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Fuzzy modeling plays a pivotal role in various fields, including science,
engineering, and medicine. In comparison to conventional models, fuzzy
models offer enhanced accuracy, adaptability, and resemblance to real-world
systems and help researchers to always make the best choice in complex
problems. A type of fuzzy graph that is widely used in medical and
psychological sciences is the cubic intuitionistic fuzzy graph, which plays an
important role in various fields such as computer science, psychology,
medicine, and political sciences. It is also used to find effective people in an
organization or social institution. In this research endeavor, we embark upon
elucidating the innovative notion of a cubic intuitionistic planar graph, delving into
its intricate properties and attributes. Additionally, we unveil the novel concept of a
cubic intuitionistic dual graph, thus enriching the realm of graph theory with
further profundity. Furthermore, our exploration encompasses the elucidation of
other pertinent terminologies, such as cubic intuitionistic multi-graphs, alongwith
the categorization of edges into the distinct classifications of strong and weak
edges. Moreover, we discern the concept of the degree of planarity within the
context of CIPG and unveil the notion of strong and weak faces. Additionally, we
delve into the construction of cubic intuitionistic dual graphs, which can be
realized in cases where the initial graph is planar or possesses a degree of
planarity ≥0.67. Notably, we furnish the exposition with a comprehensive
discussion on noteworthy findings and substantial results pertaining to these
captivating topics, contributing valuable insights on the field of graph theory.
Last, we shall endeavor to exemplify the practical relevance and importance of our
research by presenting an illuminating real-world application, thus demonstrating
the tangible impact and significance of our endeavors in this research article.
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1 Introduction

Graph theory has significantly grown in importance as a field of study due to its
widespread applications. The significance of graph theory has escalated, owing to its versatile
uses. For instance, it plays a crucial role in calculating the shortest path between two nodes in
services like Google Maps. Graph theory finds applications in various domains, such as
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computer networks, image processing, electric circuits, and road
networks. For applications of graph theory in chemistry, refer
to [1–4].

In certain graph networks, intersections between edges give rise
to problems, such as planning issues for electrical circuits, metros,
and utility corridors. The elimination of crossings between electric
wires might be feasible, but avoiding such crossings in a road
network is often more complex. In road networks, nodes
represent specific locations and edges symbolize highways.
Hence, it becomes critical to determine the necessity of road
crossings. The solution of this problem may involve the
construction of underpasses or flyovers, but this may result in
higher costs. However, this approach effectively resolves
numerous issues, including road accidents and traffic jams that
arise in congested areas. It is important to note that the term
“congested” is a linguistic expression without precise boundaries.
Various degrees of congestion, such as “very highly congested,”
“very congested,” “congested,” “low congested,” and “very low
congested,” can be employed. Additionally, these linguistic terms
are associated with membership values, allowing for a more nuanced
representation of congestion levels.

Strong and weak routes are distinguished by their congestion
levels, with strong routes being congested and weak routes
remaining non-congested. When developing a city road network,
intersections between two weak routes hold significance, while
intersections between two strong routes can be inconvenient.
These problems can be effectively addressed using a fuzzy planar
graph. In 1964, Zadeh [5] recognized the lack of clarity and
ambiguity in real-world problems, leading to the introduction of
fuzzy sets. This advancement has transformed the landscape of
science and technology, especially when dealing with partial
information or inaccessible data, leading to the emergence of
fuzzy theories.

The concept of fuzzy graph theory was introduced by Rosenfeld
[6], marking the beginning of fuzzy research. Kaufmann [7]
introduced the theory of fuzzy graphs (FGs) based on fuzzy
relations. Mordeson and Nair [8] introduced the FG complement
and its associated operations. Shannon and Atanassov [9]
introduced the intuitionistic fuzzy relation (IFR) and
intuitionistic fuzzy graph (IFG) as its foundation. Parvathi et al.
[10] introduced various operations on IFGs, such as union and join.
The study of intuitionistic fuzzy cycles related to IFGs was
conducted in [11]. Jabbar et al. [12] introduced the concept of
fuzzy dual graphs, while Samanta and Pal [13] introduced fuzzy
planar graphs. Alshehri and Akram [14], and Akram et al. [15]
introduced intuitionistic and Pythagorean fuzzy planar graphs.
Nirmal and Dhanabal [16] discussed specific fuzzy planar graphs
in non-deterministic polynomial time. Pal et al. [17] examined
planarity in FGs and proposed an alternative approach without
restricting edge crossings. For various applications of fuzzy graphs,
refer to [18–35].

