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By developing the previously proposed method of combining continuum
mechanics with Einstein’s field equations, it has been shown that the classic
relativistic description, curvilinear description, and quantum description of the
physical systemmay be reconciled using the proposed Alena Tensor. For a system
with an electromagnetic field, the Lagrangian density equal to the invariant of the
electromagnetic field was obtained, the vanishing four-divergence of canonical
four-momentum appears to be the consequence of the Poynting theorem, and
the explicit form of one of the electromagnetic four-potential gauges was
introduced. The proposed method allows for further development with
additional fields.
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1 Introduction

Over the past decades, great strides have been made in attempts to combine the quantum
description of interactions with general relativity [1]. There are currently many promising
approaches to connecting the quantum mechanics and general relativity, including perhaps
the most promising ones: loop quantum gravity [2–4], string theory [5–7], and
noncommutative spacetime theory [8, 9].

There are also attempts made to modify general relativity or find an equally good
alternative theory [10–12] that would provide a more general description or would allow for
the inclusion of other interactions. A significant amount of work has also been carried out to
clear up some challenges related to general relativity and the ΛCMD model [13]. An
explanation for the problem of dark energy [14] and dark matter [15] is still being sought,
and efforts are still being made to explain the origin of the cosmological constant [16–18].

The author also attempts to bring his own contribution to the explanation of the above
physics challenges based on a recently discovered method, as described in [19]. In this article,
this method seems very promising andmay help clarify at least some of the issues mentioned
above. The author’s method, which is similar to the approach presented in [20–22], also
points to the essential connections between electromagnetism and general relativity;
however, the postulated relationship is of a different nature and can be perceived as
some generalization of the direction of research proposed in [23–26].

According to the conclusion obtained from [19], the description of motion in curved
spacetime and its description in flat Minkowski spacetime with fields are equivalent, and the
transformation between curved spacetime and Minkowski spacetime is known because the
geometry of curved spacetime depends on the field tensor. This transformation allows for a
significant simplification of research because the results obtained in flat Minkowski
spacetime can easily be transformed into curved spacetime. The last missing link seems
to be the quantum description.
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In this article, the author will focus on developing the
proposed method for a system with an electromagnetic field in
such a manner, as to obtain the convergence with the description
of QED and quantum mechanics. In the first section, the
Lagrangian density for the system will be derived, allowing to
obtain the tensor, as described in [19]. These conclusions will
later be used in the article to propose the possible directions of
research on combining the GR description with QFT and QM.

The author uses Einstein’s summation convention, metric
signature (+, −, −, −), and commonly used notations. In order to
facilitate the analysis of the article, the key conclusion from [19] is
quoted in the subsection below.

1.1 Short summary of the method

According to [19], the stress-energy tensor Tαβ for a system with
an electromagnetic field in a given spacetime, described by a metric
tensor gαβ, is equal to

Tαβ � ϱUαUβ − c2ϱ + Λρ( ) gαβ − ξ hαβ( ), (1)

where ϱo is for remaining mass density, γ is the Lorentz gamma
factor, and

ϱ ≡ ϱoγ, (2)
1
ξ
≡
1
4
gμ] h

μ], (3)

Λρ ≡
1
4μo

Fαμ gμγ F
βγgαβ, (4)

hαβ ≡ 2
Fαδ gδγ F

βγ���������������������
Fαδ gδγ F

βγ gμβ Fαη gηξ F
μ
ξ

√ . (5)

In the above equations, Fαβ represents the electromagnetic field
tensor, and the stress-energy tensor for the electromagnetic filed,
which is denoted as ϒαβ, may be represented as follows:

ϒαβ ≡ Λρ gαβ − ξ hαβ( ) � Λρg
αβ − 1

μo
Fαδ gδγ F

βγ. (6)

Thanks to the proposed amendment toward the continuum
mechanics, in the flat Minkowski spacetime occurs

∂αU
α � −dγ

dt
→ ∂α ϱUα � 0. (7)

