
CPDD-CLMM: a comprehensive
lightweight mobile-optimized
network for composite plate
defect detection

Biao Wang1, Yan Huang1, Yongyue Yang1, Yonghong Wang1,
Hongli Li1, Bin Huang1* and Jianbin Chen2

1School of Instrument Science and Opti-Electronics Engineering, Hefei University of Technology, Hefei,
Anhui, China, 2Intelligent Equipment Department, Zhejiang Jiashan Shuangfei Lubricant Material Co., Ltd.,
Jiashan, Zhejiang, China

Automatic defect-detection technology based on deep learning is increasingly
used for distinguishing production quality by many industries. However,
production lines are usually installed with lots of function modules, which
make it difficult to integrate new modules. Common deep learning models run
on PC platforms and require a big space with high cost, while ARM64 mobile
platforms are much smaller with less cost and equivalent connectivity but also
weaker performance. Considering these facts, ARM64 platforms with a fully
optimized model are the best solution for adding a defect-detection function
for existing production lines. This paper focused on a mobile-optimized model to
achieve higher speed and equivalent precision on the ARM64 mobile platform for
detection. First, the model structure is simplified by reducing the redundancy of
feature maps to increase the network inference speed. Second, a convolutional
block attention module is attached to compensate for the decrease in precision
caused by structure simplification. Furthermore, a transfer learning method is
adopted to improve training performance. Finally, the trained and compiled
module is exported to the PyTorch Mobile format and deployed on the mobile
platform application to execute its defect-detection function. The results show
that the optimized network achieves a speed of 2.124 fps, 210.7% compared with
that of You Only Look Once v5n, i.e., 1.008 fps, on the RK3399 ARM64 platform,
and has an averagemAP of 99.2%. The studiedmobile-optimizedmodel has better
speed and equivalent precision and can be available on many different
ARM64 platforms regardless of the processor manufacturer. It can satisfy the
need for real-time defect detection and can be used in similar scenarios. In the
future, more improvements could be made such as deploying on platforms with
NPU support to achieve faster speed, exploring the relationships between dataset
properties and transfer learning effects, even training and running the model
directly on ARM64 platforms.

KEYWORDS

composite plate, defect detection, You Only Look Once, embedded optimization,
PyTorch Mobile

OPEN ACCESS

EDITED BY

Sushank Chaudhary,
Chulalongkorn University, Thailand

REVIEWED BY

Amir Parnianifard,
University of Electronic Science and
Technology of China, China
Abhishek Sharma,
Guru Nanak Dev University, India

*CORRESPONDENCE

Bin Huang,
hbld@hfut.edu.cn

RECEIVED 21 July 2023
ACCEPTED 01 November 2023
PUBLISHED 20 November 2023

CITATION

Wang B, Huang Y, Yang Y, Wang Y, Li H,
Huang B and Chen J (2023), CPDD-
CLMM: a comprehensive lightweight
mobile-optimized network for
composite plate defect detection.
Front. Phys. 11:1264636.
doi: 10.3389/fphy.2023.1264636

COPYRIGHT

© 2023 Wang, Huang, Yang, Wang, Li,
Huang and Chen. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physics frontiersin.org01

TYPE Original Research
PUBLISHED 20 November 2023
DOI 10.3389/fphy.2023.1264636

https://www.frontiersin.org/articles/10.3389/fphy.2023.1264636/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1264636/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1264636/full
https://www.frontiersin.org/articles/10.3389/fphy.2023.1264636/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphy.2023.1264636&domain=pdf&date_stamp=2023-11-20
mailto:hbld@hfut.edu.cn
mailto:hbld@hfut.edu.cn
https://doi.org/10.3389/fphy.2023.1264636
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org/journals/physics#editorial-board
https://www.frontiersin.org/journals/physics#editorial-board
https://doi.org/10.3389/fphy.2023.1264636

1 Introduction

With the advance of industrial automation technology, an
increasing number of different functional modules have been
attached to the production line. These modules take individual
areas in a limited space, but integrating them into one system
would be difficult, which limits the application of new modules.

Meanwhile, automatic production quality control demands an
effective defect-detection method, as defect detection is an
important quality control method in many fields like industry,
agriculture, and medicine. Deep learning-based machine vision
could be a good choice with its adaptivity of different target
objects without programming a complex algorithm. Considering
the needs of a defect-detect function and space limit for new
modules, a small-size deep learning-based defect-detection
module is the best for adding such a function to the existing
production line.

The defect-detection module consists of software (deep
learning-based application) and hardware (deployment platform).
Regarding the hardware, which determines the space occupied, a
traditional industry PC can run the application with good speed and
precision but needs large space and cannot be shared with different
modules, which make it difficult for production line deployment.

Different from PCs, newly developed ARM64 hardware
platforms are much smaller with equivalent extensibility, owing
to the long-term evolution of ARM architecture. The popularity of
mobile phones accelerated the ARM evolution speed, enabled a
high-performance core design, and brought in a platform with
numerous hardware applications and well-optimized operating
system support. Nowadays, ARM64 platforms are good enough
for running industrial controlling systems, with their small size and
low cost, as well as valid hardware and software ecology. Some deep
learning frameworks, like PyTorch Mobile and TensorFlow Lite, are
developed for mobile platforms, which can be used for creating deep
learning-related applications. These factors show the feasibility of
developing a deep learning defect-detection application on
ARM64 mobile platforms.

However, the ARM64 platforms are much slower than PC
platforms due to weaker processor performance and the absence
of discrete GPU support. So, the models which run on a PC
smoothly could be very slow on an ARM64 platform due to large
model size. Therefore, it is necessary to design a lightweight model
which could run on an ARM64 platform with fast inference speed.
In addition, the industrial defect detection also demands the model
to have good precision as missing too many defects is unacceptable.

In this article, the design of a lightweight defect-detection model
for a composite plate is presented. A composite plate is a kind of
material based on metal, with an added coating material for
acquiring special surface properties. The composite plate is then
used to create oil-free lubrication bearings, and the performance of
the bearing is determined by the plate-coated surface quality.
Therefore, the automatic defect detection of the plate surface is
very important.

The manufacturing procedure is simple but liable to produce
defects on the plate surface. First, the loading system loads a
solid coating material on the base board, where impurities may
be contained by the material. The board with a coating material
is then preheated with hot nitrogen gas and pressed using a hot

rolling wheel to melt and flatten the coating material on the base
board. As shown in Figure 1, the manufacturing procedure is full
of heating and pressing, which could be affected by temperature
and pressure differences. Figure 2 shows a color image sample of
a defect on a composite plate. Obviously, the dark dot area is a
defect. Defects on the surface could cause serious problems
because of their effect on the physical characteristics of the
surface, like friction coefficient. Bearings with defects wear out
quickly and even cause more damage. Additionally, the
composite plate production environment could become very
hot because of the heating devices. Furthermore, numerous
controlling devices require much space, and little space is left
for new modules in the production line.