Zadeh [36] presented interval-valued fuzzy sets (IVFS) as
extension of fuzzy sets. Akram and Dudek [37] described the
basic concepts of the interval-valued fuzzy graph (IVFG). These
IVFGs were further studied in [38]. The notion of the IVFG is
perhaps more generalized and flexible than a fuzzy graph because
the membership degrees of vertices and edges are in the form of
intervals. The interval-valued intuitionistic fuzzy graphs were

discussed in [39]. In [40], interval-valued intuitionistic fuzzy
competition graphs are investigated. Pramanik et al. [41]
proposed interval-valued planar graphs. On the other hand, the
cubic set proposed by Jun et al. [42] is a blending of ideas of IVFS
and a fuzzy set. During recent 5 years, a lot of research work has been
performed in the domain of the cubic set. Rashid et al. [43] presented
the basic theory of cubic graphs. Khan et al. [44] investigated cubic
intuitionistic FGs. The cubic planar graphs have been studied by
Muhiuddin et al. [45]. They also applied the planarity of cubic
graphs in a road network problem. In [46], the cubic Pythagorean
FGs were investigated. The vertex regularity for cubic fuzzy graph
structures is investigated in [47].

1.1 Motivation

Cubic sets serve as a primary motivation for this study as they
can effectively handle two types of processes simultaneously: one
continuous and the other specific. Although a discrete process may
demonstrate a present value, a continuous process can provide
future or past estimates. Previous research has extensively
explored cubic sets, but there has been relatively less focus on
cubic graphs. In this study, we aim to integrate the planarity of
both graphs, namely, IVFG and FG, into a single structure. The
concept of a cubic planar graph also serves as a motivating factor for
our research.

The following work on cubic intuitionistic planar graphs is
discussed and coordinated as follows:

Section 2 provides several basic terms related to CIMS and
CIMG. The concepts of strong and weak edges are defined for
cubic intuitionistic graphs. Section 3 discusses the planarity of
CIPG and other essential results. We define strong and weak faces
and use them to define the cubic intuitionistic dual graph of a
CIPG. Section 5 contains an application of a CIPG related to an
airline route system. We also compare our result with cubic
planar graphs.

2 Preliminaries

Definition 2.1. [5, 7]. Consider a non-empty set S and the
mapping J: S → [0, 1]. Subsequently, a fuzzy set can be defined as

Q � f,J f( )( ): f ∈ S{ }.
In addition, with a mapping H: S × S → [0, 1], a fuzzy relation is
defined as

W � 〈 f, t( ),H f, t( )〉: f, t ∈ S{ }.
A pairG � (Q,W) is a fuzzy graph where a fuzzy set is denoted byQ
and a fuzzy relation is denoted by W on S such that

H f, t( )≤min J f( ),J t( ){ },
for all f, t ∈ S, where H(f, t) and J(f) indicate the edge (f, t)
membership value and the vertex f membership value, respectively.
If a graph’s vertex f does not have any loops, thenH(f, f) � 0 and a
graph with a loop at the vertex f, then H(f, f) ≠ 0.
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Definition 2.2. [48]. Consider a non-empty setS and the mapping
J: S → [0, 1]. Subsequently, a fuzzy multi-set is defined overS as
R � {f,Jp(f): f ∈ S}, for all p = 0, 1, 2, . . . , qf, where
qf � max {p: Jp ≠ 0}.Taking a non-empty set S along with the
mappingJ: S → [0, 1],H: S × S → [0, 1]. A fuzzymulti graph is
defined as

G � 〈 f, t( ),Hp f, t( ), p � 1, 2, . . . , qft: f, t( ) ∈ S × S〉{ },
such that Hp(f, t)≤min{J(f),J(t)}, where qft �
max{(f, t): Hp(f, t) ≠ 0} and Hp(f, t) and J(f) indicate,
respectively, the membership value of the fuzzy multi-edge and
fuzzy vertex.

Definition 2.3. [49]. Consider a mapping J+: S → [0, 1] and
J−: S → [0, 1]. Following that, an interval-valued fuzzy set (IVFS)
is defined as

T′ � J− f( ),J+ f( )[ ]: f ∈ S{ },
where 0≤J− ≤J+ ≤ 1. The IVFG is described by G � (T′,Y′) such
that T′ is an IVFS on S and Y′ is on S × S, satisfying

H− f, t( ) ≤ min J− f( ),J− t( ){ },
H+ f, t( ) ≤ min J+ f( ),J+ t( ){ },

for all f, t ∈ S.Let J+
p: S → [0, 1] and J−

p: S → [0, 1] be the
mappings such that J−

p ≤J+
p ∀f ∈ S and p � 0, 1, . . . , _qf, where

_qf � max{p,J(f) ≠ 0}. IVFMS, or the interval-valued fuzzy
multiset, on S can be defined as

T � S, J−
p,J

+
p[ ]( ) � f, J−

p,J
+
p[ ]|f ∈ S, p � 0, 1, . . . , _qf{ }. (1)

Consider the mappings H−
v : S × S → [0, 1] and H+

v :

S × S → [0, 1]. Subsequently, the interval-valued fuzzy multi
graph (IVFMG) on S × S is described by (T,U) such that T

provided in (1) and U are given as follows:

U � S × S, H−
v ,H

+
v[ ], v � 0, 1, . . . , _qf( },

such thatH−
v (f, t)≤min{J−

p(f),J−
p(t)} andH+

v (f, t)≤min{J+
p(f),J+

p(t)},
where p = 0, 1, 2, . . . , qf, v = 0, 1, 2, . . . , qf, qf � max {p: Jp ≠ 0}, and qft �
max{(f, t): Hv(f, t) ≠ 0}.