Thus, denoting four-momentum density as ϱUμ = ϱoγ Uμ, the total
four-force density fμ operating in the system is

fμ ≡ ϱAμ � ∂αϱUμUα. (8)
Denoting the remaining charge density in the system as ρo and

ρ ≡ ρoγ, (9)
the electromagnetic four-current Jα is equal to

Jα ≡ ρUα � ρoγU
α. (10)

The pressure p in the system is equal to

p ≡ c2ϱ + Λρ. (11)

In the flat Minkowski spacetime, the total four-force density fα

operating in the system calculated from vanishing ∂β T
αβ is the sum

of electromagnetic (fα
EM) and gravitational (fα

gr), and the sum of
the remaining (fα

oth) four-force densities is as follows:

fα �

fα
EM ≡ ∂β ϒαβ electromagnetic( )

+
fα
gr ≡ gαβ − ξ hαβ( )∂β p gravitational( )

+
fα
oth ≡

ϱc2
Λρ

fα
EM sum of remaining forces( ).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

As shown in [19], in curved spacetime (gαβ = hαβ), presented
method reproduces Einstein’s field equations with an accuracy of 4πGc4
constant and with a cosmological constant Λ that is dependent on
the invariant of the electromagnetic field tensor Fαγ:

Λ � − πG

c4μo
Fαμ hμγ F

βγhαβ � −4πG
c4

Λρ, (13)

where hαβ appears to be the metric tensor of the spacetime in which
all motion occurs along geodesics and where Λρ describes the
vacuum energy density.

It is worth noting that although in flat Minkowski spacetime Λρ

has a negative value due to the adopted metric signature, this does
not determine its value in curved spacetime. Therefore, solutions
with a negative cosmological constant are also possible, which is an
issue discussed in the literature [27–29].

It was also shown that in this solution Einstein’s tensor describes
the spacetime curvature related to vanishing in curved spacetime
four-force densities fα

gr + fα
oth and is, therefore, related to the

curvature responsible for gravity only when other forces are
being neglected.

The proposed method allows adding additional fields while
maintaining its properties. One may define another stress–energy
tensor describing the field (e.g., describing the sum of several fields)
instead ofϒαβ and insert it into the stress–energy tensorTαβ in amanner
that is analogous to that presented above. As a result of the vanishing
four-divergence of Tαβ, one will obtain in the flat spacetime four-force
densities related to the new field and in curved spacetime, the equations
will transform into EFE with the cosmological constant depending on
the invariant of the considered new field strength tensor.

2 Lagrangian density for the system

Since the transition to curved spacetime is known for the considered
method, the rest of the article will focus on the calculations inMinkowski
spacetime with the presence of an electromagnetic field, where ηαβ

represents the Minkowski metric tensor.
Using a simplified notation

d ln p( )
dτ

� Uμ∂
μ ln p( ) � Uμ

∂μp

p
, (14)

it can be seen that the four-force densities resulting from the
obtained stress–energy tensor (12) in flat Minkowski spacetime
can be written as follows:
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fα
gr � ηαβ − ξ hαβ( )∂βp � d ln p( )

dτ
ϱUα − Tαβ∂β ln p( )

fα
EM � Λρ

p
fα − fα

gr( )
fα
oth �

ϱc2
p

fα − fα
gr( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

where fμ
EM can also be represented in terms of electromagnetic four-

potential and four-current. This means that to fully describe the
system and derive the Lagrangian density, it is enough to find an
explicit equation for the gravitational force or some gauges of
electromagnetic four-potential.