Therefore, to add an automatic defect-detection function for
existing production lines, using a space-saving ARM64 platform
with a defect-detection model is a good choice. However, there are
problems that need to be solved for model deployment. First,
common models are designed for running on a PC platform with
large-scale and complex structures, making them run very slowly on
ARM64 platforms. Second, simply cutting the model structure could
make it run faster but decreases precision significantly, which is
unacceptable for industrial use. Last, the datasets for industrial
defect-detection purposes are not as abundant as common
datasets, like PASCAL VOC and MS COCO series, while they
are collected by the industry user for defect detection of specified
products. So, the effect of dataset insufficiency should be considered.

Thus, this study proposed a defect-detection deep learning
model based on You Only Look Once (YOLO) v5n and
processed its deployment on the ARM64 platform. The following
efforts were made:

1. The model structure is simplified with Ghost Reduced (GR)-
Stem and Asymmetric Ghost Reduced (AGR)-Downsampling
blocks, which contained Ghost modules to reduce redundancy,
making it much lighter and faster than many object-detection
models. Ghost modules use base feature maps with cheap
operation to generate similar feature maps, and the redundant
parameters for expressing complete feature maps could be
reduced. The comparison and analysis are explained in Section 4.2.

2. The model inserted a convolutional block attention module
(CBAM) to compensate its precision without much speed and size
cost. Although the model is much smaller after simplification, its
feature extraction ability is also weaker than before. An attention
mechanism could let the model pay more attention and strengthen
feature extraction on the target area. The effectiveness analysis is
explained in Section 4.3.

3. The model is trained with a transfer learning method to
improve its retrain performance. As LED and composite plate
defect-detection tasks are similar, a transfer learning method can
be deployed. By using an LED defect dataset with abundant defect
images, we can fully train the model to perfect its structure and
generate an available pre-trained weight. Then, the model is
retrained with a composite plate defect dataset to achieve its
target function, as well as faster training speed and further
improvement in precision, due to a previous pre-train procedure
with the LED defect dataset. Details are provided in Section 3.1.4,
Section 4.3.

4. The model is deployed as a PyTorch Mobile application and
tested on the ARM64 platform. The manufacturer’s support, like

Frontiers in Physics frontiersin.org02

Wang et al. 10.3389/fphy.2023.1264636

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264636

NVIDIA mobile GPU and CUDA, is not essential, which makes it
easy to use on various ARM64 platforms with Android OS support.
Its wide applicability makes it practical for industrial use and
provides valuable data for further research. The deployment
procedure and test results are given in Section 3.2, Section 4.3.

2 Related work

Scholars worldwide work on automatic object detection and
put forward many algorithms and deep learning models with the
development of information technology. For example, Mordia and
Kumar Verma [1] concluded on a possible way for defect detection
in steel products, which are similar to composite plates. A machine
vision algorithm could be a possible choice for automatic defect
detection. However, it is difficult to design because of the difference
between distinct baseboards and defect features. Changing while
loaded on the hardware system is difficult, and adapting to possible
situations is even more difficult. Therefore, the convolutional
neural network (CNN) is a better choice because of its
adaptability and precision. For deep learning methods, Wang
et al. worked on LED defect detection with Faster R-CNN and
achieved an overall accuracy of 95.6% with approximately 10 fps

on a high-performance PC platform [2]. Wang et al. used
YOLOv5n for detecting apple stem/calyx and arrived at an
average precision of 93.89% on the apple image datasets
acquired [3]. Deep learning-related CNN models are good for
studying defect features without manually modifying procedures,
and pertinent optimization could encounter the disadvantage of
execution speed.

Regarding the defect-detection purpose, we could use detector
algorithms as well as deep learning models. Furthermore, the models
could be divided into two kinds: two-stage models and one-stage
models. The progress made by researchers is presented in the
following sections.

2.1 Detector algorithm methods

Traditional detection methods are the beginners of automatic
object detection, and the initial target was human detection. Paul
Viola and Michael Jones created the Viola–Jones object-detection
framework by combining many different technologies like Haar-like
feature, integration image, and AdaBoost detector and classifier [4].
Dala and Triggs put forward the HOG algorithm to extract
boundary gradients and their direction to create the feature list
[5]. In 2009, Felzenszwalb developed the DPM algorithm which
detects different parts of the target from the whole image and
removes irrelevant areas to produce final detection results [6].

2.2 Two-stage models

With the evolution of deep learning, two-stage models came into
existence, which include R-CNN, Fast R-CNN, Faster R-CNN, and
SPP-Net. The R-CNN series are one of the famous object-detection
models. They use selective search methods to find proposal regions
and support vector machines (SVMs) to determine whether the
region includes the target. Girshck et al. put forward an R-CNN
model [7] first and improved it continually, and then came out with
Fast R-CNN [8], SPP-Net [9], and Faster R-CNN [10]. Faster
R-CNN uses VGG16 as the backbone of feature extraction and
combines RPN and Fast R-CNN ideas. Affected by the structure,
two-stage models are slower with more precision than one-stage
models generally [11].

FIGURE 1
Composite plate manufacturing procedure.

FIGURE 2
Composite plate defect color image sample. The dust in the red
circle is a defect.

Frontiers in Physics frontiersin.org03

Wang et al. 10.3389/fphy.2023.1264636

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264636

2.3 One-stage models

Different from two-stage models, one-stage models extract
characteristics and detect the target directly, which makes them
faster than two-stage models but with lower precision. It is better to
deploy one-stage models on the ARM64 platform to achieve real-
time defect detection.

2.3.1 YOLO series
As one of the most popular object-detection deep learning

networks, the YOLO series network has a higher detection speed
than others. Redmon et al. designed YOLO, YOLO9000, and
YOLOv3 networks [12–14]. The modified version of these
networks is also uncountable, like YOLOv3-tiny and YOLOv3-
dense, and the authors attempted to optimize the network speed
and size. Zhang created an improved YOLOv3-tiny pedestrian
detection model with a detection speed of 4.84 ms on the GPU
[15]. After Redmon stopped working on YOLO’s further
development, Bochkovskiy et al. designed YOLOv4 based on
Redmon’s work [16]. Currently, YOLOv5 is being created by
Ultralytic and Alexey Bochkovskiy, as PyTorch and TensorFlow
versions [17]. However, the precision of YOLO is affected when
detecting small-sized targets, which is determined by its one-stage
characteristic. Pham et al. put forward the YOLO-Fine network to
improve the small target detection performance [11].

2.3.2 MobileNet series
To increase network speed, simplification is necessary. The

original YOLOv5 used Darknet-53 as a backbone, but it is too
heavy for a light network. The MobileNet series came out with a
good start [18,19]. Chen et al. used attention-embedded
MobileNetV2 to identify crop diseases and obtained an average
accuracy of 99.13% [20].