Definition 2.4. A cubic multi-set is a combination of IVFMS and
FMS expressed as

O � 〈 J−
p,J

+
p[ ],Jp*〉|p � 0, 1, . . . , _qf{ },

where _qf � max{p,J(f) ≠ 0}.

Definition 2.5. [50]. Take the mappings J: S → [0, 1] and
A: S → [0, 1] to define the intuitionistic fuzzy set (IFS) as

B � f,J f( ),A f( )|f ∈ S{ },
where J(f) and A(f) are the membership value and non-
membership value, respectively, satisfying J(f) +A(f)≤ 1. In
the universe of discourse, an intuitionistic fuzzy relation (IFR)
S × S along with the mappings H: S × S → [0, 1] and
L: S × S → [0, 1] is also described as an IFS, which is

P � f, t( ),H f, t( ),L f, t( )| f, t( ) ∈ S × S{ },
along with H(f, t) + L(f, t)≤ 1. Consider a graph G with a pair of
IFS and IFR, i.e.,G � (B,P). Then,G is known as intuitionistic FG if
the following conditions hold:

H f, t( )≤min J t( ),J t( ){ }
and

L f, t( )≤max A t( ),A t( ){ },
such that 0≤H(f, t) + L(f, t)≤ 1.

Definition 2.6. A count membership function and a count non-
membership function define an intuitionistic fuzzy multi-set (IFMS)
and is described as CMB: S → Q and CNB: S → Q, where B is a
function and a crisp multiset chosen from [0,1] is Q. If f ∈ S then
CMB(t) and CNB(t) are the crisp multisets. Additionally, the
sequence of the membership is specified in the descending order,
although the non-membership sequence may not be in that order.
The IFMS is described as

I′ � t,Ja t( ),Aa t( )|t ∈ S{ },
where a = 1, 2, . . . , qt and qt � max {a: Ja ≠ 0}.

Definition 2.7. [51]. Consider the mappings J−: S → [0, 1],
J+: S → [0, 1], A+: S → [0, 1], and A−: S → [0, 1]. A
definition of the interval-valued intuitionistic fuzzy set (IVIFS) is
given as

V � f, t( ), J−,J+[ ], A−,A+[ ]: f, t( ) ∈ S{ }
such that 0≤ [J−,J+] + [A−,A+]≤ 1, which is observable as
0≤J− +A− ≤ 1 and 0≤J+ +A+ ≤ 1. Similarly, the interval-
valued intuitionistic fuzzy relation (IVIFR) is expressed as

D � f, t( ), H−,H+[ ], L−,L+[ ]: f, t( ) ∈ S × S{ }
along with themappingsH−: S × S → [0, 1],H+: S × S → [0, 1],
L+: S × S → [0, 1], and L−: S × S → [0, 1], fulfilling the
requirements 0≤ [H−,H+] + [L−,L+]≤ 1. Take a graph G with
pairs of IVIFS and IVIFR such as G � (V,D), then G is referred to
as an intuitionistic interval-valued fuzzy graph (IIVFG) if it met the
following criteria:

H− f, t( )≤min J− f( ),J− t( ){ },
H+ f, t( )≤min J+ f( ),J+ t( ){ },
L− f, t( )≤max A− f( ),A− t( ){ },
L+ f, t( )≤max A+ f( ),A+ t( ){ },

for all f, t ∈ S.

Definition 2.8. A count membership function CMH: S → Q and
count non-membership function CNH: S → Q defined an
intuitionistic interval-valued fuzzy multi-set (IIVFMS), and Q

denotes the crisp Â multiset obtained from [0,1]. If (f, t) ∈ S,
thenCMH(f, t) andCNH(f, t) are the crisp multisets. Additionally, the
non-membership sequence is not necessarily in the decreasing
order, while the membership sequence Â is defined in the
decreasing order. The IVIFMS can also be described as

Frontiers in Physics frontiersin.org03

Fang et al. 10.3389/fphy.2023.1254647

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1254647


H � f, t( ),Ja f, t( ),Aa f, t( )| f, t( ) ∈ S{ },
where a = 1, 2, . . . , qp and qp � max {a: Ja ≠ 0}.

