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Reconstructing the unknown spectrum of a given X-ray source is a common
problem in a wide range of X-ray imaging tasks. For high-energy sources,
transmission measurements are mostly used to recover the X-ray spectrum, as
a solution to an inverse problem. While this inverse problem is usually under-
determined, ill-posedness can be reduced by improving the choice of
transmission measurements. A recently proposed approach optimizes custom
thicknesses of calibration materials used to generate transmission measurements,
employing a genetic algorithm to minimize the condition number of the system
matrix before inversion. In this paper, we generalize the proposed approach to
multiple calibration materials and show a much larger decrease of the condition
number of the system matrix than thickness-only optimization. Additionally, the
spectrum reconstruction pipeline is tested in a simulation study with a challenging
high-energy Bremsstrahlung X-ray source encountered in Linear Induction
Accelerators with strong scatter noise. Using this approach, a realistic noise
level is obtained on measurements. A generic anti-scatter grid is designed to
reduce noise to an acceptable -yet still high-noise range. A novel noise-robust
reconstruction method is then presented, which shows much less sensitive to
initialization than common expectation-maximization approaches, enables a
precise choice of spectrum resolution and a controlled injection of prior
knowledge of the X-ray spectrum.
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1 Introduction

The reconstruction of the unknown spectrum of a given X-ray source is a common
problem in a wide range of X-ray imaging tasks [1, 2]. If the source flux is low, spectrometers
are usually preferred to estimate the spectrum. If a very precise modeling of the source is
available, a good knowledge of the X-ray spectrum can be obtained, provided that the model
input parameters, such as voltage, are measured precisely enough during the pulse [3]. When
none of the two previous conditions are met, transmission measurements are most
frequently used to recover the X-ray spectrum, as a solution to an inverse problem [4–7].

This inverse problem is usually under-determined, because a high resolution of the
reconstructed spectrum is required. It is also ill-conditioned, making the spectral estimation
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unstable and very sensitive to noise. The ill-posedness of this inverse
problem can be reduced using a parametric model of the
reconstructed spectrum [8, 9]. However, these model-based
methods restrict, by design, the space of possible solutions, thus
requiring a fine and general enough physical modelling of the
spectrum prior to reconstruction.

Another way to reduce ill-posedness is to improve the quality of
the set of transmission measurements. In particular, the recent
approach described in [10] proposed to compute custom
thicknesses of calibration materials used to generate transmission
measurements, by optimizing on the condition number of the
system matrix used for inversion. Using a genetic algorithm, the
interest of optimized measurements to reconstruct spectra was
demonstrated, in comparison with common linear slab phantoms.

While the approach proved to be very efficient for the
configurations tested in [10], their simulation study was
restricted to unrealistically small amounts of Poisson noise, and
relatively low-energy spectra. In this work, a challenging high-
energy Schiff spectrum [11] is used to simulate transmission
measurements using the Monte-Carlo N-Particle code
(MCNP4C) with realistic noise levels. The Schiff spectrum is a
typical model for thin-target Bremsstrahlung spectra encountered in
radiographic sources based on Linear Induction Accelerators (LIA),
used to perform high-energy flash X-ray imaging [12]. We show that
the method presented in [10] is not readily applicable to this real-
world reconstruction problem. Three improvements are thus
proposed to obtain a robust spectrum reconstruction. Firstly, the
transmission measurement optimization, reduced to variations of
material thicknesses in [10], is extended to multiple materials by
modifying the genetic algorithm. We show that using multiple
materials yields a much larger decrease of the condition number
of the system matrix than thickness-only optimization. Secondly,
instead of a generic Poisson noise, a realistic simulated scatter noise
is used to evaluate the ability to recover the spectrum. Using this

approach, we observe a much higher noise level on measurements,
which makes the design of a noise reduction setup mandatory. As
such, an anti-scatter grid is proposed, reducing noise to an
acceptable range for spectrum reconstruction, but still much
higher than noise levels encountered in [10]. Thirdly, once
measurements are optimized and the experimental setup is fixed,
a novel reconstruction method is presented, which shows much less
sensitive to initialization than expectation-maximization
approaches [10], enables a precise choice of spectrum resolution
and a controlled injection of prior knowledge of the X-ray spectrum.

