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Human exposure to Phthalates, a family of chemicals primarily used to enhance
the flexibility and durability of plastics, could lead to a decline in semen quality.
Extensive studies have been performed to investigate the associations between
semen quality and exposure to environmental pollutants, such as phthalates.
However, these early studies mainly focus on using conventional statistical
methods, such as simple and efficient multi-variable linear regression methods,
to perform the analysis, which may not be effective in analyzing these complex
multi-variable associations. Herein, we perform a systematic study of the
performance of different machine learning methods in analyzing these
associations. We will use data from a cohort of 1070 Chinese males from
Hubei province who provided repeated urine samples to measure phthalate
metabolites. In addition, phthalate metabolites in semen are also evaluated as a
biomarker to give amore directmetric. We also incorporate patient demographics
and administered medications into the analysis. Overall, six machine learning
models, including linear and non-linear models, are implemented to analyze
associations among thirty-one features and five metrics of the quality of the
semen. The performance of the models is evaluated based on root-mean-square
deviation through 10-fold cross-validation. Our investigations show that the
performance of different models is varied when employed to study different
metrics that represent the quality of the semen. Therefore, a systematic study of
the patients’ data with various machine learning models is essential in improving
the quantitative analysis in discovering the critical environmental pollutants that
dictate the quality of semen. We hope this study could provide guidance of
employing machine learning models in the future investigation of the impact of
various pollutants on semen quality.
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1 Introduction

In recent decades, heavy pollution in China has become a severe
problem due to rapid industrialization and urbanization. Exposure
to different environmental pollutants, such as pesticides, bisphenol
A, and heavy metals that disrupt the human endocrine system, could
lead to a decline in human semen quality [1, 2]. Phthalates, one type
of endocrine disruptors, are broadly used as additives in many
consumer products such as toys, vinyl flooring and wall covering,
detergents, food packaging, pharmaceuticals, and personal care
products [3, 4]. Since phthalates do not chemically bind to these
products, they can be quickly released into the environment or
dissolved upon contact with liquids or fats [5, 6]. Once absorbed into
the human body, phthalates are converted quickly to their respective
metabolites, which have been detected in human urine, blood,
semen, feces, and meconium [7-11]. Another group of endocrine
disruptors are polycyclic aromatic hydrocarbons (PAHs), which
primarily are originated from incomplete combustion or pyrolysis of
garbage, oil, wood, coal, or other organic substances (e.g., grilled
meat and tobacco). PAHs not only are considered as mutagens and
carcinogens but also cause a detrimental effect on male reproductive
health in humans [12-14].

Extensive studies have been performed to investigate the
associations between the male reproductive functions and
exposure to environmental pollutants, such as phthalates [15-21]
and PAHs [22, 12-14]. However, inconsistent findings were reported
from these work. An early investigation by [19] showed inconclusive
results regarding whether phthalate exposure may reflect a hazard
for human male reproduction. Subsequent studies presented
compelling evidence demonstrating that the correlation could
exist. For example, Duty et al. [15] illustrated the association
between monomethyl phthalate with sperm morphology, but
similar relations cannot be detected for other phthalates. Han
et al. [17] showed that the environmental level of PAH exposure
is associated with increased sperm DNA damage but not with semen
quality. The preliminary results presented by Liu et al. [20] suggested
that phthalate exposure to MBP, MEP, and MMP may play a role in
reproductive-age human semen quality. The discrepancy from the
literature probably results from the variations in levels of individual
exposure and limited sample sizes. In addition, the relatively short
half-life of phthalates (in the order of hours) in urinary samples also
contributes to substantial variability of metabolite concentrations in
single urine samples [23, 24].