Referring to definitions from section 1.1, one may notice that by
proposing the following electromagnetic four-potential Aμ,

A
μ ≡ − Λρ

p

ϱo
ρo
Uμ, (16)

one obtains the electromagnetic four-force density fα
EM in the

form of

fα
EM � Jβ ∂αAβ − ∂βAα( ) � Λρ

p
fα − d ln p( )

dτ
ϱUα + ϱc2∂α ln p( )( ),

(17)
where Jβ is the electromagnetic four-current and where the
Minkowski metric property was utilized:

UβU
β � c2 → Uβ∂

αUβ � 1
2
∂α UβU

β( ) � 0. (18)

Four-force densities operating in the system may now be
described by the following equality:

Jβ ∂αAβ − ∂βAα( ) + ϱUβ ∂β
ϱc2
p
Uα − ∂α

ϱc2
p
Uβ( ) � ϱUβ ∂βUα − ∂αUβ( )

� fα.

(19)
Comparing equations (15) and (17), it is seen that the

introduced electromagnetic four-potential yields

0 � Tαβ − ϱc2 ηαβ( ) ∂β ln p( ), (20)
which is equivalent to imposing the following condition on the
normalized stress–energy tensor

0 � ∂β
Tαβ

ημγT
μγ

⎛⎝ ⎞⎠ + ∂α ln ημγT
μγ( ), (21)

and which yields the gravitational four-force density in Minkowski
spacetime in the form of

fμ
gr � ϱ d ln p( )

dτ
Uμ − c2∂μ ln p( )( ). (22)

Now, one may show that the proposed electromagnetic four-
potential leads to correct solutions.

At first, recalling the classical Lagrangian density [30] for
electromagnetism, one may show why, in the light of the
conclusions from [19] and above, it does not seem to be correct
and thus makes it difficult to create a symmetric stress–energy tensor

[31]. The classical value of the Lagrangian density for the
electromagnetic field, written with the notation used in the
article, is

−LEMclassic � Λρ + A
μJμ. (23)

In addition to the obvious doubt that is observed by taking the
different gauge of the four-potential Aμ, one changes the value of
the Lagrangian density and one may notice that with the
considered electromagnetic four-potential, such Lagrangian
density is equal to

−LEMclassic � Λρ − Λρ

p

ϱo
ρo
Uμ Uμρoγ � Λρ − Λρϱc2

p
� Λ2

ρ

p
. (24)

It is observed that the above Lagrangian density is not invariant
under gradients over four-positions, and Aμ and Jμ are dependent,
what is not taken into account in classical calculation:

A
α

A
μ
Aμ

� Jα

A
μJμ

. (25)

The above analysis yields

∂ ln 1����
AμAμ

√( )
∂Aα

� − Jα

A
μJμ

� p

ϱc2
Jα

Λρ
. (26)

One may decompose

ln
1�����

A
μ
Aμ

√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠ � ln
p ρo
ϱoc

( ) − ln Λρ( ), (27)

and simplify (26) to

∂ ln p ρo
ϱoc

( )
∂Aα

− ∂ ln Λρ( )
∂Aα

� Jα

ϱc2 +
Jα

Λρ
, (28)

where the above equation yields

∂ ln Λρ( )
∂Aα

� − J
α

Λρ
, (29)

which leads to the conclusion that Λρ acts as the Lagrangian density
for the system

∂Λρ

∂Aα
� ∂]

∂Λρ

∂ ∂]Aα( )( ) � −Jα, (30)

which would support the conclusion from [32] and what yields the
stress–energy tensor for the system in the form of

Tαβ � 1
μo
Fαγ∂βAγ − Λρη

αβ. (31)

The proof of correctness for the electromagnetic field tensor
(noted as ϒαβ) allows seeing this solution as follows:

fβ
EM � ∂αϒαβ � JγFβ

γ −
1
μo
Fαγ∂αF

β
γ, (32)

and what yields following property of the electromagnetic field
tensor:

Fαγ∂α∂γA
β � Fαγ∂β∂αAγ. (33)
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Using the above substitution, one may note that

∂αϒαβ � ∂α
1
μo
Fαγ∂γA

β − ∂α
1
μo
Fαγ∂βAγ

� 1
μo
Fαγ∂β∂αAγ − Jγ∂γA

β − ∂α
1
μo
Fαγ∂βAγ. (34)

