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Electrospun fibers are widely used in various fields of biology, medicine, and
chemistry due to their unique morphological characteristics that determine their
distinct application properties. Accurate and rapid classification of these fibers
based on their morphology is critical for their effective utilization. Non-destructive
and low-cost imaging methods are highly desirable for this purpose, so we
obtained the polarization images of different forms of electrospun fibers
(smooth surfaces, microporous, and beaded microspheres) by polarized light
microscopy. In this study, we have explored the automatic classification of
electrospun fibers based on their Mueller matrix depolarization parameter,
which is highly correlated with the rough microporous structures on the
surface of the object. To achieve this, we employed transfer learning and
various convolutional neural networks (CNNs). Our proposed method
outperformed the conventional approach that only utilizes a single Mueller
matrix M44 image for classification, thus enabling researchers to effectively
classify electrospun fibers. Given the high accuracy of our method, it may find
significant utility in fields such as material science, nanotechnology, and
bioengineering.
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1 Introduction

Among the various fabrication techniques available, electrospinning stands out as a
highly versatile and effective method for producing ordered or complex fiber assemblies with
superior quality and precision [1]. The unique combination of precision, versatility, and
scalability offered by electrospinning has made it an indispensable tool for researchers and
practitioners working in the field of materials science. Furthermore, the rich array of
innovative technologies available for use in electrospinning opens up a vast landscape of
potential applications across multiple industries.

Conventional electrospun fibers possess outstanding properties such as simple
fabrication, large surface area, and complex structure. These properties make them
promising in various fields, such as biomedicine, tissue engineering [2] and chemistry
[3]. The presence of microporous structures on electrospun fibers leads to higher porosity,
larger specific surface area, and better pore connectivity [4], which significantly enhancing
their performance for tissue engineering applications [5]. Therefore, the microporous
structure can be considered as one of the key features of electrospun fibers. Currently,
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scanning electron microscopy (SEM) is primarily used by
researchers to observe the morphological features of electrospun
fibers due to its high magnification and excellent imaging quality.
Although polarized light microscopy has a lower magnification, it
can still produce super-resolution images [6]. Furthermore,
polarized light imaging is non-destructive, cost-effective, and
provides fast imaging capabilities. Therefore, if electrospun fibers
are to be classified, the use of polarized light image classification is an
excellent choice.

The Stokes vector [7] is a set of parameters describing the
polarization state of electromagnetic waves, and the Mueller
matrix is its corresponding state transformation matrix. At
present, the Mueller matrix is widely used in various fields, Shih-
Yau Lu and Russell A. Chipman [8] present an algorithm that
decomposes aMueller matrix into a sequence of three matrix factors,
it is useful for performing data reduction on experimentally
determined Mueller matrices, and it can extract the
depolarization parameter Δ from the Mueller matrix. Ma Hui’s
group took the backscattering Mueller matrices of tissues with
distinctly different microstructures (e.g., bovine skeletal muscle
tissue, porcine liver tissue), then used pixel frequency distribution
histograms (FDHs) and central moment analysis to convert the two-
dimensional Mueller matrix images into a set of quantitative metrics
for characterizing the structural properties of the tissues. The results
show that the distribution behavior of the Mueller matrix elements
and the corresponding central moment parameters can be used as
good indicators of tissue microstructure [9]. In addition, Ma Hui’s
team also used the Mueller matrix polarity decomposition method
to characterize the sphere-cylindrical birefringence model, and
calculated the values of depolarization Δ, delay R, and
attenuation parameters. The results show that the isotropic
spherical scatterer contributes mainly to the depolarization Δ, the
birefringence of the medium contributes only to the delay R, and the
quasi-cylindrical scatterer contributes to both the delay and
depolarization [10]. A. [11] presented a novel approach using the
Mueller matrix method to analyze the optical anisotropy induced by
quantitative uterine tumors and prostate tissues. The mean and
dispersion of the sample distributions were characterized by
computing first- and second-order moments of centrality
statistics based on the elements of the Mueller matrix. This
allowed the researchers to correlate the optical properties of the
tissues with their pathological conditions, such as leiomyosarcoma
in the uterus or different degrees of differentiation in the uterus and
prostate. [12] conducted a pixel value analysis of electrospun fiber
Mueller matrix images. The study showed that the last element of the
Mueller matrix, M44, corresponding to the fourth row and column
elements, had the highest sensitivity to the microporous structure of
the electrospun fiber surface. Consequently, it was identified as a
valuable feature for classifying different types of electrospun fibers
based on their morphology. Although the deep learning automatic
classification using M44 has been able to achieve a high accuracy
rate, combined with the information carried by other elements, it
may be able to achieve a better classification effect. The surface
morphological features of electrospun fibers generally have three
structures: smooth, microporous, and beaded microspheres, and the
depolarization parameter Δ is strongly correlated with the surface
roughness of objects [13]. In this paper, automatic classification is
performed from this perspective using depolarization coefficient