In recent large-scale studies involving 1070 Chinese males [25-
27], repeated measurements of urinary phthalate metabolites for
each subject were performed to reduce the effect of the variation in
phthalates in urinary samples. In addition, phthalate metabolites in
semen were also evaluated as a biomarker to provide a more direct
metric for pollutant exposure. In these studies [25-27], eight
phthalate metabolites were measured, including monomethyl
phthalate (MMP), monoethyl phthalate (MEP), mono-n-butyl
phthalate (MBP), mono-n-octyl phthalate (MOP), monobenzyl
phthalate (MBzP), MEHP, mono-(2-ethyl-5-hydroxyhexyl)
phthalate (MEHHP), and mono-(2-ethyl-5- oxohexyl) phthalate
(MEOHP), and the analysis of the measurements showed that
the MBP concentration was strongly associated with the decrease
in sperm concentration and total sperm count. In subsequent
studies, the associations of the phthalate metabolites with sperm

apoptosis and DNA damage [26], as well as the association between
thyroid mediators and impaired semen quality due to exposure to
phthalates was also investigated [27]. On the other side, a large-scale
study of the relation between exposure to PAHs and decreased
semen quality is conducted with 933 participants [28] and this study
showed that multiple urinary OH-PAH metabolites are associated
with various semen parameters. It is noted that the measured data in
these studies were analyzed using simple and efficient multivariable
linear regression methods, which limited the capability of describing
the correlation between the exposure to the pollutants and the
quality of semen.

In this study, we train six machine learning models using the
clinical data recorded from a large-scale study involving
1070 Chinese males, including patient demographics, urinary
phthalate metabolites, urinary OH-PAH metabolites, and serum
thyroid hormones. The outputs of the models are the quality of the
human semen, which is described by five quantities, including
progressive motility, total motility, semen volume, concentration,
and sperm count. In particular, we implement multiple non-linear
regression methods, namely support vector regression (SVR),
random forest, AdaBoost, Gradient Boosting, XG boost, and
feed-forward neural network to describe the association between
these pollutant metabolites and the qualities of the sperm. The
hyperparameters involved in the employed predictive models are
optimized using Bayesian optimization. The performance of
different methods is compared based on Root Mean Square Error
(RMSE) through 10-fold cross-validation. Furthermore, we evaluate
the significance of the phthalate metabolites, OH-PAH metabolites,
and thyroid mediators and explore which metabolites or mediators
have the strongest association with the quality of the semen.

2 Data preprocessing and visualization

2.1 Data source

We use the dataset reported in the prior studies [25-27], which
contains semen evaluations from 1070 men collected by the
Reproductive Center of Tongji Hospital, Wuhan, China. Each entry
is composed of 31 features (input valuables of the predictive models),
including ten demographic information, namely age, BMI, cigarettes
per day, fathered, race, abstinence duration, education, smoking,
alcohol, and income; concentration of 8 urinary phthalate
metabolites, namely MMP, MEP, MBP, MOP, MBzP, MEHP,
MEHHP, and MEOHP; concentration of 3 serum thyroid
hormones, namely thyroid-stimulating hormone (TSH), free total
triiodothyronine (FT3) and free thyroxine (FT4); concentration of
10 polycyclic aromatic hydrocarbon (PAH) metabolites, including
1OHnap, 2OHnap, 9OHflu, 2OHflu, 4OHphe, 9OHphe, 3OHphe,
1OHphe, 2OHphe, and 1OHpyr. 5 labels (output valuables the
predictive models), including progressive motility, total motility,
semen volume, concentration, and sperm count, are used as the
metrics of semen quality, and they are considered as our target
labels for model prediction. Detailed information on measurements
of these quantities can be found in our previous work [25-27]. We have
twomeasurements of urinary phthalate metabolites in each participant,
and we use the average of these two measurements to improve the
reliability of phthalate measurements. The metabolite concentrations in
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the two samples are creatinine-normalized to account for urine dilution
and ln-transformed before being averaged. It is noted that All phthalate
metabolites are detected in humans’ urine, blood, semen, feces, and
meconium in ng/mL. The urinary phthalate metabolites generally have
the highest detectable concentrations, ranging from <limitation of
detection (LOD) to > 5000 ng/mL based on the detected specific
metabolites. Thus, urinary phthalate metabolites are the most
common biomarkers used for assessing human exposure. We also
collected the Demographic data of the study population and they are
summarized in Table 1.