3 Cubic intuitionistic planar graph

Definition 3.1. [44]. A graph that contains both IFS and IVIFS, as
defined by the cubic intuitionistic fuzzy set (CIFS):

C � f,V,B: f ∈ S{ },
where IVIFS isV and IFS is B.Now a cubic intuitionistic fuzzy graph
is a pair G � (V,B) of the crisp graph G* � (S,E), where V �
{f, 〈([J−,J+], [A−,A+]), (J*,A*)〉: f ∈ S} is a cubic
intuitionistic fuzzy set and

B � f, t( ), 〈 H−,H+[ ], L−,L+[ ]( ), H*,L*( )〉: f, t( ) ∈ S × S{ }
is a cubic intuitionistic fuzzy relation on S × S, satisfying the
following conditions:

H− f, t( )≤min J− f( ),J− t( ){ },
H+ f, t( )≤min J+ f( ),J+ t( ){ },
L− f, t( )≤max A− f( ),A− t( ){ },
L+ f, t( )≤max A+ f( ),A+ t( ){ },
H* f, t( )≤min J* t( ),J* t( ){ },
L* f, t( )≤max A* t( ),A* t( ){ },

and 0≤ [J−,J+] + [A−,A+]≤ 1, 0≤ [H−,H+] + [L−,L+]≤ 1,
0≤J* +A*≤ 1, and 0≤H* + L*≤ 1 along with the mappings
H−: S × S → [0, 1], H+: S × S → [0, 1], L+: S × S → [0, 1],
L−: S × S → [0, 1], J−: S → [0, 1], J+: S → [0, 1],
A+: S → [0, 1], A−: S → [0, 1], J*: S → [0, 1], and
A*: S → [0, 1].

Definition 3.2. IVIFMS (H) and IFMS (I′) as a pair forms the
intuitionistic cubic multiset C that is CB � (H, I′). Similarly,
an intuitionistic cubic multi graph is G � (V,B) on the crisp
graph G* � (S*,E*), where V � {f, 〈([J−

p,J
+
p], [A−

p,A
+
p])

(Jp* ,Ap* )〉: f ∈ S} is a cubic intuitionistic fuzzy set and B �
{(f, t), 〈([H−

v ,H
+
v ], [L−

v ,L
+
v ]), (Hv*,Lv*)〉: (f, t) ∈ S × S} is a

cubic intuitionistic fuzzy relation on S × S, satisfying the
following conditions:

H−
v f, t( )≤min J−

z f( ),J−
z t( ){ },

H+
v f, t( )≤min J+

z f( ),J+
z t( ){ },

L−
v f, t( )≤max A−

z f( ),A−
z t( ){ },

L+
v f, t( )≤max A+

z f( ),A+
z t( ){ },

Hv* f, t( )≤min Jz* t( ),Jz* t( ){ },
Lv* f, t( )≤max Az* t( ),Az* t( ){ },

and 0≤ [J−
p,J

+
p] + [A−

p,A
+
p]≤ 1, 0≤ [H−

v ,H
+
v ] + [L−

v ,L
+
v ]≤ 1,

0≤Jp* +Ap* ≤ 1, and 0≤Hv* +ADvDv*≤ 1 along with the
mappings H−

v : S × S → [0, 1], H+
v : S × S → [0, 1],

L+
v : S × S → [0, 1], L−

v : S × S → [0, 1], J−
p: S → [0, 1],

J+
p: S → [0, 1], A+

p: S → [0, 1], A−
p: S → [0, 1],

Jp* : S → [0, 1], and Ap* : S → [0, 1], where p = 0, 1, 2, . . . , qo,
v = 0, 1, 2, . . . , qf, qf � max {p: Jp ≠ 0}, and qft �
max{(f, t): Hv(f, t) ≠ 0}.

Example 3.3. Let S � {a, b, c} and J−(a) � 0.2,J+(a) �
0.4,J*(a) � 0.5,A−(a) � 0.3,A+(a) � 0.4,A*(a) � 0.2. Next, for
the vertex b, J−(b) � 0.1,J+(b) � 0.5,J*(b) � 0.3,A−(b) �
0.4,A+(a) � 0.5,A*(b) � 0.4, and for the vertex c, J−(c) �
0.3,J+(c) � 0.4,J*(c) � 0.7,A−(c) � 0.4,A+(c) � 0.6,A*(c) � 0.3. The

vertices a and b have two edges between them, indicating that the

graph is an ICMG. The values of the several edges are shown in

Figure 1.