images, which contain more information about Mueller matrix
elements and are highly correlated with the roughness of the
object surface.

Deep learning automatic classification has become a mature and
effective technique for accurately classifying image data in various
fields. Convolutional Neural Networks (CNNs) have demonstrated
exceptional performance in computer vision and image processing
competitions [14]. For instance, [15] achieved precise classification
of diabetic foot ulcers using a modified CNN, and [16] achieved
ternary classification. However, the electrospun fiber image dataset
used in this study is sparse, which often results in poor training
results due to the limited data. To address this issue, transfer
learning is applied to train the network initially with other
similar datasets, and then the trained network is fine-tuned using
sparse datasets to reduce the dependence on a large amount of target
domain data to construct the target network [17]. [18] utilized
transfer learning combined with CNN to further improve the
accuracy of breast cancer classification. GoogleNet [19] and
ResNet [20] trained on the ImageNet dataset were used for
transfer learning and showed excellent performance in various
applications [21]. In this paper, depolarization parameter Δ
images and M44 images of electrospun fibers are fed into these
three classical networks for classification respectively.

2 Materials and methods

2.1 Electrospun fiber production

The fundamental mechanism of electrospinning involves the
acceleration of charged polymer droplets at the apex of the Taylor
cone of a capillary by the electric field force. As the electric field force
increases, the polymer droplets are able to overcome the surface
tension of the solution and form a fine jet stream, resulting in the
formation of a nonwoven-like fiber mat upon deposition onto a
receiving device. The intricate interplay between the key parameters
of electrospinning, including the solution viscosity, surface tension,
and electrical conductivity, must be carefully controlled to achieve
the desired fiber morphology and properties. In particular, the
combination of these parameters plays a critical role in
determining the diameter and orientation of the fibers, as well as
their mechanical and chemical properties [22].

The primary materials used for electrospinning were polylactic
acid (PLLA) and polycaprolactone (PCL), which are widely used
polymeric materials in the biomedical field due to their exceptional
hydrophobicity and biodegradability. To prepare the electrospun
fibres, PLLA and PCL were dissolved in dichloromethane at
different ratios. Then, 5 g of N,N-dimethylformamide (DMF) was
added to prepare the spinning solution with a mass percentage
ranging from 4 wt% to 8 wt%. The solution was stirred for 4 h at
25°C using a magnetic stirrer. Electrospinning was then initiated
with the following parameters: static electric field voltage of 15 kV, a
receiving device rotating at 100r/h, injection speed of 10 mL/h,
receiving distance of 15 cm, spinning temperature of 15°C,
humidity of 45% and spinning time of 30 min. PLLA and PCL
were dissolved in dichloromethane at different ratios to produce
electrospun fibers with various morphologies. Specifically, a ratio of
1:3 (PLLA:PCL) yields electrospinning in the form of beaded
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microspheres used in the experiments of this paper, and a 1:0 ratio
produces microporous electrostatically spun fibers, while a ratio of 1:
1 results in electrospinning with a smooth surface. These
morphological variations hold significant implications for the
performance and functionality of the electrospun fibers in
biomedical applications.