2.2 Data cleaning

In the original data set, we identify missing values, unreasonable
values (value is below the limit of detection, LOD), and 0 (assigned
by the equipment when the corresponding concentration is below

LOD) for some patients’ measurements. These data could disrupt
our analysis. Thus, we first clean the original dataset through the
following steps: (1) All 0s are replaced with the values of LOD
divided by the square root of 2; (2) unreasonable values and missing
values are replaced by the average values.

2.3 Distributions of inputs and data
transformation

We conduct distribution fitting for all the features to transform
data into symmetric distributions. This transformation is desirable
when regression and prediction are performed. We observe the
positive skewness in the distributions of many examined features,
which fit well with the lognormal distribution. Thus, we transform
all the features logarithmically such that they follow normal
distributions, as shown in Figure 1. In addition, we also

TABLE 1 Demographic characteristics [mean ± SD or n (%)] of the study population.

Features Raw data Data in the model Unit

Demographics Ages 32 ± 5.36 No change years

BMI 23.3 ± 3.21 No change Kg/m2

Cigarettes per day 11.95 ± 7.71 No change Quantity

Fathered Yes 635 (59.35%) 1 N/A

No 435 (40.65%) 0

Race Han 1043 (97.48%) 1 N/A

Other 27 (2.52%) 0

Abstinence duration 4.49 ± 2.07 No change days

Education Uneducated 0 N/A

Elementary school 1

Middle school 2

High school or technical school 3

College and above 4

Smoking Never-smoker 420 (39.25%) 0 N/A

Former 119 (11.12%) 1

Current 531 (49.63%) 2

Alcohol Never 421 (39.35%) 0 N/A

Occasional 559 (52.24%) 1

Frequent 90 (8.41%) 2

Income <1000 36 (3.36%) 0 N/A

1000–2000 151 (14.11%) 1

2000–3000 284 (26.54%) 2

3000–4000 216 (20.19%) 3

4000–6000 194 (18.13%) 4

6000–10000 121 (11.3%) 5

>10000 66 (19.82%) 6
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investigate the potential correlation among the eight examined
phthalate metabolites, and our results in Figure 2 show no
notable association among these features.

3 Materials and methods

To explore the correlation between the pollutant metabolites
and the quality of the semen, we perform analysis following three
steps, namely feature selection, machine learning algorithm, and
k-fold cross-validation. First, we select m top features according to
the mutual information using functions from sklearn, where the
features are selected based on the level of mutual dependence
between the features and the target label. In the present study, m
is chosen to be 1, 5, 20, and 31 (all the features), respectively. Next,
we analyze the dataset by implementing multiple non-linear

regression methods, respectively, including SVR, random forest,
AdaBoost, gradient boosting, and feed-forward neural network. For
the baseline performance, we directly use the average value of all the
labels. Then, we estimate the performance of each algorithm using
k-fold cross-validation with k = 10.

In addition, we study the significance of the features in the
dataset to the five labels based on the gain from XGBoost, which can
be used to explore the key features that are strongly associated with
semen quality.

3.1 Machine learning algorithm

3.1.1 Linear regression
We first perform simple multi-variable linear regression to the

data by using the features selected from sklearn feature selection.

FIGURE 1
Distribution of some examined features, including eight urinary phthalate metabolites, namely MMP, MEP, MBP, MOP, MBzP, MEHP, MEHHP, and
MEOHP; 3 serum thyroid hormones, namely thyroid-stimulating hormone (TSH), free total triiodothyronine (FT3) and free thyroxine (FT4); 10 polycyclic
aromatic hydrocarbon (PAH) metabolites, including 1OHnap, 2OHnap, 9OHflu, 2OHflu, 4OHphe, 9OHphe, 3OHphe, 1OHphe, 2OHphe, and 1OHpyr,
after data transformation.
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3.1.2 Random forest regression (Method 1)
Random Forest is another popular and widely utilized

supervised machine learning algorithm for classification and

regression problems [29, 30]. Implementation of random forest
involves building decision trees using different samples, and the
model predictions are determined by leveraging an ensemble of

FIGURE 2
Investigation of the correlation among the eight examined phthalate metabolites, namely MMP, MEP, MBP, MOP, MBzP, MEHP, MEHHP, and
MEOHP.