Therefore, the invariance of Λρ with respect to Aα and ∂]Aα is
both a condition on the correctness of the electromagnetic
stress–energy tensor and on Λρ in the role of Lagrangian density

0 � ∂βΛρ � ∂Λρ

∂ ∂αAγ( )∂β ∂αAγ( ) + ∂Λρ

∂Aγ
∂βAγ � 1

μo
Fαγ∂β∂αAγ − Jγ∂βAγ

� ∂α
1
μo
Fαγ∂βAγ,

(35)
what yields for (34) that

∂αϒαβ � Jγ∂βAγ − Jγ∂γA
β � fβ

EM. (36)
Equations (1), (6), and (31) yield

1
μo
Fαγ∂γA

β � ϱUαUβ − c2ϱ
Λρ

ϒαβ, (37)

and what yields the second representation of the stress–energy
tensor is

Tαβ � p

ϱc2 ·
1
μo
Fαγ∂γA

β − Λρ

c2
UαUβ � p

ϱc2 ∂γ
1
μo
FαγA

β. (38)

After four-divergence, it provides additional expression for
relation between forces and provides useful clues about the
behavior of the system when transitioning to the description in
curved spacetime.

3 Hamiltonian density and energy
transmission

By observing Hamiltonian density as H from (31), one obtains

H ≡ T00 � 1
μo
F0γ∂0Aγ − Λρ. (39)

The above Hamiltonian density agrees with the classical
Hamiltonian density for the electromagnetic field [33] except that
this Hamiltonian density was currently considered for sourceless
regions. According to conclusions from previous sections, this
Hamiltonian density describes the whole system with an
electromagnetic field, including gravity and other four-force
densities resulting from the considered stress–energy tensor.
Therefore, the above equations may significantly simplify
quantum field theory equations ([34)–(36)], which will be shown
in this section for the purposes of QED.

At first, one may notice that in transformed (31)

−Tα0 � − 1
μo
Fαγ∂γA

0 + ϒα0, (40)

the first row of the electromagnetic stress–energy tensor ϒα0 is a
four-vector, representing the energy density of an electromagnetic
field and Poynting vector [37]—the Poynting four-vector. Therefore,

the vanishing four-divergence of Tα0 must represent the Poynting
theorem. Indeed, properties (33) and (35) provide such an equality

0 � −∂αTα0 � JγF
0γ + ∂αϒα0. (41)

Next, one may introduce the auxiliary variable ε with the energy
density dimension defined as follows:

cε ≡ − 1
μo
F0μdAμ

dτ
, (42)

and comparing the result

−UβT
0β � cε + cγΛρ, (43)

between the two tensor definitions (31) and (38), one may notice
that it must hold

− p

ϱc2 ·
1
μo
F0μ∂μA

β � − p

ϱc2μo
· Uβ F0μ∂μ

A
0

cγ
+ A

0

cγ
F0μ∂μU

β( )
� ε

c
Uβ − p

ϱc2
A

0

γcμo
F0μ∂μU

β (44)

because the second component of above vanishes contracted with
Uβ, due to the property of the Minkowski metric (18). Therefore,
(31) and (38) also yield the following:

−T0β � ε
ϱc
p

Uβ − cϵoA0

γ
F0μ∂μU

β + ϒ0β, (45)

where ϵo is electric vacuum permittivity, and

ϒ0βUβ � cε
Λρ

p
+ cγΛρ. (46)

Since ∂μp = ∂μϱc2, thus from (44), one obtains

εγ � cϵoA0

γ
F0μ∂μγc, (47)

and thanks to (44) that was substituted to (38), one also obtains

−T0β � ε + Λργ

c
Uβ − p

ϱc2
cϵoA0

γ
F0μ∂μU

β. (48)

Since from (1) and (6) for T00, one obtains

H � ϱc2γ2 − p

Λρ
ϒ00. (49)

Therefore, comparing the zero-component of (45)