2 Methods

2.1 Transmission measurement model

As illustrated in Figure 1, two types of transmission
measurements are considered, which correspond to the two
experimental configurations tested in this study. In a given
experiment, the setup is made of M slabs illuminated by the
X-ray source. Behind each slab, a detector is placed to measure
the fluence (the detector response function is ideal), which gives us
M measurements from which we can infer the X-ray source
spectrum. Each slab can be made of K layers of different
materials (left side of Figure 1) or just one material (right side of
Figure 1).

In what follows, the detector spectral response D(E) is not
accounted for and taken as unity. For each measurement, the
forward transmission model is given by the Beer-Lambert law.
Given an X-ray source with spectrum S(E), the transmitted
intensity I of a measurement writes

I � ∫
E
S E( )D E( )e−lμ E( ) dE (1)

FIGURE 1
Illustration of the two configurations considered for 4 measurement slabs. A detector is placed behind each slab to measure the attenuated signal.
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where l is the thickness and μ(E) the linear attenuation
coefficient (taken from the NIST database [13]) of the material
used for this measurement.

2.1.1 One material per measurement
This configuration corresponds to the right side of Figure 1. For

Mmeasurements yi and with an even discretization of the spectrum
into N bins, the forward problem can be cast into a set of linear
equations

yi � ∑
N

j�1
e−liμi,j sj, i ∈ 1,M[ ][ ], j ∈ 1, N[ ][ ] (2)

where li is the thickness of the ith measurement and μi,j is the
linear attenuation coefficient value for the ith measurement at the
discrete energy level j.

Eq. 2 is conveniently put in the matrix form as

y � A × s (3)
with y � (yi) ∈ RM the vector of transmission measurements,

s � (sj) ∈ RN the vector of the discretized spectrum and A �
(e−liμi,j ) ∈ RM×N the forward system matrix.

2.1.2 Multiple materials per measurement
This configuration is illustrated at the left side of Figure 1. Each

measurement contains K layers of distinct materials. Without any
loss of generality, we consider that each measurement contains the
same number of layers with the same material order. Only the
thickness of each material layer is changed, and can be set to zero.
With this assumption, the attenuation coefficient no longer depends
on the measurement number i. The transmitted intensity yi for the
ith measurement thus writes

yi � ∑
N

j�1
∏
K

k�1
e−li,kμk,j sj, i ∈ 1,M[ ][ ], j ∈ 1, N[ ][ ], k ∈ 1, K[ ][ ] (4)

where li,k is the thickness of the kth layer of the ith measurement
and μk,j(E) is the linear attenuation coefficient of the material k at
energy level j. The forward system matrix in Eq. 3 is modified as

A � (e−∑k
li,kμk,j) ∈ RM×N.

2.2 Multi-material thickness optimization

First, let us summarize the methodology and main results in
[10]. The authors worked with one material per slab, as illustrated by
the right side of Figure 1, and used a genetic algorithm to optimize
the matrix condition number with respect to the thickness and
material of each slab. They found that the matrix condition number
tend to increase with the number of measurements and that the
optimal thickness arrangement follows an exponential sequence. In
particular, these findings show that what is usually done
(i.e., thickness follows a linear sequence and a great number of
measurements is used) tend to increase the matrix condition
number by orders of magnitude. An expectation-maximization
(EM) algorithm is then used to invert the system and find the
spectrum. Moreover, this method was tested to be robust against
relatively low levels of Poisson noise. However, much higher noise

levels are routinely encountered in experiments. At such noise levels,
we believe that a new method is needed.

Using multiple materials in transmission measurements implies
some modifications to the thickness optimization genetic algorithm
described in [10]. Two optimizations with slightly different
implementations, corresponding to the two types of transmission
measurements discussed above, are here considered and tested.

2.2.1 Multiple materials per measurement
When multiple piled up materials are allowed for each

measurement, the genetic algorithm optimizes on two-
dimensional matrices of size M × K instead of one-dimensional
vectors in the single material case. Each cell of the matrices contains
the current thickness of the column’s corresponding material for the
line’s corresponding measurement. In comparison with [10], the
main steps of the genetic optimization are modified as follows.