Definition 3.4. The strength of an edge for an ICMG G � (V,B)
can be determined by using

Iop � Mop,Nop( )
� 〈 Mop

−,Mop
+[ ], Nop,Nop

+[ ], Mop,Nop*( )〉,
� 〈 H−

op

min J+
o ,J

+
o( ),

H+
op

min J+
o ,J

+
o( )[ ], L−

op

max A+
o ,A

+
o( ),

L+
op

max A+
o ,A

+
o( )[ ],

Hop*

min Jo*,Jo*( ), Lop*

max Ao*,Ao*( )( )〉,

FIGURE 1
Example of an ICMG.
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where the edge strength for the membership value is represented by
Mop, and in the same manner, the edge strength of the non-
membership value is represented by Nop. Intuitionistic strong
cubic edges are described as such if Mop ≥ 0.5 and Nop ≤ 0.5. If
not, it is obviously a weak edge.

When using the ICMG, the intersection of two edges provides a
specific value. This amount is known as a intuitionistic cubic-valued
number. If two edges (l, k) and (e, r) cut each other at the point P,
then the intuitionistic cubic number at P is determined as

IP � MP , NP( ) � Mlk +Mer

2
,
Nlk +Ner

2
( ).

A graph containing no cutting points between the edges is a planar
graph. Planarity is affected by the number of cutting edges. If the
number of cutting edges is greater, planarity is reduced, and vice
versa. This motivates to introduce the concept of an intuitionistic
cubic planar graph.

Definition 3.5. Suppose G � (V,B) is an ICMG along the cutting
points P1,P2, . . . ,Pk and a specific graphical orientation, then the
degree of planarity of planar graph G can be calculated as

F � FM,FN( ) � 〈 F−
M,F

+
M[ ] F−

N,F
+
N[ ] FM* ,FN*( )〉,

where

F−
M � 1

1 + M+
P1
,M+

P2
, . . . ,M+

Pk
( ),

F+
M � 1

1 + M−
P1
,M−

P2
, . . . ,M−

Pk
( ),

FM* � 1
1 + MP1* ,MP2* , . . . ,MPk

*( ),
F−

N � 1

1 + N+
P1
, N+

P2
, . . . , N+

Pk
( ),

F+
N � 1

1 + N−
P1
, N−

P2
, . . . , N−

Pk
( ),

FN* � 1
1 + NP1* , NP2* , . . . , NPk

*( ).
Here, we can observe 0≤FM ≤ 1 and 0≤FN ≤ 1.

A graph without any cutting point have a planarity value
〈 [18][1, 1](1, 1)〉. The cutting point between edges increases if
FN decreases and FM increases and vice versa. Each ICMG
having a certain planarity value is an intuitionistic cubic planar
graph.

Example 3.6. Take G � (V,B) as a ICMG with a crisp graph
G* � (S,E), whereS � {l, k, e, r} andE � {lk, ke, er, rl}. The vertex
and edge membership and non-membership are represented in
Figure 2 and Table 1. Consider the cutting edge lr. Then, we compute

M−
lr �

0.2
min 0.4, 0.4( ) �

0.2
0.4

� 0.5,

M+
lr �

0.3
min 0.4, 0.4( ) �

0.3
0.4

� 0.75,

Mlr* � 0.1
min 0.5, 0.1( ) �

0.1
0.1

� 1,

N−
lr �

0.4
max 0.6, 0.5( ) �

0.4
0.6

� 0.66,

N+
lr �

0.6
max 0.6, 0.5( ) �

0.6
0.6

� 1,

Nlr* � 0.4
max 0.4, 0.3( ) �

0.4
0.4

� 1.

So, Ilr = 〈[0.5, 0.75][0.66, 1](1, 1)〉. By repeating the same technique
for the edge (k, e), we obtain Ike = 〈[0.5, 1][0.5, 1](1, 1)〉.

MP � 0.5 + 0.5
2

,
1 + 0.75

2
[ ], 1 + 1

2
( ) � 0.5, 0.87[ ], 1( ).

Similarly,

NP � 0.66 + 0.5
2

,
1 + 1
2

[ ], 1 + 1
2

( ) � 0.58, 1[ ], 1( ),
IP � 〈 0.5, 0.87[ ], 0.58, 1[ ], 1, 1( )〉.

Next, we evaluate the value of planarity as F−
M � 1

1+0.87 � 0.53,
F+

M � 1
1+0.5 � 0.66, FM* � 1

1+1 � 0.5, F−
N � 1

1+1 � 0.5, F+
N � 1

1+0.58 �
0.63 , and FN* � 1

1+1 � 0.5 .F � 〈[0.53, 0.66], [0.5, 0.63], (0.5, 0.5)〉.

FIGURE 2
ICMG G=(S,I).
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Theorem 3.7. The value of planarity is FM � 1
1+nP , FN � 1

1+nP , and
FM +FN ≤ 1 for a complete CIG, where the total number of cutting
points between the edges is nP .

Strong cubic intuitionistic planar graphs (SCIPGs) are graphs
that have a cubic planarity value of at least 0.5 for their membership
parts, and the non-membership component is less than or equal to
0.5. Alternatively, we have F � (FM,FN), where FM ≥ 0.5 and
FN ≤ 0.5.