2.3.3 ShuffleNet series
Furthermore, ShuffleNet simplified the network, improved

accuracy, and increased speed [21,22]. Huang and Lin performed
breast density classification using ShuffleNet and achieved lesser
time for model training and running [23]. Based on improved
ShuffleNet v2, Chen et al. built a garbage classification system
and created 105-ms single-inference time on Raspberry Pi 4B [24].

2.3.4 PeleeNet series
PeleeNet obtained a new angle for decreased network size [25].

With a cost-efficient stem block before the first dense layer, the
feature expression ability improved without adding too much
computational cost, which is important for maintaining precision
with a small network structure. For example, Piao et al. used
PeleeNet as the backbone network of their model to speed up the
inference and obtained better results than SSD in terms of detection
accuracy and detection speed [26].

2.4 Model enhancement

Regarding model design, scholars work on developing
functional blocks or methods to improve deep learning model
performance without any major changes to the structure.

2.4.1 Function module developing
Simplification and speed increase for models can also be

achieved by using a specialized function module. Huawei put
forward the Ghost module, which achieved good speed
improvement results on many baseline models [27]. By
transforming a feature map into another map through cheap
operations, fewer parameters and floating point operations are
used in the model. As shown in Figure 3, some similar feature
maps are generated by ResNet-50 and our model.

In Figure 4, the Ghost module uses base feature maps and cheap
operations to generate similar feature maps instead of using a
complete feature map, which could reduce lot of redundancy
produced by similarity.

For enhancing detection precision, an attention structure is a
good idea, and many researchers have worked on it. The squeeze-
attention network is the forerunner that puts forward a structure
with the squeeze-excitation attention module [28], and Deng
et al. applied the module on original networks, like Inception-V4,
ResNeXt, and DenseNet, and obtained a significant performance
increase in breast density image detection [29]. Then, the block
attention module and convolutional block attention module were
created with better performance [30,31]. The CBAM can be used
in prohibited item detection in X-ray images to improve
performance [32]. Meanwhile, other ways exist to add
attention structure to CNNs. For example, the CAT-CNN put
forward by Liao et al. performed attention enhancement with
different kinds of CNNs and obtained satisfying results [33].
Yang et al. tested the performance of different attention
structures on a YOLOv5-based model for invasive plant seed
detection [34].

2.4.2 Transfer learning
Transfer learning is a good method to improve the performance

of a model without changing the model structure. The idea of
transfer learning was inspired by human learning behavior,
where humans use previous related knowledge while learning to
solve new problems. Transfer learning enables machine learning
models to transfer learned knowledge from source domains to a
target domain to improve the performance of the target learning
function while both the source and target domain have different data
distributions. Jamil et al. used a deep boosted transfer learning
method to check wind turbine gearbox faults [35]. Zitong Wang
et al. reviewed transfer learning methods in electroencephalogram
(EEG) signal analysis, like domain adaptation, improved CSP
algorithms, DNN algorithms, and subspace learning [36].
Generally, transfer learning is an efficient way for improving
model performance without extensive structure modification.

2.5 Summary

In our study, to achieve defect detection on the ARM64 mobile
platform, a one-stage network is a good base but needs proper design
to make it lightweight and precise. First, most of the deep learning
networks are designed for computer platforms with GPU
acceleration. Thus, they need to be simplified for mobile
platforms. After studying newly developed mobile-optimized
deep learning networks, some structures of existing networks are

Frontiers in Physics frontiersin.org04

Wang et al. 10.3389/fphy.2023.1264636

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264636

worth importing as a replacement. The backbone area is involved in
the characteristic extraction, and it costs the majority of the
calculation quantity. Therefore, the backbone should be focused
on simplification. Second, shrinking the model size would decrease
its precision and training speed because its characteristic extraction

is affected by decreased size. Consequently, compensation measures
should be taken to maintain precision. Finally, when YOLOv5 was
tested to run directly on Ubuntu or Debian ARM64 with a PyTorch
ARM64 port, it returned an illegal instruction error. Furthermore,
PyTorch Mobile is easier for application programming with

FIGURE 3
(A) Visualization of some feature maps generated by the first residual group in ResNet-50, with three similar feature map pair examples annotated
with boxes of the same color [27]. (B) Visualization of feature maps generated by the GR-Stem block. Images 1 and 2, 3 and 7, and 9 and 12 are similar.

FIGURE 4
GhostConv structure. ϕ means cheap operation [27].

FIGURE 5
CPDD-CLMM network structure.

Frontiers in Physics frontiersin.org05

Wang et al. 10.3389/fphy.2023.1264636

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264636

Android OS support. So, we chose PyTorch Mobile (PyTorch open-
source project, 2022a) instead of PyTorch as a framework for
running the network on the ARM64 platform.

3 Network design and optimization

The model structure is shown in Figure 5, and network
developing contents are mentioned in the following sections.

3.1 Efficiency focused

As mentioned in a previous paper, redundant feature maps
could be expressed by one basic feature map with relative
parameters. For example, the baseline YOLOv5 backbone is made
from Darknet-53, which started from YOLOv3. It evolved from
Darknet-19 in YOLOv2, with more shortcut connections and larger
scales [14]. However, the Darknet-53 structure is still too large for a
lightweight model with its redundancy on mobile platforms. Thus,
we create a simplified backbone structure with designed blocks to
decrease size and increase speed. Block structures are shown in
Figure 6A.

The GR-Stem block could improve the feature expression
without adding computational complexity. The AGR-
Downsample blocks act as the main characteristic extractors with
Hard Swish activation function. Tensor padding is one, which
means filling one at the boundary of matrix. The module could
extract features with GhostConv and DWConv to reduce
redundancy and maintain different features acquired by two
branches. The block channel shuffle structure is useful for
collecting information from different channel mix ups and
establishing connections. Although the images appear to be in
gray scale, they are in RGB format with multiple color channels.
Therefore, it is necessary to use channel shuffle to mix up
information from different channels, and it provides
compatibility for color camera input. It works as feature pyramid
networks, when the neck works as path aggregation networks. Ghost
reduced means using Ghost convolution to reduce redundancy for
both kinds of blocks. The backbone size became much smaller by
using these modules.

The neck and head structures work as one-stage object detectors,
making them faster than two-stage models which need multiple
procedures of region proposals [11]. In the neck structure, C3-conv
is a bottleneck block included by the original YOLOv5n model for
preserving spatial dimensions and reducing network depth.

FIGURE 6
(A) GR (Ghost Reduced)-Stem module (a), AGR (Asymmetric Ghost Reduced)-Downsampling module (b) and C3-Ghost (c). DWConv: depthwise
convolution. BN, batch normalize. (B) CBAM structure.

Frontiers in Physics frontiersin.org06

Wang et al. 10.3389/fphy.2023.1264636

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264636

However, it is still expensive. We use C3-Ghost instead to simplify
the structure and improve speed. The detection block, which is
regarded as the head, executes to generate a bounding box for the
target.