Frontiers in Physics frontiersin.org05

Lu et al. 10.3389/fphy.2023.1259273

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1259273


multiple decision trees. In particular, the random forest can handle
the data set containing continuous variables for solving regression
problems. Specifically, the majority vote of the trees will be used for
classification problems, whereas the average of all the votes is
computed for regression problems. This unique structure allows
the model to analyze complex datasets and prevent overfitting.
Based on these model features, we implement a Random Forest
regressor to fit a number of classifying decision trees on various sub-
samples of the dataset, as our features include both numerical and a
few categorical features.

3.1.3 Support vector regression (Method 2)
SVM, one of the most broadly used supervised learning

algorithms [31], can search a decision boundary that can divide
n-dimensional space into various classes so that unseen data points
can be categorized into the correct class. Although SVM has been
primarily used for classification problems in Machine Learning, it
also can solve regression problems. In this work, we will analyze the
dataset using SVR, a regression version of SVM [32]; [31]. SVR
applies the same algorithm as the SVM, but a margin of tolerance ϵ is
set in approximation to targets. During SVR, a function of the
features that leads to the most ϵ deviation from the targets for all the
training data will be identified, while errors less than ϵ will not be
considered. We will implement non-linear SVR with radial basis
function kernel to improve the prediction accuracy.

3.1.4 AdaBoost, gradient boosting, XGBoost
(Methods 3–5)

Next, we implement boosting techniques [33], a method widely
used in machine learning to reduce errors in model predictions. A
single machine learning model may not provide accurate predictions
if the training dataset is not sufficient, leading to the generation of a
weak learner. The application of Boosting can overcome this issue by
converting multiple weak learners into a single strong learning
model. We test three boosting techniques, including Gradient
Boosting, AdaBoost, and XGBoost. Gradient Boosting [34] is the
boosting technique developed based on the principle of the stage-
wise addition method. Specifically, multiple weak learners are
trained, but the strong learner algorithm is used as a final model
by adding multiple weak learners trained on the same dataset. For
example, the first weak learner will simply return the mean of the
particular column without being trained on the dataset. The residual
for output of the first weak learner will be calculated and used as
output or target column for the next weak learner. AdaBoost [35]
also functions based on the principle of the stage-wise addition
method, but a weight factor that is associated with the errors of each
weak learner will be computed such that the weak learners with
better performance will be less-weighted than the weaker learners
with greater errors. XGBoost [36] is another extended version of
Gradient Boosting by implementing a regularization technique,
improving the prediction accuracy and model efficiency from the
vanilla gradient boosting algorithm. We use decision trees as base
estimators for these three examined boosting techniques.

3.1.5 Neural networks (Method 6)
With the advance of computational power in recent years,

artificial neural networks (ANNs) have emerged as the most
popular machine learning models as their unique capability in

handling big data. ANNs have been used for a wide variety of
tasks, i.e., image segmentation and classification [37, 38], face
recognition [39]; [40], self-driving cars [41]; [42], large languages
models [43]; [44]. In addition to these social and engineering
applications, ANNs have been employed to solve regression
problems in scientific computing [45]. Since our dataset has no
particular structure, we choose the multilayer perceptron (MLP), a
fully connected class of feedforward ANN, to analyze the dataset
instead of more complicated networks such as convolutional neural
networks or recurrent neural networks. We use theMLP regressor in
the sklearn.neural_network package with tanh selected as the
activation function for the hidden layers. Adam optimizer is used
to train the MLP, and the learning rate is 0.0001.

