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Editorial on the Research Topic
Magnetotransport and electronic band structures of topological
semimetals

Topological semimetals [1–5] have become a fascinating class of quantum materials that
has captured the attention of researchers in recent years. Their unique band structure
exhibits nontrivial band crossings near the Fermi level, which causes low-energy
quasiparticles to behave differently than they would in topologically trivial materials.
Many physical phenomena have been discovered that can be attributed to their unique
electronic band structure, such as topological surface states, chiral anomaly, and giant
magnetoresistance [6, 7].

The characterization and differentiation of topological phases is a critical area of research
in investigating topological semimetals [8–10]. At present, magnetotransport has the
potential to provide valuable information on the electronic band structures of
topological semimetals [11–13]. Specifically, the study of magnetotransport in
topological semimetals has revealed intriguing effects such as negative
magnetoresistance, non-saturating magnetoresistance, and quantum oscillations, which
are consequences of the nontrivial topology of their electronic band structures. Thus far,
angle-resolved photoemission spectroscopy (ARPES) has been the most effective means of
studying the electronic band structures of topological semimetals [3, 14, 15]. However,
narrow band gaps, complex bands, and charge impurities can impede the detection of
nontrivial band crossings.

It has been realized that the study of nontrivial band crossings can also be extended to
bosonic and classical systems. Recently, there has been a surge of interest in exploring the
topological quasiparticles in phonons, as the experimental detection of nontrivial phonons
can be done throughout the full THz phonon spectrum with meV-resolution. For example,
two-dimensional (2D) Weyl phonons have been systematically summarized in a recent
review [Yang], and some typical material candidates have been identified, such as graphene,
CrI3 [16] monolayer, SiH monolayer [17], TiB4 monolayer, Ti2P monolayer, and Cu2Si
monolayer [18]. Interestingly, unlike 2D electronic systems, the highest order of a 2D Weyl
phonon is quadratic rather than cubic. Naturally, three-dimensional topological phonons
have also been identified in this bosonic system [19]. For instance, a Weyl complex of a
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double Weyl point and two linear Weyl points has been discovered
in BaSi2 [Li], which belongs to P4332, as shown in Figure 1A.
Moreover, as depicted in Figure 1B, one can observe that the Fermi
arcs connect the linear and double Weyl points. Apart from the
double degenerate Weyl points, a charge-2 point of threefold
degeneracy has also been found in the dispersion spectrum of
cubic Ca3I3P [Yang], as presented in Figure 1C. Given its
topological charge, two Fermi arcs emerge from the projection of
this charge-2 triple point.

Naturally, in the presence of certain symmetries, band crossings in
phonon spectra may not be isolated, but instead belong to a nodal line.
Most recently, an ideal nodal net of phonons, which is composed of
several nodal lines, was identified in Pn-3m-type Ag2O [Li], as shown
in Figure 1D. It was discovered that four nodal lines, which are sets of
band crossings with the same energy, form a frame in Figure 1E. A
clear drumhead surface state can be observed in its surface spectrum,
as presented in Figure 1F. Moreover, nodal lines can also be a generic
line for a nodal surface/wall.

Of course, several types of band crossings could simultaneously
exist in the same material due to multiple symmetry protection. As
demonstrated in the paper [Gao et al.], the lantern-like nodal wall is
composed of two nodal networks and two nodal surfaces in
Figure 1H. In the absence of spin-orbit coupling (SOC), lantern-
like nodal walls protected by nonsymmorphic symmetries and time-
reversal symmetry are discovered in the lithium-rich compound
LiRuO2 (Figure 1G). On the other hand, when SOC is included,
Dirac nodal points and nodal lines appear along high-symmetry
paths and points, as shown in Figure 1I.

Recently, the most studies are mainly focusing on searching
novel topological quantum phases or new material candidates,
however, there is still much to be learned about the
magnetotransport and electronic band structures of topological
semimetals. Despite recent progress, many of the properties of
these materials remain poorly understood, and new experimental
and theoretical techniques are needed to fully explore their potential.

In conclusion, the study of magnetotransport and electronic
band structures of topological semimetals is a rapidly developing
field that holds great promise for advancing our understanding of
the fundamental physics of quantum materials and for developing
new technologies that exploit their unique properties. As researchers
continue to explore the properties of these fascinating materials, we
can expect to see many exciting discoveries and applications in the
years ahead.
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FIGURE 1
(A, B) the lattice structure for BaSi2 and its corresponding surface spectrum on (001) plane [2]. (C) the lattice structure, phonon spectrum and
projected surface spectrum for Ca3I3P [3]. (D–F) the lattice structure, a map of energy gaps between the two crossing branches around 5 THz, schematic
figures for a nodal frame, phonon dispersion along pathsmarked in themap and the surface states on (010) surface [4]. (G) the lattice structure for LiRuO2,
(H) the nodal surfaces and the lantern-like nodal wall without SOC and (I) distribution of Dirac nodal lines and Dirac points with SOC in the Brillouin
zone of LiRuO2.
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