3.2 Maintaining precision

After optimization of efficiency, the network is much faster but has
lower precision. The CBAM combined spatial and channel attention and
made it better than SANet which only obtained channel attention
enhancement. Its structure is shown in Figure 6B. The intermediate
feature map is adaptively refined through the attention module at every
convolutional block of deep networks. The module is placed behind the
stem module to apply its function.

Transfer learning is an effective method to improve model
performance. By training a more complete dataset which is
relative to the target dataset, the model could learn and establish
a structure. Then, the model is trained with the target dataset, which
makes the model faster and perform better than when trained with
the target dataset directly.

The defects that appear on the composite plate surface are
deeper than in the normal area and have a clear boundary,
which makes their features relatively simple and similar, even
though we attempted to augment it by adding noise, rotating, or
adjusting the brightness and contrast. However, LED defects are
different and much more complex. For example, the air bubble
defects in LED are multiplex with different sizes and color features.
Therefore, the LED defect dataset is suitable for transfer learning of
our model, with the same task goal of defect detection but more
difficult, which is good for the model to generate its structure.

The model is trained with the LED defect dataset to generate
pre-trained model weights. The dataset was provided by Yalan
Zhou, with 1788 different images of defects, like air bubbles [2].
The dataset sample is shown in Figure 7. Then, pre-trained weights
are imported, and a composite plate dataset is used to make the
model available.

3.3 Training without refined tuning

The model designed needs more training epochs to obtain
enough precision considering its small size, so we set the

maximum training epoch limit as 2,000 epochs with a batch size
of 16. The pre-trained weight file of YOLOv5n is downloaded from
Ultralytics’ GitHub as the training method dependency. The model
is trained on a PC platform with an Intel Core i7-10850K CPU and
NVIDIA RTX3090 GPU, and CUDA acceleration is enabled for
maximum training speed. Warmup and fine-tune training
techniques are applied to enhance the training procedure, with
YOLOv5 “scratch” hyperparameter settings and SGD optimizer
enabled. The fine-tuning of hyperparameters could take a
significant amount of time, which is not beneficial for field
engineers to deploy the model. Therefore, we use original
YOLOv5 hyperparameters, focusing on the structure and training
optimization. Hyperparameters are shown in Table 1.

3.4 Mobile platform testing

The chart of deploying CPDD-CLMM on the ARM64 platform
is given in Figure 8A. Themodel will be a part of the defect-detection
application with PyTorch Mobile runtime. PyTorch Mobile is a
runtime for deploying a deep learning model on mobile devices
while staying entirely within the PyTorch ecosystem. It does not rely
on specific functions like CUDA, which is only available on a
specified manufacturer’s product. It has good compatibility with
different platforms and is a good choice for running a deep learning
model on embedded ARM64 processors. A demo app for object
detection is available on the PyTorch Mobile GitHub website, which
is the best start for deploying the modified model on the Android
ARM64 platform, instead of creating a new app. The application
controls the capture camera to gather images, and CPDD-CLMM
processes them to find out the defects. The results could be uploaded
to monitor for further actions with wired or wireless network
connection.

The screenshot of the defect-detection app is shown in
Figure 8B. The normal orientation of the demonstration is
portrait suitable for mobile phones. To make full use of the
screen, the orientation is changed to landscape (Figure 8B).
Deployment procedures are explained as follows.

First, the model is trained with a common procedure in a
Python environment, and the GPU can be used for acceleration.
Second, export.py provided by YOLOv5 is used with necessary
instructions to convert the output model file into PyTorch Mobile
format (PyTorch open-source project, 2022b). As a runtime
framework, PyTorch Mobile could only run a just-in-time

FIGURE 7
LED defect dataset sample.

TABLE 1 Model hyperparameters.

Items Values

lr0 (initial learning rate) 0.01

lrf (cycle learning rate) 0.10

Momentum 0.937

Weight decay 0.0005

Warmup epochs 3.0

Warmup momentum 0.8

Warmup bias lr 0.1

Frontiers in Physics frontiersin.org07

Wang et al. 10.3389/fphy.2023.1264636

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264636

(JIT)-translated CNNmodel. The model file output in the first step
is in .pt format without PyTorch Mobile optimization, which
cannot be used for app creation. Therefore, the instruction
listed on PyTorch Mobile GitHub should be followed to make
the model available. Third, the translated model is placed in the
app source folder, the corresponding model filename is changed in
the source code, and the application is compiled. Fourth, the
application package is installed on the system. Last, the model
is deployed on the Android ARM64 platform and made available
for detection.

The output data are an array containing seven attributes as
bounding box upper-left corner (X, Y) coordinates, bounding box
width and height, confidence score, and classification probabilities.
The number of initial bounding box outputs by the original model is
(20*20 + 40*40 + 80*80) * 3 = 25,200, where the multiplied part
corresponds to different bounding box groups and 3 denotes three
groups. The original YOLOv5 model input image size 640*640, and
we can obtain the 20*20 block if the downsample size is 32, with
(640/32) * (640/32) = 20*20. For the proposed model, the formula is
(20*15 + 40*30 + 80*60) * 3 = 6,300, with an input image size of
640*480. Finally, the output of the generated bounding box array
size is 6,300 (boxes) * 7(attributes) = 44,100. An overflow error
would occur if the row size is unchanged with the modified model
imported.

To measure the model performance, the average inference time
is used and defined as the time taken for processing different
testing images, and a timer is needed because the demo provided
does not include a timer. A timer is then added to the app’s main
interface (Figure 8B). Java provided two methods,

“System.currentTimeMills()” and “System.nanoTime(),” for time
measurement and described their details in the Java SE 17 API
documentation [37]. We chose nanotime function to provide
nanosecond precision. The application runs in the Android
ART Java virtual machine, and the time resolution is affected
by the hardware and system kernel time fresh rate. To make the
measurement as precise as possible, the inference time counter
starts at the beginning of the inference thread and stops at the
beginning of the result output. The app can detect defects from
images or camera video streams. For speed-testing purposes, an
image detecting method is used to obtain the average time the
model takes for inferencing a result.

Two platforms were prepared to test the models with different
performance levels (Table 2). The main target platform is the Rockpi
4b+ with Rockchip RK3399 as a good standard of an industrial- and
commercial-grade ARM processor. Alongside the RK3399 platform,
the SM8250-AC (Qualcomm Snapdragon 870) platform works as a
high-performance ARM platform contrast, which is a new
mainstream mobile processor. The PyTorch Mobile could run on
Android ARM64 platforms without additional configuration,
regardless of the processor difference, making the testing result
effective.

FIGURE 8
(A) Deployment chart of CPDD-CLMM on ARM64 platform and (B) defect detection application interface.

TABLE 2 Testing platform information.