• Initialization: Npop matrices are initialized with a randomly
chosen value in each cell, such that the sum on each row
(i.e., the total thickness of the corresponding measurement
slab) remains in a chosen interval [lmin, lmax]

• Crossover: the crossover formula used in [10] is applied
similarly to the rows of the system matrix

• Mutation: instead of simply modifying the value of the
mutated cell as in [10], the sum of values on the row,
corresponding to the total thickness, is modified as well as
the proportion of materials

2.2.2 One material per measurement
When only one material is allowed per measurement, two-

dimensional M × K matrices are also used but with only one
non-zero value per row, at the column corresponding to the
employed material. The main steps of the genetic optimization
are modified as follows.

• Initialization: Npop matrices are initialized with a randomly
chosen value in only 1 cell per row, and the other cells are
initialized to zero

• Crossover: If the two parents are using the same material, the
situation refers to the case of [10]. Otherwise, the two children
receive one material each, with thickness values crossed with
the same formula

• Mutation: Each mutation on a row also has a probability of
changing the material used for the corresponding
measurement

2.3 Geometry design and simulation

A basic MCNP4C geometry was built for each set of
measurements. Transmission measurement phantoms were
represented as cylinders of known thicknesses and radii.
Cylinders axes are aiming at the photon source, which is
modeled as a point source located 180 cm away from the
phantoms. A Schiff spectrum, corresponding to a maximum
electron energy of 20 MeV, incident on a 1.2 mm thick tantalum
target, is used. The photons are emitted within a cone with a
constant angular distribution, chosen in order to cover all the
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measurement devices. Both photon and electron interactions are
modeled, so as to accurately account for scattering. The filling
medium is air. All these parameters were chosen to be as close as
possible to reality.

The detectors in the simulation are modeled as simple fluence
tallies, placed behind each measurement slab. Consistent modeling
of detectors in the simulation and accounting for their spectral
responses in the optimization process, is left to future work.

As mentioned earlier, the MCNP4C simulation accounts for the
presence of scatter noise in the measurements, produced during the
passage of X-rays through materials. A specific simulation setup was
designed to reduce this scatter noise and obtain clean enough
measurements for the spectrum reconstruction.

The proximity between measurement slabs leads to an increase
in scatter noise due to cross-talk effects. As such, the first approach
employed to decrease scatter noise was to optimize the placement of
the measurement slabs within the experimental setup and space
them out in order to reduce the interaction between particles coming
through the materials. The differential evolution algorithm [14] was
used to compute the optimal placement ofM points constrained in a
circle by minimizing the electrostatic potential between them.

To further reduce this noise, a specific anti-scatter grid was
designed. This grid consists of a 20 cm deep lead layer between the
measurement slabs and the dose sensors. Cylinders of small radius
are carved in the lead behind each measurement slab in order to
absorb all particles except source photons, yielding the expected
signal.

2.4 Reconstruction algorithm

2.4.1 Adaptive resampling based on a typical
spectrum

Prior to the reconstruction algorithm itself, a preliminary step of
dimension reduction is realized on a typical spectrum presenting
roughly the same characteristics as the unknown spectrum. As

shown in Figure 2, by sampling uniformly from the cumulative
integral of this typical spectrum’s derivative, an approximately
optimal choice of the N energy bins is obtained, allowing an
efficient spectrum representation, later employed during the
optimization process of the reconstruction.

2.4.2 Spectrum reconstruction as an interpolation
The spectrum is reconstructed on the optimal energy sampling

presented above, using experimental or simulated measurements y.
A candidate spectrum scand is initialized and then modified during
the optimization process. The measurements computed through the
forward model ycand = A ×scand are expected to be as close to y as
possible.