H � −εγ ϱc
2

p
+ εγ − ϒ00 � εγ − H

Λρ
ϱc2 − p

Λρ
ϒ00, (50)

to (49) and comparing that to (48)

H � −εγ − Λργ
2 + p

ϱc2 εγ � Λρ
εγ

ϱc2 − γ2( ), (51)

one may notice that

εγ � ϱc2γ2 + ϱc2 (52)
is a valid solution of the system, which yields

H � Λρ, (53)
1
cγ
UβT

0β � −ϱoc
2

γ
− p. (54)
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There is a whole class of solutions (52) in the form
εγ � ϱc2γ2 +K · ϱc2; however, K< > 1 would not be consistent
with the following conclusions. It is also worth noting that the
obtained solutionH � L � Λρ means that there is no potential in the
system in the classical sense, and thus, the dynamics of the system
depends on itself. This is exactly what would be expected from a
description that reproduces general relativity in flat spacetime.

From the analysis of Eq. 45, it may then be concluded that after
the integration of −1

cT
0β with respect to the volume, the total energy

transported in the isolated system should be the sum of the four-
momentum and four-vectors describing energy transmission related
to fields. This would be consistent with the conclusion from [38] that
“equations of motion for matter do not need to be introduced
separately but follow the field equations.” It would mean that the
canonical four-momentum density is only a part of the
stress–energy tensor.

Therefore, by analogy with the Poynting four-vector 1
cϒ

0β, one
may introduce a four-vector Zβ that is understood as its equivalent
for the remaining interactions and rewrite (45) as

−1
c
T0β � ϱoUβ + Zβ + 1

c
ϒ0β, (55)

where

Zβ ≡ ρoA
β + ϱc2γ2

p
ϱoUβ − ϵoA0

γ
F0μ∂μU

β. (56)

The above result ensures that the canonical four-momentum
density for the system with the electromagnetic field depends on the
four-potential and charge density as expected. This supports the
earlier statement about the need to set K � 1 and makes its physical
interpretation visible. It is also worth noting that −ϵoA0

γ F0μ∂μUβ, due
to its properties, may be associated with some descriptions of
the spin.

One may also note that the above solution yields p < 0 since the
energy density of the electromagnetic field is

ϒ00 � Λρ

p
ϱc2γ2 − Λρ( ), (57)

where Λρ < 0 in flat spacetime, due to the adopted metric signature.
Thus, Zβ may also be simplified to

Zβ � ϒ00

Λρ
ϱoUβ − ϵoA0

γ
F0μ∂μU

β. (58)

Finally, one may define another gauge �Aγ of electromagnetic
four-potential Aγ in the following manner:

�A
γ ≡ A

γ − ∂γAβXβ � −Xβ∂
γ
A

β, (59)
and it is to be noted that

−XβT
0β � 1

μo
F0γ �Aγ +Xβϒ0β. (60)

The four-divergence of T0β vanishes, and therefore, (53)
indicates that

Xβ∂
αT0β � 0, (61)

which yields

∂αXβT
0β � T0α. (62)

The above equation brings two more important insights as
follows:

• 1
cXβT0β may play a role of the density of Hamilton’s principal
function;

• Hamilton’s principal function may be expressed based on the
electromagnetic field only, so in the absence of the
electromagnetic field it disappears.

All the above equations also lead to this conclusion that (54) may
also act as Lagrangian density in the classic relativistic description
based on four-vectors.

One may, thus, summarize all of the above findings and propose
a method for the description of the system with the use of classical
field theory for point-like particles.

4 Point-like particles and their quantum
picture

Initially, it should be noted that the reasoning presented in
Section 3 changes the interpretation of what the relativistic principle
of least action means. As one may conclude from above, there is no
inertial system in which no fields act, and in the absence of fields, the
Lagrangian, the Hamiltonian, and Hamilton’s principal function
vanish. Since the metric tensor (5) for description in curved
spacetime depends on the electromagnetic field tensor only, it
seems clear that in the considered system, the absence of the
electromagnetic field means the actual disappearance of
spacetime and the absence of any action.