No. CPU/SOC RAM GPU OS

1 RK3399 4 GB Mali-T860 Android 9.1

2 SM8250-AC 12 GB Adreno 650 Android 11

Frontiers in Physics frontiersin.org08

Wang et al. 10.3389/fphy.2023.1264636

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264636

4 Experiment results and discussion

4.1 Dataset refining and expanding

The raw dataset of defects is acquired by the composite plate
manufacturer (Zhejiang Jiashan Shuangfei Lubricant Material Co.,
Ltd.) with an industrial camera installed on the assembly line in
production. The dataset contains 960 images with a resolution of
640 × 480 pixels. However, unqualified data, like duplicate images,
exist, and a number of different kinds of defect images are
unbalanced, which could cause overfitting. Therefore, the datasets
need to be arranged to improve the dataset quality.

Defect samples captured by the camera are shown in Figure 9, and
they could be classified into two kinds: block and line. Block defects look
like black dots, which can happen when external impurities, like small
rubber pieces, get burned on the coating surface. Line defects are created
by scratching burnt things when the plate is processed by pressure rolls
with a line shape.

To meet the demand for model training, augmentation is used to
create more defect samples from the raw datasets. These defects can be
copied and placed with a proper background to generatemore available
images. All of these images can be polluted by noise, rotated, or adjusted
for their contrast and brightness to create more usable counterpart
images. Meanwhile, original defects can be modeled afterward to
generate pseudo-defects and placed randomly to extend datasets.
Augmentation samples are shown in Figure 9.

When enough images are created, the ground truth of images
needs to be marked and prepared for model training. The
YOLOv5 series use text file (.txt) to mark the ground truth for
every separated image file, but the common toolkit LabelImg came
out with xml format, which is incompatible [38]. Thus, the xml2txt
toolkit is used for transforming an xml file to a text file. After
labeling, the datasets are prepared with images and corresponding
ground-truth marking files.

After augmentation, each category is defect-free, and the block
defect and line defect contain 500 images. The images were divided
into three groups: the training group with 1,050 images, the validation
group with 150 images, and the testing group with 300 images.

4.2 Model performance comparison

The CPDD-CLMM was compared with other lightweight
models, like YOLOv5n, YOLOv5-Lite, and YOLOv7-tiny. Test

datasets were divided into three groups: training, detecting, and
evaluating. Precision, recall, and accuracy are defined as follows:

Precision � TP

TP + FP
, (1)

Recall � TP

TP + FN
. (2)

In Eqs. 1, 2, TP is true positive, defined as detected objects with
an IoU above 0.5. FP is false positive and represents detected objects
with an IoU below 0.5. FN is false negative, as objects were not
detected.

AP � ∑
Recall∈ 0,0.1,...,1{ }

Pinterp Recall(). (3)

The PR curve contained interpolated precision for 11 recalls at
the 0–1 level. Pinterp is the maximum precision collection of
11 recalls. mAP, the mean AP, is the average of all classes’ APs.

F1 � 2*Precision*Recall
Precision + Recall

. (4)

The F1-score, called the balanced F-score, is defined as the
harmonic mean of the precision and recall, as Eq. (4)shows, which
can be a measure of model accuracy. Meanwhile, the receiver
operating characteristic—area under the curve (ROC-AUC) can
be also used to measure the ability of the model for classification.

To simulate a regular working environment, all of these platforms
run in their normal processor power status, without the limit of the
built-in dynamic acceleration function. Defect-detection examples are
shown in Figure 9, and the comparison of model characteristics is
shown in Table 3. As Chen et al. [20] tested many other lightweight
models (YOLOv3-tiny, YOLOv4-tiny, and NanoDet) and YOLOv5-
Lite obtained the best result in speed and precision, we chose it as the
contract and omitted redundant experiments.

Table 3 shows that CPDD-CLMM has a size of 28.0% and 9.5%
FLOPS cost compared with baseline YOLOv5n, and even less for
YOLOv5s. In this aspect, the modified model became the best.
However, the decrease in model scale could seriously decrease
precision. Inference precision was tested and shown in Table 3
as well.

Figure 12A shows the model training parameters results, and
Figure 12B shows the F1, P, PR, and R curves of the defects.
Figure 12A shows that the loss decreases and precision increases
till the 727 epochs. Box_loss, obj_loss, and cls_loss correspond to

FIGURE 9
Composite plate defect and augmentation samples.

Frontiers in Physics frontiersin.org09

Wang et al. 10.3389/fphy.2023.1264636

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264636

bounding box loss (loss of bounding box size and position), object
loss (loss of numbers of defects), and class loss (loss of defect class
identification), respectively. Precision, recall, and mAP curves are
also displayed. The maximum limit of the training epoch is 2,000 to
train the model as fully as possible. An early stopping method is used
to stop the training procedure when the loss of the model stops
increasing in the preset epoch limit, and we set the early stopping
epoch limit to 100. The best mAP will be recorded in the training
procedure, and when the mAP no longer increases for 100 epochs,
the early stopping will be trigged. In this case, it was trigged at
727 epochs. Then, the weights corresponding to the best mAP record
were saved as the result. In addition, the cause of loss and precision
peak, as shown in Figure 12A, could be incidental as the local
maximum of loss function as the peak only shows one time. It may
be solved when the datasets are extended with more available
images.

Figure 12B shows the precision result of the model. The F1-score
shown in the F1 curve chart is 0.96 for all classes, and 0.988 mAP is
shown in the PR curve chart, which means that the model could
identify the defects and distinguish their kinds properly. The model
reached 99.1% precision on block defect detection, with only a 0.4%
difference from the original YOLOv5 series. The precision decreased
by 0.7% for line defects. The precision decreased by 0.3% on average.
Generally, the model precision loss is acceptable and still qualified
for industrial defect detection as its mAP is 0.988.

4.3 Optimization analysis

To optimize the backbone, we use the GR-Stem block and AGR-
Downsample block with specialized simplification and combine
GhostConv and the C3-Ghost module to simplify the model
neck. By using the simplified blocks, the model is significantly
lightweight, as shown in Table 3.

Furthermore, a CBAM is inserted into the model to enhance
detection performance. To analyze its effectiveness, the visualization
toolkit is used to draw the attention diagram. Kazaj created a
YOLOv5 Grad-CAM Python program based on Grad-CAM++
and shared it on GitHub. Grad-CAM++ uses a weighted
combination of the positive partial derivatives of the last
convolutional layer feature maps with respect to a specific class
score as weights to generate a visual explanation for the class label
under consideration. As shown in Eq. (4), wc

k indicates weights, a
kc
i j

indicates gradient weights, Yc indicates the class score, and Ak

indicates a particular activation map. Lc is calculated as a linear
combination of the forward activation maps, followed by a ReLu
layer as the saliency map is computed as Eq. (5). Detailed
descriptions are provided in [39].

wc
k � ∑

i

∑
j

αkcij .relu ∂Yc/∂Ak
ij(), (5)

Lc
ij � relu ∑

k

wc
k.A

k
ij

⎛⎝ ⎞⎠. (6)

The program was modified and used for studies on attention
module effectiveness. First, the source code of modules used in
models was added to the common .py file. Then, the program
parameter is changed according to the model structure. Last, the
program is run with a trained model file and target image, and the
output image with a gradient map will be generated in the same
directory of the target.