The electrospun fibers used in this paper consists of three types
of structures: beaded microspheres, smooth surface, and
microporous. A total of 117 electrospun fiber samples were
analyzed. The samples had a thickness of approximately
50 microns. Of these samples, 35 were smooth surface, 42 were
microporous, and 40 were beaded microspheres. The SEM images of
the three electrospun fiber morphologies are shown in Figure 1,
allowing for easy visual comparison of the different structures.
Under high magnification, the surface characteristics of the three

different electrospun fibers show noticeable differences. These
observations suggest that the surface morphology of electrospun
fibers is influenced by various factors, including material
composition and processing parameters used during fabrication.

2.2 Mueller matrix images and mueller
matrix decomposition

The Stokes vector is a mathematical expression that
characterizes the polarization state of light and contains four
intensity components (I, Q, U, V). As a mathematically
convenient alternative, it can replace the total intensity and
polarization of the polarized radiation, as well as the shape
parameter of the polarization ellipse, etc. The mathematical
formulation of these parameters is not discussed in detail in this
paper. For more information, please refer to the reference [7].

The Mueller matrix is a transformation matrix that relates the
Stokes vector of incident light to that of reflected or transmitted light. As
a 16-componentmatrix, it provides a sophisticated representation of the
polarization properties of themedia, with each sample corresponding to
16 Mueller matrix images. The relationship between the incoming
polarized light Stokes vector Sin and the outgoing polarized light Stokes
vector Sout is given by the following Eq. 1:

Sout � M × Sin. (1)
The polarized light microscope developed by the Shenzhen Key

Laboratory of Nondestructive Monitoring and Minimally Invasive
Medical Technology [23] was used to capture images at
400 magnification and 9000 microsecond exposure time. This
polarisation microscope system consists of four main modules:
the multi-wavelength collimated light source module (CLS), the
polarised state generator (PSG), the polarised state analyser (PSA)
and the image receiver module. It mainly adopts the dual-rotating
quarter-wave plate Mueller matrix measurement method. For each
measurement, the system acquires 30 polarisation component
images corresponding to different combinations of PSG and PSA,
and evaluates 16 Mueller matrix elements, which are finally imaged
as 16 Mueller matrix images. Figure 2 shows the diagonal element
images of the Mueller matrix, which show distinct morphological
features. The diagonal element, which contains the most contour
information, closely resembles the original image contour structure,
making it the ideal classification feature. Due to the high
magnification and resolution of SEM, we can directly distinguish
SEM images of different types of electrospun fibers with the naked
eye. However, in the case of Mueller matrix images of electrospun
fibers, the distinction between different types of fibers is not
immediately apparent. Although the structural information
contained in the Mueller matrix diagonal element images is very
close to the original sample image, it requires careful observation
and analysis to determine the specific type of electrospun fiber from
a single image without prior classification, but this is normal because
a single Mueller matrix image can only capture a limited amount of
the structural information present in the sample, and combining
multiple images can provide more comprehensive information for
accurate image classification. Therefore, we propose a classification
method that uses the depolarization parameter images calculated
from all 16 Mueller matrix images as classification features.

FIGURE 1
SEM images of different morphologies of electrospun fibers. The
scale bars are all 2 μm (A) smooth surface; (B) microporous; (C)
beaded microspheres.
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After obtaining the polarized light images, we converted the
obtained images to grayscale images and then normalized them to
the same scale by mapping the grayscale values of the images to the
range of 0–255 with the bound of the maximum and minimum
values selected from all Mueller matrix images of the same type. [24]
normalized each image by substituting its maximum and minimum
grayscale values, which could further enhance the contrast, but this
method increased the difference between similar images because
each image had different maximum and minimum values, which
was not friendly for classification.