Theorem 3.8. The number of cutting points between the strong
edges for SCIPG is at most 1.

Proof. Consider two cutting pointsP1 andP2 for cubic intuitionistic
strong edges (o, p) and (f, t) along Mop ≥ 0.5 and Nop ≤ 0.5 cubic
intuitionistic planarity value. Then, we obtain, Nop+Nop

2 ≤ 0.5 and
Mop+Mop

2 ≥ 0.5, which implies that 1 +NP1 +NP2 ≤ 2 and
1 +MP1 +MP2 ≥ 2, demonstrating that FN ≥ 0.5 and FM ≤ 0.5.
This implies that G is a SCIPG. Therefore, there can only be one
cutting point among strong edges. Planarity decreases as the amount
or number of cutting places between the strong cubic intuitionistic
edges increases. The degree of planarity possessed by the SCIPG is
FN ≤ 0.5 and FM ≥ 0.5. The graph will be a planar graph if there is
exactly one cutting point between any two edges and if there are no
crossings between any two edges. Therefore, there can be precisely one
cutting point between any two edges.

Theorem 3.9. Consider a CIPG G with the planarity value
F � (FM,FN), where FN ≤ 〈[0.33, 0.33], 0.33〉 and
FM ≥ 〈[0.67, 0.67], 0.67〉. Therefore, none of the strong edges in G

have a cutting point.

Proof. Now, we take a CIPG G with a planarity value
F � 〈[0.67, 0.67], [0.33, 0.33], (0.67, 0.33)〉, and two strong cubic
intuitionistic edges (l, k) (e, r) cut each other atQ. As these are strong
edges, so Mlk ≥ 0.5, Nlk ≤ 0.5, Mer ≥ 0.5, and Ner ≤ 0.5. Now, by
Theorem 3.7, the given value of F is FN � 1

1+0.5≥ 0.33, and FM �
1

1+0.5≤ 0.67 which are in opposition to the degree of planarity of
strong edges becauseFN ≥ 0.33 and FM ≥ 0.67. Therefore, the cubic
intuitionistic strong edges do not meet at a cutting point.

Definition 3.10. Consider a rational number 0 ≤ c ≤ 0.5 for a CIPG.
Then, an edge (l, k) is an considerable edge if
〈[ H−

lk
min(J+

l ,J
+
l ),

H+
lk

min(J+
l ,J

+
l )],

Hlk*
min(Jl′,Jl′)〉≥ c, 〈[ L−

lk
max(A+

l ,A
+
l ),

L+
lk

max(A+
l ,A

+
l )],

Llk*
max(Al′,Al′)〉≤ c; a non-considerable edge is a term used to describe an

edge that does notmeet the criteria listed previously. Amulti-edge lk for
the CIMPG is considered significant if Nlk ≤ c and Mlk ≥ c ∀l, k ∈ G.

Remark: The number c is known as the considerable number if
every edge is considerable. c assumes a specific pre-assigned value

depending on the problem or an application. This pre-assigned
number may or may not be unique.

Theorem 3.11. For a CIPG G having a considerable number c, the
number of cutting points between considerable edges is at most [1c].

Proof. Consider a strong CIPG G such that 0≤ c≤ 0.5 F �
(FM,FN). If (l, k) is a considerable edge, then 〈[ L−

lk
max(A+

l ,A
+
l ),

L+
lk

max(A+
l ,A

+
l )],

Llk*
max(Al′,Al′)〉≤ c, 〈[ H−

lk
min(J+

l ,J
+
l ),

H+
lk

min(J+
l ,J

+
l )],

Hlk*
min(Jl′,Jl′)〉≥ c, that

isNlk ≤ c andMlk ≥ c. Here,P1,P2, . . . ,Pn are then cutting points of (l,

k) and (f, t). Subsequently, NP
Nlk+Nlk

2 ≤ c and MP � Mlk+Mlk
2 ≥ c. Then,

∑k
i�1

MPi ≥ nc, ∑k
i�1

NPi ≤ nc. Hence, FN ≥ 1
1+nc and FM ≤ 1

1+nc. However,

we know that a strong CIPG G has planarity values

([0.33, 0.33], 0.33)≥FN ≥ 1
1+nc and ([0.67, 0.67], 0.67)≤FM ≤ 1

1+nc,
which shows that 0.5≥FN ≥ 1

1+nc and 0.5≤FM ≤ 1
1+nc. So, clearly

n≤ 1
c or 0.5≤

1
1+nc. One thing we can observe is that

n �
1
c
− 1 if

1
c
∈ Z,

1
c

if
1
c
∉ Z.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Here, the set of integers is denoted by Z.