Figure 10 shows the defects and corresponding attention
gradient map. Samples a2 and b2 revealed that the attention
module focused on the main part of the defects, like the line
defect body in b2. The attention module in this model did add
more attention to the defects. Moreover, a test was made by
removing the CBAM and regenerating the model to observe how
it affects the model performance.

For comparing the effectiveness of transfer learning, we trained
the model with the target dataset 50 times as standard. Then, we
trained themodel with the LED defect dataset 10 times and chose the
best precision weight result as the pre-weight. Then, the model was
trained with the generated pre-weight 50 times. Figure 11 shows the
epochs obtained by direct training, and transfer learning training
used LED datasets. Furthermore, it can be seen that the transfer
learning makes the training procedure quicker than direct training,
as transfer learning takes fewer epochs to finish the training
procedure.

After being converted to PyTorch Mobile .ptl format, the model
precision is decreased. The standard of confidence is defined as
0.3 instead of 0.5. A working screenshot is shown in Figure 9. Each
image was processed 10 times for inference, with nine randomly
chosen images. The definition of TP remained unchanged because
the changing of the platform only affects the inference speed and
confidence.

The attention module enabled the model to focus more on
defects and increased the mAP of line defects to 96.8%. The transfer
learning method even improved it to 98.5%. The module and

TABLE 3 Model characteristic and test result comparison.

Model Params
(M)

FLOPS
(G)

Size
(MB)

AP (no
defect)

AP
(block)

AP
(line)

mAP
(all)

Fps
(RK3399)

Fps
(SM8250-AC)

YOLOv5s 7.02 15.8 14.0 100% 99.5% 99.0% 99.5% 0.429 fps 3.123 fps

YOLOv7-tiny 6.01 13.0 11.7 100% 99.0% 99.5% 99.5% 0.624 fps 4.982 fps

YOLOv5n 1.77 4.2 3.68 100% 99.5% 99.2% 99.5% 1.008 fps 6.163 fps

YOLOv5n–GhostNet 1.00 0.7 2.19 100% 99.2% 98.8% 99.3% 1.496 fps 7.475 fps

YOLOv5-Lite-e 0.71 2.6 1.59 100% 99.4% 98.8% 99.4% 1.873 fps 7.951 fps

CPDD-CLMM 0.40 0.4 1.03 100% 99.1% 98.5% 99.2% 2.124 fps 10.760 fps

Frontiers in Physics frontiersin.org10

Wang et al. 10.3389/fphy.2023.1264636

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264636

method used by the model increased the precision significantly, as
shown in the data given in Table 3.

Table 3 shows that the modified network is faster than the baseline
YOLOv5 series, as its frame rate of 2.124 fps is almost double the speed
of the original YOLOv5, 1.008 fps, on the RK3399 platform.
Meanwhile, a better processor significantly increased the inference
speed, as a frame rate of 8.522 fps on the SM8250-AC (1xA77 at
3.2GHz, 3xA77 at 2.4GHz, and 4xA55 at 1.8 GHz) platform is four
times faster than 2.007 fps on RK3399 (2xA72 at 1.8GHz and 4xA53 at

1.5 GHz). Speed differences of the models are not the same on
platforms 1 and 2, which can be explained by the platforms’ multi-
core and multi-thread arrangement and efficiency difference.

4.4 Summary

As described previously, we refined and expanded the raw
dataset of defects acquired by the manufacturer and acquired the

FIGURE 10
Defect attention gradient and detection examples. (A1,B1) are origin defects, (A2,B2) are detection gradient maps and (A3,B3) are detection results.

FIGURE 11
Training finishing epoch statistics.

Frontiers in Physics frontiersin.org11

Wang et al. 10.3389/fphy.2023.1264636

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264636

LED defect dataset for transfer learning. Then, the model we
designed with structure simplification and attention
enhancement was trained by a transfer learning method and
validated with a composite plate defects dataset to test its
precision performance. Last, the model was deployed on the
RK3399 ARM64 platform to test its speed performance.

In these stages, contrast tests were progressed to prove the
effectiveness of our work. Direct training and transfer learning
were compared, which showed that the transfer learning does
make the training procedure faster with fewer epochs, as shown
in Figure 11. Our lightweight model converged with the training
procedure in the loss and precision curves shown in Figure 12A and
achieved fewer params and smaller size with considerable precision,
as shown in the F1 and PR curves given in Figure 12B and Table 3.
Meanwhile, more lightweight models, like YOLOv5-Lite-e, are
tested on the platform, along with our model, to demonstrate our
model speed, as shown in Table 3.

Based on these results, we concluded that the model is
lightweight and precise enough to achieve real-time defect
detection on the ARM64 platform.

5 Conclusion and discussion

The existing production line needs a small and effective solution for
its additional function attachment, with less space remaining after long-
termmodification. TheARM64mobile platform is a good choicewith its
small size, extensibility, and stability. To enable a deep learning defect-
detection model running on the mobile platform, proper simplification
and compensation should be made to make it lightweight and precise
enough. The CPDD-CLMM was put forward in the current study for
composite plate defect detection on the mobile platform by reducing the
redundancy of similar feature maps. The model contains a simplified
backbone consisting of GR-Stem and AGR-Downsample modules to
improve inference speed, and the CBAM was inserted in the proper
position to compensate for decreased precision. The neck and head parts
of themodel are also simplifiedwithC3-Ghost andGhostConvmodules.
A transfer training method is also used to improve its precision and
training speed. The model can be translated to the PyTorch Mobile
format and deployed on Android ARM64 platforms without the
specified manufacturer’s hardware dependency, making it suitable for
industry deployment.

FIGURE 12
(A) Model training parameters results and (B) evaluation results(with transfer training pre-weight, 727 epochs in total). Evaluation metric curves
include block and line defects’ information. For PR curve, it contains defect detection results without defect-free results, so the mAP is 99.2% not 98.8%.

Frontiers in Physics frontiersin.org12

Wang et al. 10.3389/fphy.2023.1264636

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264636

From the testing data collected, the CPDD-CLMM achieved
increased speed and precision maintenance on ARM64 platforms.
The model had an inference speed of 2.124 fps on the
RK3399 platform and 10.760 fps on the SM8265-AC platform,
which was 210.7% and 174.6% more than the speed of the original
YOLOv5n and other networks, with only a 0.3% decrease in themAP at
99.2%. The current study combined advantages from different kinds of
object-detection network design, specialized in speed optimization, and
produced a practical lightweight solution on ARM64 mobile platforms.