Instead of using a single Mueller matrix element M44 in other
classification experiments, we chose depolarization parameter
images as features of electrospun fiber surface in this paper. [13]
obtained Mueller matrix images of yttria-stabilized zirconia
thermal barrier coatings using polarimeter architecture, then
polarization decomposition was performed to extract
polarization parameters Δ, diattenuation parameters D, and
retardance R to analyze the surface structure of the samples. The
results showed that Δ and D were closely related to the surface
roughness and porosity of the samples, while there was no
significant correlation with R. Microporous structures are highly
suitable as classification features for different categories of

electrospun fibers. When comparing Δ and D, the diattenuation
parameter D is only calculated from the first row or column
elements of the Mueller matrix, while the depolarization
parameter includes almost all elements, and the diagonal
elements, such as M33, M44, etc., obviously contain more
information about the structure of the sample, indicating that
the use of polarization parameters Δ was more suitable for
automatic classification. Since the depolarization parameter is a
better choice, the other two parameters are not verified here. The
calculation of the depolarization parameter image in polarized light
imaging is a crucial step in revealing the underlying microstructural
information of a sample. The principle is as follows. A diagonal
Mueller matrix is given below, it represents a pure depolarizer:

1 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, |a|, |b|, |c|≤ 1. (2)

Its principal depolarization parameter of this depolarizer are
represented by 1 − |a|, 1 − |b|, and 1 − |c|. These parameter indicate
the depolarization capabilities of the polarizer along its principal
axes. A parameter Δ is defined as follows:

FIGURE 2
Diagonal element images of the Mueller matrix of electrospun fibers for three morphologies. Each set of images is from left to right for M11, M22,
M33, and M44, with normalized color bars in the range of 0–1 on the right side of each small image. (A) Smooth surface; (B) micropores; (C) beaded
microspheres.
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Δ � 1 − |a| + |b| + |c|
3

, 0≤Δ≤ 1. (3)

Δ represents the average of the principal depolarization factors.
Roughly speaking, this parameter indicates the averaged
depolarization capability of this depolarizer. Let M be a
depolarizing Mueller matrix. M can be decomposed using the
algorithm proposed by Shih-Yau Lu and Russell A. Chipman [8],
as follows:

M � MΔ × MR × MD. (4)
In Eq. 4, MD represents a diattenuator, MR denotes a retarder,

and MΔ stands for a depolarizer. Together, these three factors
describe the diattenuation, retardance, and depolarization
properties related to M. Therefore, Eq. 4 can be considered as a
generalized polar decomposition for depolarizing Mueller matrices.
Where the MΔ is:

MΔ � 1 0
T

�PΔ mΔ
[ ]. (5)

HeremΔ is a 3*3 submatrix ofMΔ, the depolarization parameter,
denoted by Δ is calculated based on Eq. 2 and equation Eq 3:

Δ � 1 − |tr mΔ( )|
3

. (6)

where tr represents the trace of the 3 × 3mΔ matrices.
Each pixel in the original sample is associated with a 4*4 Mueller

matrix. Based on the principle described above, Δ can be calculated,
then the depolarization parameter image can be obtained by
calculating the Δ values of each pixel.

2.3 Depolarization parameter Δ images

In the previous section we described the principle of calculating
the depolarization parameter Δ. Here we present the procedure for
generating depolarization parameter images from 16Mueller matrix
images of electrospun fiber samples. First, the 16 Mueller matrix
images of the sample are acquired and then read into the procedure.
Next, a 4 × 4 Mueller matrix is acquired at each pixel of the
16 sample images. Following this, a singular value decomposition
(SVD) of the matrix is then performed, and the depolarization
parameter Δ is calculated from the singular values obtained.
Subsequently, the depolarization parameter at all pixels is
calculated and reconstructed into a depolarization parameter

FIGURE 3
Images of depolarization coefficient of different forms of electrospun fibers, M44 images. (A) Smooth surface; (B) Microporous.
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image. Furthermore, to ensure the consistency and reliability of the
results, we normalize the obtained depolarization parameter image.
This step is critical to ensure that variations in imaging conditions
do not affect the accuracy of the results. Figure 3 shows the
depolarization parameter images and M44 images for the
electrospun fiber. It is visually apparent that the depolarization
parameter image provides a stronger characterization of the
electrospun fiber contours and microporosity, although it may
enhance noise at the edges and exhibit some artifacts, which may
be acceptable if it provides sufficient information.