3.2 Mutual information regression and the
gain from XGBoost

We will perform mutual information regression [46]; [47],
which is broadly used as relevant criteria for selecting feature
subsets from input datasets with a nonlinear relationship to the
predicted attributes, to assess the dependence of the metrics that are
associated with the quality of the semen on the studied features. A
higher value obtained from mutual information indicates a higher
dependency of the target metric on the examined feature. To cross-
validate the findings from mutual information regression, we will
also use the gain computed from XGBoost [48]; [36] to assess the
variable dependence. The gain in XGBoost implies the relative
contribution of the examined feature to the metrics of semen
quality by taking each feature’s contribution for each tree in the
model. A higher value of gain suggests this feature plays a more
significant role when making predictions.

3.3 Hyperparameter optimization

We use Bayesian optimization to automatically tune all the
hyperparameters involved in the abovementioned regression
methods. Bayesian optimization is a powerful optimization
technique that utilizes Bayesian inference and statistical models
to search for the optimal solution of a black-box function [49]; [50].
It has been extensively employed in various engineering applications
to accelerate the search speed of hyperparameters by leveraging
existing performance data [51]; [52]; [53]. In this work, we will
employ Bayesian optimization to search for the optimal
combination of hyperparameters that minimizes RMSE. We
consider RMSE as a target function. In each algorithm iteration,
Bayesian optimization incorporates a new set of observations
(composed of a combination of hyperparameters and their
corresponding error) and adjusts its prediction for the target
function. Using the Gaussian process as a surrogate, we construct
a function to approximate the target function and estimate
uncertainties. By defining a utility function that maps
hyperparameters to a utility score that links to both the error
value and the variance, Bayesian optimization can search for an
optimal combination of hyperparameters that provides the highest
utility. We will set a range for each hyperparameter to be tuned and
use this optimization method to search a variety of hyperparameters
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within these ranges to improve the search efficiency. For example,
when performing regression using MLP, we need to optimize four
hyperparameters, including depth, width, regularization strength,
and optimization tolerance. Figure 3 shows that the decay of RMSE
of the progressive mobility stops before the 500 iterations we set for
the optimization.

4 Results

4.1 Metrics for prediction accuracy

In the current study, we use RMSE, which describes the
deviation of model prediction from the true labels, to measure
the performance of the models. Figure 4 summarizes the
performances of the six examined models. For each model, we
test five groups of features, including the top 1, 5, and 20 features
from feature selection, as well as all the available features. For labels
in progressive motility, total motility, volume, concentration, and
count, we plot both the RMSE values of the models and their relative
error compared to the baseline. It is noted that we only show the
models that exceed the baseline performance for at least one label.
The baseline performance from the mean predictor is also plotted
for comparison. The mean predictor is shown on the left for the plot
of the absolute value and shown as the grey baseline in the relative
values graph. The Best results we can achieve for each label are boxed
with black edges.

4.2 Linear regression

We first employ linear regression to analyze the data, and our
results in Figure 4 show that the R-squared is very low, meaning that
linear regression can not accurately represent the relationship of the
examined data, which is consistent with the finding from prior
studies [25,54]. Then, we conduct regression with the cross terms to
capture non-linear relationships while considering the top one, five,
and twenty features selected from our feature selection and all

features, respectively. The model results show that the R-squared
is increased slightly. In particular, Figure 4 shows that when the top
one feature is applied as a single input to perform the linear
regression, better fitting is achieved for four labels (progressive
motility, total motility, semen volume, concentration). But worse
prediction is obtained for sperm count, compared to five, twenty,
and all features. Overall, we find that linear regression provides
fitting with an error greater than the baseline except for the case of
sperm count with five or twenty features, suggesting that Linear
Regression is not a suitable model for analyzing the association
between the examined factors and the metrics of quality of the
semen.