The area covered by the edges is known as the faces of the graph.
These faces of the graph can be categorized into two types: one is the
outer face and the other is the inner face. The area surrounded by
some specific edges and limited region is known as the inner face.
The unlimited zone surrounded by the side edges of the graph is
known as the outer face. A graph with the planarity value [18], [0,
0](1, 0) is known as a crisp planar graph. By assigning the degree of
planarity F � [0, 0], [1, 1], (0, 1) to an edge of a CIPG or by
removing an edge, the faces of the graph automatically decreased.
Here, we can observe that there is a direct relation among the faces
and edges of the CIPG. By increasing the number of edges among
vertices, the number of faces will be increased automatically.

Definition 3.12. Let G be a CIPG with F � 〈[1, 1], [0, 0], (1, 0)〉,
which is the degree of planarity. Then,G possesses a cubic intuitionistic
face (CIF) f that is formed by cubic intuitionistic edges. The non-
membership and membership values of the face for the multi-edge
B � (f, t), 〈[H−

v ,H
+
v ], [L−

v ,L
+
v ]{ , (Hv*,Lv*)〉: (f, t) ∈ S × S} can

be computed as fN � {max {Nv
ft}, v � 1, 2, . . . , k: ft ∈ S × S}

and fM � {min {Mv
ft}, v � 1, 2, . . . , k: ft ∈ S × S}.The face is

referred as a strong face if it is enclosed by edges (face) with the
membership value fM > ([0.5, 0.5], 0.5) and a non-membership value
fN < ([0.5, 0.5], 0.5). On the other hand, it is referred as a weak face if
fM ≤ ([0.5, 0.5], 0.5) and fN ≥ ([0.5, 0.5], 0.5).

TABLE 1 Vertex and edge membership and non-membership.

S l k e r

〈[0.3, 0.4][0.5, 0.6](0.5, 0.4)〉 〈[0.1, 0.2][0.3, 0.4](0.5, 0.7)〉 〈[0.7, 0.8][0.1, 0.2](0.4, 0.7)〉 〈[0.2, 0.4][0.4, 0.5](0.1, 0.3)〉

E lk ke er rl

〈[0.1, 0.2][0.4, 0.5](0.4, 0.7)〉 〈[0.1, 0.2][0.2, 0.4](0.4, 0.7)〉 〈[0.2, 0.3][0.3, 0.5](0.1, 0.7)〉 〈[0.2, 0.3][0.4, 0.6](0.1, 0.4)〉,
〈[0.1, 0.2][0.5, 0.6](0.1, 0.2)〉
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Example 3.13. A graph displayed in Figure 3 is a CIPG. It contains
faces f1, f2, f3. The edges {(l, e), (e, r), and (r, l)} surround the face f1.
Similarly, the area enclosed by the edges {(l, k), (k, e), and (e, l)} is f2
and the outer face is f3,which is surrounded by the set of edges {(l, k),
(k, e), (e, r), and (l, r)}.

strength of membership of face 1 � min M−
le,M

−
er,M

−
lk{ }, min M+

le ,M
+
er,M

+
lk{ }[ ],{

min Mle* ,Mer* ,Mlk*{ }}
� min 0.33, 0.33, 0.75{ }, min 0.66, 0.66, 1{ }[ ],{

min 0.5, 0.33, 1{ }}
� 0.33, 0.6[ ], 0.33{ }.

strength of non −membership of face 1 � max N−
le , N

−
er,N

−
lk{ }, max N+

le , N
+
er ,N

+
lk{ }[ ],{

max Nle*, Ner* ,Nlk*{ }}
� max 0.5, 0.66, 0.8{ }, max 0.66, 1, 1{ }[ ],{

max 0.5, 1, 1{ }}
� 0.8, 1[ ], 1{ }.

This implies that the strength of f1 is [0.33, 0.6][0.8, 1](0.33,
1). The strengths of faces 2 and 3 by continuing the same
procedure are evaluated as f2 � [0.5, 1][1, 1](0.5, 1) and
f3 � [0.33, 0.66][1, 1](0.5, 1). Additionally, it is evident that
every face is weak because its non-membership strength is > 0.5.

4 Cubic intuitionistic dual graph

In this section, thenotionof a cubic intuitionistic dual graph (CIDG)
ispresented.WecandrawaCIDGonlyif thegraphiseitherplanarorhave
planarity measure fN ≤ 〈[0.33, 0.33], 0.33〉 and fM ≥ 〈[0.67,
0.67], 0.67〉. The edges of the CIPG correspond to the edges of the
CIDG, while faces of the CIPG correspond to the vertices of the CIDG.