Although such progress has been made, some improvements
could be made in the future. First, the defect dataset could be
enriched further to improve the defect-detection performance,
as the dataset we obtained only contains a limited number of
images. Second, an increasing number of new ARM64 processors
possess a neural network processing unit (NPU), like Rockchip
RK3588 and Qualcomm Snapdragon 8 Gen3, and we can use the
NPU to accelerate the model inference further. Third, in this
article, we assumed that the defect-detection task of LED is
highly relative to the task of composite plates, and the transfer
learning method is applied based on that. More defect datasets
could be used for a transfer learning test and to find out the
relationship between dataset properties and transfer learning
effects.

Apart from the aforementioned limitations, how to directly
train and run the network on the ARM64 platform could be
worked on as the improvement in the ARM64 platform’s
hardware and software support. The defect-detection system
would be smarter if the network could retrain and update itself
locally. We would continue our cooperation with the manufacturer
to perfect the dataset and try to deploy the system on the
production line eventually.

Data availability statement

The raw data supporting the conclusion of this article will be
available on request from the corresponding author BH upon
reasonable request.

Author contributions

BW: funding acquisition, supervision, writing–original draft,
and conceptualization. YH: data curation, methodology, software,
visualization, and writing – original draft. YY: resources,
writing–review and editing, and formal analysis. YW: supervision,
validation, and writing–review and editing. HL: formal analysis,
investigation, and writing–review and editing. BH: funding
acquisition, resources, writing–review and editing, and project
administration. JC: resources and writing-original draft.

Funding

The authors declare financial support was received for the
research, authorship, and/or publication of this article. This study
was funded by the Hefei Municipal Natural Science Foundation
(2022022) and National Natural Science Foundation of China
(51975178).

Conflict of interest

Author JC was employed by Zhejiang Jiashan Shuangfei
Lubricant Material Co., Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

1. Mordia R, Kumar Verma A. Visual techniques for defects detection in steel products: a
comparative study. Eng Fail Anal (2022) 134:106047. doi:10.1016/j.engfailanal.2022.106047

2.Wang B, Zhou Y,Wang Y. Application of improved faster r-cnn network in bubbles
defect detection of electronic component led. J Electric Meas Instrumentation (2021) 35:
136–43. doi:10.13382/j.jemi.B2003691

3.Wang Z, Jin L,Wang S, Xu H. Apple stem/calyx real-time recognition using yolo-v5
algorithm for fruit automatic loading system. Postharvest Biol Tech (2022) 185:111808.
doi:10.1016/j.postharvbio.2021.111808

4. Viola P, Jones M. Rapid object detection using a boosted cascade of simple features.
In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition. CVPR 2001, 1 (2001). doi:10.1109/CVPR.2001.990517

5. Dalal N, Triggs B. Histograms of oriented gradients for human detection. In:
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), 1 (2005). p. 886–93. doi:10.1109/CVPR.2005.177

6. Bui M-T, Frémont V, Boukerroui D, Letort P. Deformable parts model for people
detection in heavy machines applications. In: 2014 13th International Conference on
Control Automation Robotics and Vision (ICARCV) (2014). p. 389–94. doi:10.1109/
ICARCV.2014.7064337

7. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate
object detection and semantic segmentation. In: 2014 IEEE Conference on Computer
Vision and Pattern Recognition (2014). p. 580–7. doi:10.1109/CVPR.2014.81

8. Girshick R. Fast r-cnn. In: 2015 IEEE International Conference on Computer
Vision (ICCV) (2015). p. 1440–8. doi:10.1109/ICCV.2015.169

9. He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional
networks for visual recognition. IEEE Trans Pattern Anal Machine Intelligence (2015)
37:1904–16. doi:10.1109/TPAMI.2015.2389824

10. Ren S, He K, Girshick R, Sun J (2016). Faster r-cnn: towards real-time object
detection with region proposal networks. arXiv e-prints. doi:10.48550/arXiv.1506.01497

11. Pham M-T, Courtrai L, Friguet C, Lefevre S, Baussard A. Yolo-fine: one-stage
detector of small objects under various backgrounds in remote sensing images. Remote
Sensing (2020) 12:2501. doi:10.3390/rs12152501

12. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time
object detection. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2016). p. 779–88. doi:10.1109/CVPR.2016.91

13. Redmon J, Farhadi A. Yolo9000: better, faster, stronger. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (2017). p. 6517–25. doi:10.1109/
CVPR.2017.690

14. Redmon J, Farhadi A. Yolov3: an incremental improvement (2018). arXiv e-prints.
doi:10.48550/arXiv.1804.02767

15. Yi Z, Yongliang S, Jun Z. An improved tiny-yolov3 pedestrian detection algorithm.
Optik (2019) 183:17–23. doi:10.1016/j.ijleo.2019.02.038

Frontiers in Physics frontiersin.org13

Wang et al. 10.3389/fphy.2023.1264636

https://doi.org/10.1016/j.engfailanal.2022.106047
https://doi.org/10.13382/j.jemi.B2003691
https://doi.org/10.1016/j.postharvbio.2021.111808
https://doi.org/10.1109/CVPR.2001.990517
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/ICARCV.2014.7064337
https://doi.org/10.1109/ICARCV.2014.7064337
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.48550/arXiv.1506.01497
https://doi.org/10.3390/rs12152501
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1016/j.ijleo.2019.02.038
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264636

16. Bochkovskiy A, Wang C, Liao H. Yolov4: optimal speed and accuracy of object
detection (2020). arXiv e-prints. doi:10.48550/arXiv.2004.10934

17. Jocher G. Ultralytics yolov5 in pytorch (2022). Available at: https://github.com/
ultralytics/yolov5.

18. Howard A, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, et al.
Mobilenets: efficient convolutional neural networks for mobile vision applications
(2017). arXiv e-prints. doi:10.48550/arXiv.1704.04861

19. Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L. Mobilenetv2: inverted
residuals and linear bottlenecks. In: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2018). p. 4510–20. doi:10.1109/CVPR.2018.00474

20. Chen J, Zhang D, Suzauddola M, Zeb A. Identifying crop diseases using attention
embedded mobilenet-v2 model. Appl Soft Comput (2021) 113:107901. doi:10.1016/j.
asoc.2021.107901

21. Zhang X, Zhou X, Lin M, Sun J. Shufflenet: an extremely efficient convolutional
neural network for mobile devices. In: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (2018). 6848–56. doi:10.48550/arXiv.1707.01083

22. Ma N, Zhang X, Zheng H-T, Sun J. Shufflenet v2: practical guidelines for efficient
cnn architecture design. In: Computer vision – eccv 2018 (2018). p. 122–38. doi:10.1007/
978-3-030-01264-9_8