4.3 AdaBoost, gradient boosting, XGBoost

Next, we examine the performance of three machine learning
models based on boosting techniques: AdaBoost, Gradient Boosting,
and XGBoost. Figure 4 shows that with the implementation of the
boosting techniques, the accuracy of the fitting is improved for the
progressive motility, total motility, semen volume, and
concentration as compared to the results of linear regression. In
particular, AdaBoost provides better fitting for semen volume and
count than the baseline. However, the fitting error for progressive
mobility is still greater than the baseline for most of the tested four
feature groups. As for the sperm concentration, a better fitting is
achieved only when all the features are used as inputs. Regarding the
total mobility fitting, AdaBoost provides worse results than the
baseline. Like the AdaBoost method, the Gradient Boosting method
provides a smaller error for semen volume and count than the
baseline. But, the progressive and total mobility errors are only
comparable to the baseline. When XGBoost is employed, a better
fitting is observed for semen volume and count compared to the
baseline; in contrast, the fitting errors for the progressive and total
mobility are still larger than the baseline. These results suggest that
due to the involvement of many features and the complex relation
among these features, the performance of the machine learning
models based on the boosting techniques is not consistent, implying
that the selection of a suitable model based on the target metric could
be essential for analyzing the dependency of the quality of the semen
on environmental factors.

4.4 Neural networks

Due to the features mentioned above, we employ the ANNs to
dissect the complex dependency of the quality of the semen on
environmental factors. Developed based on the universal
approximation property, which states that ANNs with sufficiently
large width and depth can, in principle simulate any continuous
function on a compact domain, neural networks have been widely
used to approximate nonlinear functions with high-dimensional
inputs and outputs [55]; [56]. As the examined dataset is not
characterized by any particular data structure, we will examine
the performance of MLP, a simple version of ANNs. The results
in Figure 4 show that MLP provides improved results for the
progressive and total mobility than those of AdaBoost, Gradient
Boosting, and XGBoost methods while the fitting errors for the other

FIGURE 3
Change of RMSE of the progressive motility with respect to the
training iteration with the application of Bayesian optimization.
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FIGURE 4
The performance of machine learning models in exploring the correlation of multiple features with different metrics associated with the quality of
the semen, including RMSE for Progressivemotility prediction (A) absolute and (B) relative tomean; RMSE for total motility prediction (C) absolute and (D)
relative tomean; RMSE for concentration prediction (E) absolute and (F) relative tomean; RMSE for semen volume prediction (G) absolute and (H) relative
to mean; RMSE for count prediction (I) absolute and (J) relative to mean.
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three labels are comparable to the results from these three methods.
These results demonstrate the advantage of deep neural networks
over the conventional machine learning approaches in analyzing
complex relations among high dimensional input and output
variables.

4.5 Other regression methods

We also implement SVR and Random Forest to analyze the data.
However, we find that neither of these two methods could provide
better results than the baseline for any of our targeted metrics for the
quality of the semen. The underperformance of these two machine
learning models could result from a complex link between the high
dimensional input features and the resulting quality metric for the
semen.

4.6 Ranking feature importance

Next, we assess the significance of the phthalate metabolites,
OH-PAH metabolites, and thyroid mediators to different
metrics and explore the key metabolites or mediators that
dictate the quality of the semen. Two approaches, namely,
mutual information regression and the gain from XGBoost,
are employed. The significance of each feature to the labels is
listed in Figure 5. The figure on the left shows the sorted results
from mutual info regression, while the figure on the right plots the
gains contributed by different features. The gain is calculated by
the corresponding feature’s contribution for each tree in the
model. Therefore, a feature with a higher value of gain
compared to other features indicates that this feature is
relatively more important when generating a prediction. In
general, these two approaches provide comparable results. The
essential features identified by both methods include TSH,
MEHHP, MOP, 10Hnap, 90Hflu, BMI, MEHP, MBZP, alcohol,

30Hphe, and 20Hflu. TSH, which is a kind of thyroid hormone.
Regarding Demographics, BMI and alcohol play a more critical
role than the other demographic features.