Then, one may introduce generalized, canonical four-
momentum Hμ as four-gradient on Hamilton’s principal function S

Hμ ≡ − 1
c
∫T0μ d3x ≡ − ∂μS, (63)

where

−S ≡ HμXμ. (64)

One may also conclude from previous sections that the
canonical four-momentum should be in the form of

Hμ � Pμ + Vμ, (65)
where

Vμ ≡ ∫Zμ + 1
c
ϒ0μ d3x, (66)

and where four-momentum Pμmay now be considered just “another
gauge” of −Vμ:

−∂αPμ � ∂α∂μS + ∂αVμ. (67)
Since in the limit of the inertial system, one obtains PμXμ =mc2τ,

and therefore, to ensure vanishing Hamilton’s principal function in
the inertial system, one may expect that

VμXμ ≡ −mc2τ, (68)
which would also yield vanishing in the inertial system Lagrangian L
for the point-like particle in the form of

Frontiers in Physics frontiersin.org05

Ogonowski 10.3389/fphy.2023.1264925

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264925


−γL � UμH
μ � FμXμ, (69)

where Fμ is the four-force. Equation 48 yields

Hμ � −γL
c2
Uμ + S

μ, (70)
where

S
β ≡ ∫ ϵoΛρ

γcρo
F0μ∂μU

β d3x, (71)

and where SβUβ vanishes, what yields from

S
β � dS

dτ

1
c2
Uβ − ∂βS. (72)

In the above equation, the Hamilton’s principal function,
generalized canonical four-momentum, and Lagrangian vanish
for the inertial system, as expected.

Since

S
μ
Sμ � HμHμ − γL

c
( )2

, (73)

therefore, to ensure compatibility with the equations of quantum
mechanics, it suffices to consider the properties of SμSμ. For
instance, if

S
μ
Sμ � m2c2 − γL

c
( )2

, (74)
then, by introducing quantum wave function Ψ in the form of

Ψ ≡ e±iK
μXμ , (75)

where Kμ is the wave four-vector related to the canonical four-
momentum

ZKμ ≡ Hμ, (76)
from (73), one obtains the Klein–Gordon equation as follows:

□ + m2c2

Z2
( )Ψ � 0. (77)

This shows that in addition to the alignment with QFT (39), the
first quantization also seems possible which allows for further
analysis of the system from the perspective of the quantum
mechanics, eliminating the problem of negative energy appearing
in solutions [39].

The above representation allows the analysis of the system in the
quantum approach, classical approach based on (40), and the
introduction of a field-dependent metric in (5) for curved
spacetime, which connects the previously divergent descriptions
of physical systems.

5 Conclusion and discussion

As shown above, the proposed method summarized in Section
1.1 seems to be a very promising area of further research. In addition
to the previous agreement with Einstein’s field equations in curved
spacetime, by imposing condition (21) on the normalized
stress–energy tensor (1) (hereinafter, referred to as the Alena
Tensor) in flat Minkowski spacetime, one obtains consistent

results, developing the knowledge of the physical system with an
electromagnetic field. Gravitational, electromagnetic, and sum of
other forces operating in the system may be expressed as shown in
(15), where gravitational four-force density is dependent on the
pressure p in the system and equal to fμ

gr � ϱ(d ln(p)
dτ Uμ −

c2∂μ ln(p)).
The conclusion from the article can be divided according to their

areas of application, as conclusion for QED, QM, and that regarding
the combination of QFT with GR.

5.1 Conclusion for QED

Condition (21) leads to the electromagnetic four-potential, for
which some gauge may be expressed as Aμ � −Λρ

p
ϱo
ρo
Uμ. It simplifies

Alena Tensor (1) to a familiar form Tαβ � 1
μo
Fαγ∂βAγ − Λρηαβ, and

both the Lagrangian and Hamiltonian density for the system with
the electromagnetic field appear to be related to the invariant of the
electromagnetic field tensor L � H � Λρ � 1

4μo
FαβFαβ � 1

2μo
F0γ∂0Aγ.