2.4 Dataset

As reported in the experiments by [12] and [25], the beaded
microsphere structure of electrospun fibers can exhibit microporous
structures due to differences in the fabrication process. Both
M44 images and depolarization parameter images are sensitive to
surface roughness and microporous structures. Therefore, it is
necessary to exclude morphological structures with uncertain
factors, such as beaded microspheres, and focus on the
classification of microporous and smooth surface types of
electrospun fibers.

To improve the classification accuracy, it is beneficial for the
dataset used for transfer learning and the target dataset in this
research to share some common characteristics. However, there are
few publicly available datasets with a significant amount of polarized
images. The ImageNet dataset is currently the world’s most
extensive image recognition database. Given its massive size, we
choose the Mini-Imagenet dataset, which was created by the Google
DeepMind team in 2016 from a small portion of the Imagenet
dataset [26]. The Mini-Imagenet dataset is approximately 2.9 GB in
size and contains 100 categories, each with 600 images, for a total of
60,000 images. All images are cropped to a uniform size of 224*224.

As described in Section 2.1, the electrospun fiber image dataset
used in this study consists of 117 samples classified into three
categories: 35 were smooth surface, 42 were microporous, and
40 were beaded microspheres. Each sample contains 16 Mueller
matrix images, and after calculation, there is one depolarization
parameter image for each sample. All original images are 1001 ×
1001 in size.

2.5 Classification method

GoogleNet [19] is equipped with the Inception-v3 module,
which enables multiple convolution operations or pooling
operations to be executed in parallel, effectively addressing the
issues of parameter explosion and overfitting. Additionally, it
utilizes fewer parameters for the same number of layers. ResNet
[20], on the other hand, mainly uses the residual learning module,
which effectively solves the gradient disappearance problem,
allowing neural networks to have more layers. For the classic
GoogleNet-Inception-v3 and ResNet152 structures, we did not
make any significant changes to their main framework structure.
Instead, we followed the structures described in their respective
papers, and only made minor adjustments to the output layer and
the softmax function to make it available for binary classification.

Figure 4 shows the structure diagrams of two networks. (a) is the
architecture of GoogleNet. Some of its more complex structures are
represented by block diagrams. (b) is the ResNet152 network, which
has a more complicated structure due to its 152-layer design, so we
omit the intermediate sections for clarity. The red circled areas
denote fully connected layers, while the blue circled areas also
contain some convolutional layers. As proposed by Yosinski et al
[27], it has been shown to be effective to pretrain a network with the
Mini-Imagenet dataset and selectively freeze some of the initial
layers to prevent overfitting. Subsequently, training the remaining
layers with random initialization can significantly improve the
performance of the network. Given the limited number of
depolarized parameter images in our target dataset and the
complexity of our network structure, we chose to freeze all layers
prior to the fully connected layer (as shown by the red circled area in
Figure 4) and train only the fully connected layer. The results
obtained by Yunhun Jang et al [28] suggest that the deeper a
layer is within the network architecture, the more specialized it is
for a specific task and may not be optimal for transfer learning
purposes. Therefore, in another comparative experiment, we left the
last convolutional module unfrozen (as shown by the blue circled
are-a in Figure 4).

In the first stage of our experiment, our approach started by
training GoogleNet and ResNet on the Mini-imagenet dataset,
where we set the initial learning rate to 0.001. We then used the
depolarization parameter Δ images training set to train the unfrozen
parameters, reducing the initial learning rate to 0.0001 at this stage
to prevent overfitting, and subjected the results to binary
classification using softmax. For each class of electrospun fiber
samples, we randomly selected 70% of the data for use in the
training set and reserved the remaining 30% for evaluation in the
test set and the batch-size is set to 12.

3 Results and discussion

The Mini-Imagenet dataset is divided into three files, namely
train.csv, val.csv, and test.csv, which represent the training,
validation, and test sets, respectively. We use the softmax loss curve
of the trained model to determine whether the network is well trained.
The loss value represents the difference between the predicted value and
the true value of the model. Using the loss curve alone does not fully
measure whether a network is well-trained, but it can confirm whether
themodel is overfitted. In particular, it determines whether the training,
validation, and test sets can perform well on the model, which is
necessary for the experiments in this paper. Figure 5 shows the graph of
the loss decrease in the pre-training phase. The training and validation
loss curves show small differences, with both decreasing to low values
after 150 cycles of training before the differences begin to increase. The
curves eventually flatten out after 200 training epochs. As a result,
among the training epochs that exceed 200 training epochs, we select
the epoch with the highest classification accuracy as the final result.