23. Huang M-L, Lin T-Y. Considering breast density for the classification of benign
and malignant mammograms. Biomed Signal Process Control (2021) 67:102564. doi:10.
1016/j.bspc.2021.102564

24. Chen Z, Yang J, Chen L, Jiao H. Garbage classification system based on improved
shufflenet v2. Resour Conservation Recycling (2022) 178:106090. doi:10.1016/j.
resconrec.2021.106090

25. Wang XL, Robert J, Ling CX. Pelee: a real-time object detection system on mobile
devices. 32nd Conference on Neural Information Processing Systems, Montreal,
Canada NeurIPS (2018). doi:10.48550/arXiv.1804.06882

26. Piao Z, Zhao B, Tang L, Tang W, Zhou S, Jing D. Vdetor: an effective and efficient
neural network for vehicle detection in aerial image. In: 2019 IEEE International
Conference on Signal, Information and Data Processing (ICSIDP) (2019). 1–4. doi:10.
1109/ICSIDP47821.2019.9173158

27. Han K, Wang Y, Tian Q, Guo J, Xu C, Xu C. Ghostnet: more features from cheap
operations. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2020). (CVPR). 1577–1586. doi:10.1109/CVPR42600.2020.00165

28. Zhong Z, Lin Z, Bidart R, Hu X, Wong A. Squeeze-and-attention networks
for semantic segmentation. In: 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR) (2020). 13062–71. doi:10.1109/CVPR42600.
2020.01308

29. Deng J, Ma Y, ao Li D, Zhao J, Liu Y, Zhang H. Classification of breast density
categories based on se-attention neural networks. Comp Methods Programs Biomed
(2020) 193:105489. doi:10.1016/j.cmpb.2020.105489

30. Park J, Woo S, Lee JY, Kweon IS. Bam: bottleneck attention module. In: Computer
vision – eccv 2018 (2018). doi:10.48550/arXiv.1807.06514

31. Woo S, Park J, Lee J, Kweon I. Cbam: convolutional block attention module. In:
Computer vision – eccv (2018). p. 3–19. doi:10.1007/978-3-030-01234-2_1

32. Liang T, Lv B, Zhang N, Yuan J, Zhang Y, Gao X. Prohibited items detection in
x-ray images based on attention mechanism. J Phys Conf Ser (2021) 1986:012087.
doi:10.1088/1742-6596/1986/1/012087

33. Liao Q,Wang D, XuM. Category attention transfer for efficient fine-grained visual
categorization. Pattern Recognition Lett (2022) 153:10–5. doi:10.1016/j.patrec.2021.
11.015

34. Yang L, Yan J, Li H, Cao X, Ge B, Qi Z, et al. Real-time classification of invasive
plant seeds based on improved yolov5 with attention mechanism. Diversity (2022) 14:
254. doi:10.3390/d14040254

35. Jamil F, Verstraeten T, Nowé A, Peeters C, Helsen J. A deep boosted transfer
learning method for wind turbine gearbox fault detection. Renew Energ (2022) 197:
331–41. doi:10.1016/j.renene.2022.07.117

36. Zitong Wang MH, Yang R, Zeng N, Liu X. A review on transfer learning in
eeg signal analysis. Neurocomputing (2021) 421:1–14. doi:10.1016/j.neucom.
2020.09.017

37. Chander S. Java se 17 and jdk 17 api documentation system currenttimemills and
nanotime (2021). https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/
lang/System.html.

38. Lin T. Labelimg python package index page (2021). Available at: https://pypi.org/
project/labelImg/.

39. Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN. Grad-cam++:
generalized gradient-based visual explanations for deep convolutional networks. In:
2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, NV,
United States. WACV (2018). 839–47. doi:10.1109/WACV.2018.00097

40. Chen X, Gong Z. Yolov5-lite: lighter, faster and easier to deploy (2021). doi:10.
5281/zenodo.5241425

41. Pytorch open source project. Pytorch mobile for android mobile devices (2022).
Available at: https://pytorch.org/mobile/android/.

42. Pytorch open source project. Pytorch mobile object detection demo github page
(2022). Available at: https://github.com/pytorch/android-demo-app/tree/master/
ObjectDetection.

Frontiers in Physics frontiersin.org14

Wang et al. 10.3389/fphy.2023.1264636

https://doi.org/10.48550/arXiv.2004.10934
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1016/j.asoc.2021.107901
https://doi.org/10.1016/j.asoc.2021.107901
https://doi.org/10.48550/arXiv.1707.01083
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1007/978-3-030-01264-9_8
https://doi.org/10.1016/j.bspc.2021.102564
https://doi.org/10.1016/j.bspc.2021.102564
https://doi.org/10.1016/j.resconrec.2021.106090
https://doi.org/10.1016/j.resconrec.2021.106090
https://doi.org/10.48550/arXiv.1804.06882
https://doi.org/10.1109/ICSIDP47821.2019.9173158
https://doi.org/10.1109/ICSIDP47821.2019.9173158
https://doi.org/10.1109/CVPR42600.2020.00165
https://doi.org/10.1109/CVPR42600.2020.01308
https://doi.org/10.1109/CVPR42600.2020.01308
https://doi.org/10.1016/j.cmpb.2020.105489
https://doi.org/10.48550/arXiv.1807.06514
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1088/1742-6596/1986/1/012087
https://doi.org/10.1016/j.patrec.2021.11.015
https://doi.org/10.1016/j.patrec.2021.11.015
https://doi.org/10.3390/d14040254
https://doi.org/10.1016/j.renene.2022.07.117
https://doi.org/10.1016/j.neucom.2020.09.017
https://doi.org/10.1016/j.neucom.2020.09.017
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/System.html
https://pypi.org/project/labelImg/
https://pypi.org/project/labelImg/
https://doi.org/10.1109/WACV.2018.00097
https://doi.org/10.5281/zenodo.5241425
https://doi.org/10.5281/zenodo.5241425
https://pytorch.org/mobile/android/
https://github.com/pytorch/android-demo-app/tree/master/ObjectDetection
https://github.com/pytorch/android-demo-app/tree/master/ObjectDetection
https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1264636

	CPDD-CLMM: a comprehensive lightweight mobile-optimized network for composite plate defect detection
	1 Introduction
	2 Related work
	2.1 Detector algorithm methods
	2.2 Two-stage models
	2.3 One-stage models
	2.3.1 YOLO series
	2.3.2 MobileNet series
	2.3.3 ShuffleNet series
	2.3.4 PeleeNet series

	2.4 Model enhancement
	2.4.1 Function module developing
	2.4.2 Transfer learning

	2.5 Summary

	3 Network design and optimization
	3.1 Efficiency focused
	3.2 Maintaining precision
	3.3 Training without refined tuning
	3.4 Mobile platform testing

	4 Experiment results and discussion
	4.1 Dataset refining and expanding
	4.2 Model performance comparison
	4.3 Optimization analysis
	4.4 Summary

	5 Conclusion and discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