The above would also simplify the Lagrangian density used inQED.
Assuming that there is only the electromagnetic field in the system and
substituting Λρ for the current Lagrangian density used in QED, one
should obtain equations that describe the entire system with the
electromagnetic field. Interestingly, such equations would also take
into account the behavior of the system related to gravity because
according to the model presented here, gravity naturally arises in the
system as a consequence of the existence of other fields (more precisely,
existence of the energymomentum tensors associated with these fields),
and the resulting Lagrangian density takes this into account.

Perhaps, this explains why it is so difficult to identify quantum
gravity as a separate interaction within QFT, and it could also
explain QED’s extremely accurate predictions, assuming that it
actually describes the entire system with an electromagnetic field.

5.2 Conclusion for QM

As shown in the article,Hβ ≡ − 1
c ∫T0β d3x acts as the canonical

four-momentum for the point-like particle and the vanishing four-
divergence of Hβ turns out to be the consequence of the Poynting
theorem.

The obtained canonical four-momentum Hμ should satisfy the
Klein–Gordon (Eq 77), and it is equal to

Hμ � Pμ + Vμ � −γL
c2
Uμ + S

μ, (78)

where Pμ is four-momentum and L is Lagrangian for the point-like
particle, Sμ due to its properties, seems to be some description of the
spin, and where Vμ describes the transport of energy due to the field.
It may be calculated as

Vμ � qAμ + ϱc2γ2
p

Pβ + ϱc2
p
S
μ + Yμ, (79)

where Aμ is the electromagnetic four-potential and where Yμ is the
volume integral of the Poynting four-vector.

It seems that in such an approach, it would be possible to isolate
gravity as a separate interaction, although this would probably
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require further research on the influence of individual components
on the behavior of the particle. It is also not clear how to deal with
the interpretation of time in the first quantization; however, a clue is
to rely on the possibility of using Geroch’s splitting [40], providing
(3 + 1) decomposition.

5.3 Conclusion regarding the combination
of QFT with GR

It should be noted that the presented solution applies to a system
with an electromagnetic field, but it allows for the introduction of
additional fields while maintaining the properties of the considered
Alena Tensor. Therefore, it appears as a natural direction for further
research to verify how the system with additional fields will behave
and what fields are necessary to obtain the known configuration of
elementary particles and interactions.

For example, considering the previous notation, one may
describe the field in the system by some generalized field tensor
Wαβγ part of which is the electromagnetic field (e.g., electroweak).
Such a description provides more degrees of freedom compared to
the simple example for electromagnetism from Section 1.1 and
allows representing the Alena Tensor in flat spacetime as follows:

Tαβ � ϱUαUβ − c2ϱ
Λρ

+ 1( ) Λρ η
αβ −Wαδγ W

β
δγ( ), (80)

where

Λρ ≡
1
4
WαβγWαβγ, (81)

ξ hαβ ≡
Wαδγ W

β
δγ

Λρ
, (82)

ξ ≡
4

ηαβ h
αβ
. (83)

The Alena Tensor that is defined in this manner retains most of
the properties described in the previous sections; however, it now
describes other four-force densities in the system, related to its
vanishing four-divergence.

Further analysis of the above properties using the variational
method may lead to future discoveries regarding both the theoretical
description of quantum fields and elementary particles associated
with them, and the possibility of experimental verification of the
obtained results.

As can be seen from the above summary, the conclusion
obtained cannot be treated as the final result and requires
additional research. These results should be understood as
another small step on the path of science, which opens up the
possibility of research on the properties of the Alena Tensor in terms
of its applications in quantum theories. If these results spark an
interest in the scientific community, perhaps further steps can be
taken through a concerted effort.
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