In order to standardise the criteria for comparison, the
classifications are all subjected to 5-fold cross-validation, i.e. the
results are averaged over 5 training and testing sessions. As
described in Section 2.4, we used two different transfer learning
modes after pre-training with Imagnet. One mode trained only the
parameters of the fully connected layer, while the other mode trained
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both the fully connected layer and one of the previous convolutional
modules. The training data set consists of depolarized parameter
images. We also conducted an experiment to evaluate the direct
feeding of depolarized parameter images into an untrained ResNet.
The same training conditions and parameter settings were used as in the
previous transfer learning experiments. Table 1 shows the results of
these experiments in terms of training and test classification accuracy
average and standard deviation (SD). The ResNet model without
transfer learning showed a significant decrease in classification
accuracy, reaching a maximum of only 79.35%. This level of
accuracy is not suitable for practical engineering applications.
Conversely, training the fully connected layer and one of the
preceding convolutional modules on both GoogleNet and ResNet
significantly improved classification accuracy. This trend is related to
the large differences between the source and target datasets for
migration learning, and deep network training significantly
improved the target dataset classification rates. The reason for
training no more than one convolutional module prior to the fully
connected layer is that the number of depolarization parameter images

is small, and training more parameters will cause overfitting problems
and reduce the performance of the network. Finally, we selected the
migration learning model with the highest classification rate as the
optimal solution. Tables 2–4 is supplemented with additional
classification outcome metrics for the two networks using the
depolarization parameter images, precision: what proportion of
samples predicted to be positive are actually positive, and recall:
what proportion of positive samples are correctly predicted, with the
F1 score representing the reconciled mean assessment metrics of
precision and recall. The results in these tables show that the
learning ability of ResNet and GoogleNet is very similar when using
the dataset of this paper, and GoogleNet has only a very small
advantage. And the difference in the number of different types of
images in the dataset is not very large, so in the subsequent comparison
of who has more classification advantage between M44 images and
depolarization images, the focus is on the accuracy of classification.

After five training and testing sessions, the classification
accuracy average and SD are shown in Table 5, using
depolarization parameter Δ images as feature parameters for both

FIGURE 4
Structure of GoogleNet-Inception-v3 and ResNet152. (A) GoogleNet-Inception-v3; (B) ResNet152.
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training and test sets on ResNet effectively improved the
classification accuracy compared to using M44 alone. However,
there was no significant benefit from using Δ images on GoogleNet-
Inception-v3. Picard David [29] conducted a study where he set

different initial random seeds and trained and tested a nine-layer
ResNet on a large amount of data, and concluded that the maximum
difference in accuracy from different random seeds was generally
0.5%. Therefore, it is reasonable to infer that the small differences in
results on Inception-v3 are probably due to the randomness in
training the model. While no significant improvement was observed
on GoogleNet-Inception-v3, this paper attempted to modify the
relevant parameters before training to improve accuracy.
Unfortunately, despite these efforts, the achieved accuracy did
not exceed the highest value recorded in Table 5. This result
shows that under the existing experimental conditions of this
paper, the maximum classification accuracy achievable on

FIGURE 5
Softmax loss decline curve of the model in the transfer learning phase.

TABLE 1 Classification accuracy average and standard deviation of different transfer learning modes.

Network type Train accuracy (mean/SD) Test accuracy (mean/SD)

ResNet (without transfer learning) 82.13%/5.38% 79.35%/8.27%

ResNet (train fc) 94.32%/2.71% 92.89%/3.65%

ResNet (train fc + conv layer) 99.53%/0.13% 95.21%/1.51%

GoogleNet (train fc) 93.98%/3.05% 92.76%/3.46%

GoogleNet (train fc + conv layer) 99.36%/0.25% 96.34%/1.42%

TABLE 2 Precision for different networks using the depolarization images.