The optimization problem for the spectrum reconstruction thus
writes:

argmin
scand

‖y − A × scand‖2 (5)

A straightforward method would consist in performing a
spectrum discretization over the optimal energy sampling
values E1, . . ., EN where N is usually large to obtain a good
resolution of the spectrum. However, a large N increases the
degrees of freedom and makes the optimization process harder. It
is therefore necessary to reduce the number of parameters used to
describe the spectrum. The method chosen here is to sample the
spectrum with a small number P of interpolation points. This
requires the spectrum to be continuous and deprived of high
variation peaks, which is a general feature of high-energy
Bremsstrahlung spectra.

As shown in Figure 3, the spectrum is thus fully described by P
interpolation points, which coordinates can evolve both in energy
and magnitude (e.g., 2P degrees of freedom). At each optimization
step, the points are interpolated by a piecewise cubic polynomial
function [15], then projected over the N energy intervals. ycand is
then computed and new values of coordinates for the interpolation
points can be determined.

FIGURE 2
Typical Schiff spectrum optimally discretized to N =100 energy
points. The spectrum is normalized to unity.

FIGURE 3
Schiff spectrum interpolated by P = 12 interpolation points
distributed in the energy interval.
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2.4.3 Reconstruction algorithm
A trust-region algorithm for constrained optimization [16] is

used to compute the interpolation points corresponding to the

approximated spectrum. Minimum and maximum energy levels
are enforced, based on a known low energy cut-off and the
maximum energy of electrons. The spectrum magnitude is
constrained using a simple step function. In addition to this
restriction, the spectrum is normalized by its integral during each
step of the optimization process.

For this algorithm, the P abscissa of the interpolation points are
fixed, which improves optimization performances and decreases
execution time. However, other algorithms might be more efficient
with the abscissa taken as additional degrees of freedom. In the case
of this study, these abscissa values are taken as evenly spaced inside
the energy interval, in logarithmic scale. The optimization algorithm
is then applied to the Pmagnitudes of the interpolation points, with
a fixed number of iterations.

3 Results

3.1 Impact of multiple materials

A comparison between our multi-material genetic algorithm
and the version implemented in [10] was performed using the same
setup. A number ofM = 8 measurements was fixed, N = 100 energy
bins and K = 4 materials (iron, copper, tantalum and lead) were
used. For a fair comparison, all other hyper-parameters, including
the number of generations, the population size, the crossover and
mutation probabilities, the target distribution mean and the best
fitness boosting factor, were kept identical to [10].

3.1.1 Algorithms performance
The work done in [10] led to a great reduction in orders of

magnitude of the forward matrix condition number, and
highlighted an exponential distribution of thicknesses for the
optimal measurement set using one material. Using this one-
material genetic algorithm, the optimal arrangement of
thicknesses plotted on Figure 4A was obtained, with a condition
number of 1.8 × 106.

Figure 4B displays the results obtained using the first type of
transmission measurements with several materials, described in
Section 2.2.1. When multiple piled up materials are allowed per
measurement, a significant improvement of the previous results is
observed, with a further reduced condition number of 1.61 × 104.

Figure 4C shows the results obtained using a single material per
measurement. With this second version of the algorithm presented
in 2.2.2, an even greater improvement is observed with a highly
reduced condition number of 2.11 × 103.

3.1.2 Stability of the optimization
Regardless of the performance of the different algorithms,

another main goal of the proposed algorithms is to ensure a
good stability of the optimized measurements. To compare the
stability of the multi-material algorithms developed in this study,
both were executed several times with the same parameters. The set
of materials obtained for each optimization was then plotted.

Results are shown in Figure 5. In Figure 5A where multiple
materials per measurement are allowed, the mean thickness value
and the standard deviation of each piled up material for each
measurement are plotted. However, in Figure 5B where only one

FIGURE 4
Optimal arrangement of thicknesses and achieved condition
number for the different versions of the genetic algorithm.
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material is allowed per measurement, the plots have to be separated
because a given measurement can correspond to different materials
for different optimizations.

The result of the stability comparison is clear. As illustrated on
Figure 5A, the algorithm version with piled up materials is quite
unstable, with a significant standard deviation on material

FIGURE 5
Stability study for both versions of themulti-material genetic algorithm. The version when only onematerial is allowed permeasurement (B) is more
stable and is hence preferred.
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thicknesses between experiments and a strong variance on the
condition number. Conversely, for the algorithm with only one
material per measurement, the stability is satisfying. As shown in

Figure 5B, each measurement is attributed almost always the same
material with the same thickness across experiments. The reduction
of the research space size thus plays a key role in the stability
improvement.