5 Discussion and conclusion

Reducing the content of key components of plastics that
affect sperm activity could prevent their adverse impact on the
human endocrine system and slow down the decline in human
semen quality as human ages. As illustrated in Figure 4, no single
model can provide the best fitting for all five examined labels.
MLP has provided the best results for predicting progressive and
total motility, while linear regression outperforms other more
sophisticated models when predicting sperm count. This finding
implies that the relation between features and progressive and
total motility is prone to be nonlinear, whereas the association
between features and sperm count is more likely to be linear. In
addition, the number of features used to perform the regression
also plays a role in the accuracy of the results. For example, the
smallest error for progressive motility is achieved using all
features, meaning that progressive motility is sensitive to all
the features. However, the best fitting for sperm count is
obtained by five features, meaning that count is only affected
by the top several features. It is also noted that progressive
and total motility are relatively harder to predict based on
the available dataset compared to other features. For
concentration, volume, and count, we can exceed baseline
performance by 3%-6%. But for progressive motility and total
motility, we can only exceed baseline by less than 1%. This may
imply that the employed dataset cannot unravel the association of
progressive motility and total motility with the examined
features. In this case, a larger cohort or an increased number
of features needs to be considered for future investigation.
Specifically, we will obtain more information on each patient
from our collaborators to improve our prediction accuracy. For

FIGURE 5
Evaluation of the significance of the phthalate metabolites, OH-PAH metabolites, and thyroid mediators to the quality of the semen using mutual
information regression and the gain from XGBoost.
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example, we will try to obtain a dataset with more than
31 features, as they may not be sufficient to characterize an
individual’s body health and body condition.

Several similar studies have been performed in different cities
in China as well as in other countries. For example. Zhang et al.
[57] investigated the association between phthalate exposure and
human semen quality in Shanghai, and the authors discovered that
there was a significant positive association between liquefied time
of semen and phthalate concentrations of semen. In particular,
people who reside in Shanghai are found to be more likely exposed
to phthalates, especially to DBP and DEHP. However, a separate
study of phthalate exposure and semen quality in the United States
by Thurston et al. [58] showed no notable correlation between
phthalate exposure in adulthood and classical semen quality
parameters except an association between MBzP and decreased
motility. The variation observed in the findings of different studies
examining the connection between phthalate exposure and human
semen quality can be attributed to several factors. These factors
include differences in geographical locations, the size of the study
cohorts, the professions of the participants, and the varying levels
of phthalate product utilization. Each of these elements contributes
to the complexity of understanding the relationship between
phthalate exposure and semen quality.

It is noted that the goal of this work is to evaluate the performance
of multiple conventional machine learning tools, i.e., SVM, random
forest, AdaBoost, and deep neural networks. Conventional machine
learning approaches are typically based on mathematical and statistical
principles, and thus they confer good interpretability and explainability
and perform well for many structured data problems. On the other
hand, the rapid growth of deep learning technologies has been fueled by
the emergence of big data and increased computational capabilities.
Many advanced data-driven neural network structure, such as
convolution neural networks [59]; [38]; [37], recurrent neural
networks [60]; [61,62], Pointnets [63]; [64]; [65], Transformers [66];
[67]; [68], as well as physics-informed deep learning models [69]; [70];
[71], have been developed and employed to solve a broad range of
engineering problems. Recently, Sun et al. [72] have successfully
developed a prediction model of indoor phthalates concentration
using a back propagation neural network. While utilizing these
advanced deep-learning models could potentially improve our
understanding of the relationship between phthalate exposure and
human semen quality, conducting a comprehensive investigation in
this direction would necessitate a separate study, which falls outside the
scope of our current work.

In conclusion, we systematically study the performance of six
machine learning models by analyzing the correlation among
31 features that are thought to impact human productivity and
five metrics commonly used to evaluate the quality of semen.
Our study demonstrates the complex associations between
these features and the metric, and thus, no universal model can
achieve optimal predictions on all the features and metrics.
Therefore, a systematic study of the patients’ data with various
machine learning models is essential in improving the quantitative
analysis of the environmental factors and patients’ demographics
and their impact on the quality of semen. We hope this study
provides guidance for employing machine learning models in the
future investigation of the association of exposure to various
pollutants with semen quality.
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