Network type Maximum (%) Mean (%) Minimum (%)

ResNet 96.12 93.43 90.11

GoogleNet 97.23 94.56 91.04

TABLE 3 Recall for different networks using the depolarization images.

Network type Maximum (%) Mean (%) Minimum (%)

ResNet 96.05 93.51 90.23

GoogleNet 97.85 94.06 90.19

TABLE 4 F-Score for different networks using the depolarization images.

Network type Maximum (%) Mean (%) Minimum (%)

ResNet 96.92 94.39 90.42

GoogleNet 96.84 94.27 90.93
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GoogleNet is only about 96%. To achieve even higher accuracy, a
more comprehensive dataset or a more complex network structure
may be required. The advantage of using depolarization factor Δ
images for classification will become even more apparent when
higher classification accuracy can be achieved. Overall, the results
indicate that using Δ images as a feature parameter in the
classification process is better than using M44 images alone. The
best results of the two networks were achieved using GoogleNet.

Macroscopically, the depolarization parameter image increases the
amount of information compared to the M44 image. However, it also
introduces additional noise that can affect the final classification accuracy.
Nevertheless, the increased amount of information has a profounder and
beneficial effect on the classification accuracy, resulting in a certain
increase. Nonetheless, the influence of noise cannot be overlooked
because the noise in polarized light images is caused by the polarized
light microscope configuration and the acquisition environment. These
factors are fixed during the experimental conditions and can only be
reduced by subsequent algorithms. Unfortunately, conventional noise
reductionmethods are not suitable for polarized light images due to their
unique characteristics and complexity. In addition, enhancing the quality
of polarized light microscopy can significantly reduce noise levels and, to
some extent, improve the classification accuracy of polarized light images.
Researchers such as Singh, V [30] et al. have proposed multibeam
polarization digital holographic interferometry (DHI), where two
cross-polarization interferograms are recorded and Fourier analysis of
the interferograms could reduce coherence noise and improve accuracy.
Finally, it is important to note that noise reduction algorithms and
microscopy research are beyond the scope of this paper. Interested
readers are encouraged to explore relevant work in these areas for a
more complete understanding of the subject.

4 Conclusion and future work

This paper proposes the use of depolarization parameter Δ
images of electrospun fiber polarized light images as features for
deep learning automatic classification. In order to achieve better
classification results with a small amount of data of electrospun fiber
polarized light images, we use transfer learning in combination with
GoogleNet-Inception-v3 and ResNet, and utilize different transfer
learning patterns to achieve high classification accuracy in deep
learning-based automatic classification. By comparing the
classification results using M44 images as features, the proposed
method achieved the best and slight lead over GoogleNet-Inception-
v3, with a classification accuracy of 96.34%. These results indicate
that the depolarization parameter Δ image of the Mueller matrix

contains sufficient information, and its use as features in the
classification of electrospun fiber morphology is superior.

The proposedmethod presented in this study represents a powerful
and practical method for the classification and detection of electrospun
fibers, with significant implications for both research and industry. In
particular, our approach offers improved accuracy in the identification
of electrospun fibers, paving the way for more advanced analysis and
characterization of these materials and providing a valuable tool for
researchers and practitioners in the field of materials science and
beyond. There is still room for improvement in our proposed
method. Further optimization of processing techniques to reduce
noise and artifact interference in the images can potentially increase
the classification accuracy. More sophisticated training methods, such
as transfer learning or fine-tuning, along with more complex network
architectures, could potentially increase the discriminative power of our
model and enable better classification performance. In addition, the use
of more advanced polarized light microscopes can provide higher-
precision and lower-noise polarized light images, which may lead to
further improvements in classification accuracy.
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TABLE 5 Training and testing classification accuracy average and standard
deviation of different networks under various conditions.

Train (mean/SD) Test (mean/SD)

Network
Type

M44 image Δ
image

M44 image Δ
image

ResNet 98.70%/0.41% 99.53%/
0.13%

93.04%/1.85% 95.21%/
1.51%

GoogleNet 99.15%/0.22% 99.36%/
0.25%

95.97%/1.21% 96.34%/
1.42%
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