.902 ± 0.044

CL_LAA_Myoc (a = 0.1) 0.969 ± 0.011 0.937 ± 0.038 0.949 ± 0.024 0.843 ± 0.07 0.835 ± 0.091 0.907 ± 0.047

CL_LAA_Myoc (a = 0.3) 0.974± 0.010 0.935 ± 0.035 0.949 ± 0.021 0.892 ± 0.035 0.874 ± 0.036 0.925 ± 0.027

CL_LAA_Myoc (a = 0.5) 0.974 ± 0.010 0.932 ± 0.036 0.951 ± 0.023 0.878 ± 0.045 0.875 ± 0.057 0.922 ± 0.034

CL_LAA_Myoc (a = 0.7) 0.971 ± 0.015 0.935 ± 0.039 0.952 ± 0.024 0.894 ± 0.038 0.879 ± 0.049 0.926 ± 0.033

CL_LAA_Myoc (a = 0.9) 0.971 ± 0.007 0.931 ± 0.037 0.946 ± 0.031 0.888 ± 0.041 0.881 ± 0.031 0.923 ± 0.028

TABLE 2 Performance of the 3D-Unet model on segmenting cardiac organs.
Themean and SD of various indicators are computed based on the testing sets.
The 3D-Unet model is trained with the proposed combined loss function
(a = 0.7).

Organ Evaluation metrics

DSC Pre Recall HD

Aorta 0. 961 ± 0.008 0.949 ± 0.023 0.999 ± 0.001 1.279 ± 0.521

LV 0.927 ± 0.017 0.949 ± 0.017 0.998 ± 0.001 1.547 ± 0.611

LA 0.953 ± 0.009 0.947 ± 0.016 0.998 ± 0.001 2.706 ± 1.204

LAA 0.882 ± 0.021 0.853 ± 0.051 0.999 ± 0.001 2.69 ± 1.201

Myoc 0.899 ± 0.022 0.867 ± 0.046 0.994 ± 0.001 2.9 ± 1.042
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and time. In our work, we design a relatively simple model for a
specific task, namely segmenting different cardiac organs
simultaneously. A comparison with the nnU-Net on the
specific dataset is worth investigating in the future. On the
other hand, the large models such as SAM [18] needs fine-
tuning in order to be applied for cardiac segmentation, which
is also promising in our case.

5 Conclusion

In this paper, a unique multi-center dataset consisting of
116 CCTA images is employed to accomplish 3D cardiac
partition tasks. We propose to perform labeling for myocardium
by solving the Laplace’s equation, which can expedite the data

preparation process and has been confirmed by the cardiologists.
A modified 3D-Unet model is employed to segment multiple tissues
and organs (including aorta, LV, LA, LAA, and Myoc) from the 3D
CCTA images. We conduct a systematic study to investigate the
influence of the loss function and its weighting coefficient. A
combined loss function is eventually applied in training the 3D-
Unet model, which outperforms the single Dice loss and Dice_
clDice loss. After training, the proposed model achieves satisfactory
accuracy and robustness, indicated by multiple metrics such as DSC,
Pre., Recall and HD.

There are still some ongoing works that can be done. Although
we know that the segmentation for left atrial appendage is relatively
difficult due to the small size and complex shape, we expect to
improve the segmentation accuracy of LAA in the future. This is
important for disease diagnosis since it is known that the LAA is

FIGURE 8
Comparison between labels and segmentation results. (A) original CT images. (B) Semi-automatic labeling of 2D slices. Green, red, light blue, dark
blue and pink colors represent LV, aorta, LA, LAA and Myoc, respectively. (C) Predictions and labels plotted together, where the black line is the result
predicted by the proposed deep learning model.

FIGURE 9
3D point cloud structure of cardiac partitions: (left) label and (right) segmentation from the proposed deep learning model.
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responsible for most of the ischemic strokes. To overcome the
difficulties in segmenting LAA in CCTA images, imposing a
prior knowledge during the data preparation stage or adding
more layers specifically for the LAA output in the neural
network may be a possible direction. Moreover, we are collecting
more CCTA from numerous hospitals to enlarge our training
dataset, which will help to improve the segmentation accuracy
and generalization ability of our proposed model.
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