3.2 Reduction of scatter noise

Different geometric configurations have been tested in
MCNP4C to reduce scatter noise while keeping an easy-to-design
setup. For each of them, a simulation was run using the
measurement slabs returned by the one-material-per-
measurement version of the genetic algorithm for M = 12
measurements. In this study we consider that scattered rays
represent the entire measurement noise, which is a reasonable
approximation. The Monte-Carlo simulation code allows the
calculation of the theoretical unscattered rays along with the
measurement of total (unscattered and scattered) rays. The
objective is to design a configuration in which the measured total
rays are as close to the theoretical direct rays as possible. Total and
unscattered rays have been measured for each simulation and are
plotted in Figure 6.

Three configurations were tested: a straightforward design where
measurement slabs were placed on the edge of a circle of given radius
(config. 1, Figure 6A), a reworked configuration in which slabs were
optimally distributed in a circle byminimizing the electrostatic potential
between them (config. 2, Figure 6B), and a last design where a thick lead
anti-scatter grid was added between the measurement slabs and the
sensors of configuration 2 (config. 3, Figure 6C).

With configuration 2, the scatter noise was reduced by half
compared to configuration 1. While significant, this reduction is
not sufficient to exploit transmission measurements for spectrum
reconstruction. Using an anti-scatter grid (configuration 3) reduces
the scatter noise to an exploitable amount of around 3%, allowing the
measurements to be used for the spectrum reconstruction.

3.3 Schiff spectrum reconstruction

3.3.1 Nominal configuration
In this study, the nominal configuration for the spectrum

reconstruction consists in: M = 12 measurements, N = 100 energy
intervals,K=4 differentmaterials (iron, copper, tantalum and lead), only
one material allowed per measurement in the genetic measurement set
optimization (hyperparameters: 500 generations, 1000 in population
size), config. Three for the simulation configuration, and p = 10
interpolation points for the reconstruction algorithm.

For this nominal configuration, the reconstruction algorithm
has been applied multiple times. Reconstructed spectrums (dotted
lines) are plotted on Figure 7, along with the objective theoretical
spectrum (solid black line).

3.3.2 Ablation studies
Finally, ablation studies were performed to evaluate the

influence of every part of the spectrum estimation pipeline on
the reconstruction accuracy. Figure 8 highlights the relative
improvements obtained with each major step of the
reconstruction method.

FIGURE 6
Total (ytot) and direct (ydir) measured rays for the 3 tested
experimental configurations. Best results are obtained with
configuration 3, using an anti-scatter grid.
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More precisely, reconstructions have been performed
independently in the nominal configuration in the cases where:

• No anti-scatter grid was used for the measurements
(Figure 8A)

• Only one material (iron) was used for the experimental slabs
(Figure 8B)

• The expectation-maximization (EM) algorithm was used for
the reconstruction instead of the algorithm proposed in this
study (Figure 8C)

4 Discussion

4.1 Impact of multiple materials

The work done in [10] led to a great reduction in orders of
magnitude of the forward matrix condition number, and highlighted
an exponential distribution of thicknesses for the optimal
measurement set using one material. Results shown in Section
3.1 illustrate the impact of using multiple materials on the
condition number, with two distinct cases.

Using multiple piled up materials is beneficial in comparison to
the previous setup from [10]. This can be explained by the much
larger size of the research space when multiple materials are
allowed, leading to a better optimum than the single material
algorithm. However, as shown in Figure 5A, the expected
drawback of this larger research space is a worse stability. The
reduction of the research space size thus plays a key role in the
stability improvement.

FIGURE 7
Spectrum reconstruction in the nominal configuration: prior
function (red), source spectrum (black) and reconstructed spectrums
(dotted lines). Values under 40 keV are not reconstructed and set to 0.
The overall noise, ratio of scattered to unscattered photons, was
about 1.9%. Reconstructed spectrums are in very good agreement
with the source spectrum despite a high level of noise.

FIGURE 8
Ablation study of the spectrum reconstruction in nominal
configuration: prior (solid red), source spectrum (solid black) and
reconstructions (dotted lines).
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With the second version of our algorithm presented in 1, where
only one material is allowed per measurement, an even greater
improvement of results is observed with a highly reduced condition
number and a good stability, shown in Figure 4C and Figure 5B. Even
though the research space is smaller than in the previous version of the
algorithm (which theoretically includes this one’s particular case), the
relevant constraints put on the optimizer allow a more thorough
exploration, leading to the discovery of a better optimum.

4.2 Reduction of scatter noise

Reduction of the measurement scatter noise has proven to be
necessary when a challenging high-energy spectrum is reconstructed.
Indeed, even though the ill-posedness of the inverse problem is
reduced by the search of optimal measurement sets, the condition
number remains significant enough to disturb the reconstruction
when the measurement noise is too high.

As displayed in Figure 6A, when a naive simulation configuration
is used (config. 1) the scatter noise tends to become as large as 100%,
leading to measurements unusable for reconstruction.

When the measurement slabs are optimally distributed within
the experimental circle (config. 2), Figure 6B shows a substantial
reduction of scattering, with unscattered rays noised by an amount
of 50%. This scatter noise is however still way too high for the
inversion.

Lastly, when a thick lead anti-scatter grid is added behind the
measurement slabs (config. 3), the scatter noise is reduced to a
negligible amount of around 3% as shown in Figure 6C. The lead
layer allows the absorption of almost every scattered ray and the
detection of the unscattered rays that pass through material slabs
parallel to its axis. The scatter noise obtained with this last
configuration appears to be small enough for the measurements
to be used to solve the inverse problem and reconstruct the
spectrum.

4.3 Schiff spectrum reconstruction

4.3.1 Nominal configuration
As shown in Figure 7, the overall reconstruction accuracy is

satisfying in the nominal configuration, but two areas can be
distinguished. For high energy (E > 40 keV) there is no
restriction as the constraint step function is set to unity, and the
reconstruction shows great accuracy even for as few as
12 interpolation points. However, in the low energy range, the
points are constrained to 0 and are thus not optimized. In
practice, this is necessary because of the much lower contribution
of low energies in the transmission measurements. Indeed, when
dense materials are subjected to an X-ray beam of given spectrum,
most of the low-energy photons are absorbed and are not detected at
the end. The difficulty to reconstruct the low energy part of spectra is
thus an intrinsic issue for the inverse problem at hand.

4.3.2 Ablation studies
Figure 8A emphasizes the substantial impact of the presence of

an anti-scatter grid in the experimental setup on the reconstruction
accuracy. When nothing is done to reduce the scattered rays, the

measurements are very noisy, leading inevitably to an inaccurate
reconstruction.

Similarly, the influence of using multiple materials is illustrated
in Figure 8B. Because only iron is allowed in the first optimization
problem, the genetic algorithm cannot converge to a satisfying
minimum of the condition number of the system. Thus, even
with low noise, the reconstruction is unstable and inaccurate.

Finally, the interest of using the “trust-constr” algorithm for the
second optimization problem formulated above is clearly highlighted
in Figure 8C. When the expectation-maximization algorithm is used
instead, as it has usually been done in other studies [10], the quality of
the reconstruction is very poor for low and medium energy ranges,
and the spectrum peak is not retrieved at the expected energy level.

5 Conclusion

In this article, a full spectrum reconstruction pipeline for high-
energy X-ray sources was presented. Building on prior work which
introduced the optimization of transmission measurements, the
present work generalizes this approach to multiple calibration
materials, enabling to reach better performance than thickness-
only optimization. This work also demonstrated the importance
of noise reduction to perform spectrum reconstruction in realistic
experimental setups. As such, it showed that the design of an
adapted anti-scatter grid is a precious asset to solve the inverse
problem and obtain faithful spectrum estimations. Finally, a novel
noise-robust reconstruction method was shown to outperform
common expectation-maximization approaches, enabling a
precise choice of spectrum resolution and a controlled injection
of prior knowledge of the X-ray spectrum.
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