Definition 4.1. Let G � (V,B) be a CIPG such that B �
{(f, t), 〈[H−

v ,H
+
v ], [L−

v ,L
+
v ], (Hv*,Lv*)〉, v � 1, 2, . . . , k: ft ∈ S

× S) and f1, f2, . . . , fn be the faces ofG surrounded by edges. So,G′ �
(I′, S′) is the dual graph of the CIPG, where the vertex set is denoted by
I′ and the edge set is denoted by S′. The following expression is used to
calculate the membership and non-membership values of vertices:

J yv( ) � max Hv f, t( ), v � 1, 2, . . . , k: ftis one of the edge{
along the cubic intuitionistic faces},

A yv( ) � min Lv f, t( ), v � 1, 2, . . . , k: ft is one of the edge{
along the cubic intuitionistic faces}.

It is noted that two faces may share more than one common edge. As
a result, vertices of the CIDG may have several edges crossing them.
If Lv(zi, zj) and Av(zi, zj) indicate the non-membership and
membership values, respectively, of an edge (zi, zj), then for the
membership and non-membership values of the cubic intuitionistic
edge of the CIDG, we have

L zi, zj( )
v
� Lv f, t( )p and A zi, zj( )

v
� Av f, t( )p,

where v = 1, 2, . . . , k and k is the number of common edges. The
pendant vertex in the CIPG is associated with a loop in the CIDG
with the degrees of membership and non-membership being the
same as that of the pendant vertex. According to the value of
planarity [18][0, 0](1, 0), the graph CIDG is always planar. By
taking the vertices of the CIDG as the faces and the edges as the
edges of the CIPG, we may create the CIPG from the CIDG.

Example 4.2. Let G* � (S,E) be a crisp graph of the CIPG
G � (V,B). Tables 2, 3 show the values of vertices and edges,
respectively.The degrees of three faces, as shown in Figure 4, are
calculated. It is noted that in the CIDG, the vertices {k1, k2, k3} are
the faces of the graph. Themembership and non-membership values
of vertices of CIDG or faces are calculated as follows:

J k1( ) � 〈 max 0.2, 0.3, 0.2{ }[ ], max 0.1, 0.2, 0.1{ }, max 0.2, 0.1, 0.1{ }〉
� 〈 0.2, 0.3[ ], 0.2〉,

A k1( ) � 〈 min 0.3, 0.5, 0.5{ }[ ], min 0.2, 0.4, 0.4{ }, min 0.7, 0.7, 0.7{ }〉
� 〈 0.4, 0.5[ ], 0.7〉,

J k2( ) � 〈 max 0.2, 0.2, 0.2{ }[ ], max 0.1, 0.1, 0.1{ }, max 0.7, 0.1, 0.1{ }〉
� 〈 0.1, 0.2[ ], 0.7〉,

A k2( ) � 〈 min 0.6, 0.6, 0.5{ }[ ], min 0.4, 0.4, 0.4{ }, min 0.3, 0.7, 0.7{ }〉
� 〈 0.4, 0.5[ ], 0.3〉,

J k3( ) � 〈 max 0.3, 0.2, 0.2, 0.2{ }[ ], max 0.2, 0.1, 0.1, 0.1{ },
max 0.1, 0.1, 0.7, 0.1{ }〉 � 〈 0.2, 0.3[ ], 0.7〉,

A k3( ) � 〈 min 0.4, 0.4, 0.4, 0.2{ }, min 0.5, 0.6, 0.6, 0.3{ }[ ],
min 0.7, 0.7, 0.3, 0.7{ }〉 � 〈 0.2, 0.3[ ], 0.3〉.

FIGURE 3
Strength of the faces.
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The membership and non-membership values of the new edges
are calculated as:

H(k1, k2) � H(s, r) � 〈[0.1, 0.2][0.4, 0.5](0.1, 0.7)〉; there are
two common edges between the vertices (k1, k3) and (k2, k3), so
H(k1, k3) � H(l, s) � 〈[0.1, 0.2][0.2, 0.3](0.2, 0.7)〉, H(k1, k3)
� H(l, r) � 〈[0.2, 0.3][0.4, 0.5](0.1, 0.7)〉, H(k2, k3) � H(e, r)
� 〈[0.1, 0.2][0.4, 0.5](0.1, 0.7)〉, and H(k2, k3) � H(s, e)
� 〈[0.1, 0.2][0.4, 0.6](0.7, 0.3)〉. Hence, the required edge set of
the CIDG is

I′ � k1k2, 0.1, 0.2[ ] 0.4, 0.5[ ] 0.1, 0.7( )( ), k1k3, 0.1, 0.2[ ] 0.2, 0.3[ ]({
0.2, 0.7( )), k1k3, 0.2, 0.3[ ] 0.4, 0.5[ ] 0.1, 0.7( )( ),
k2k3, 0.1, 0.2[ ] 0.4, 0.5[ ] 0.1, 0.7( )( ), k2k3, 0.1, 0.2[ ](
0.4, 0.6[ ] 0.7, 0.3( ))}.

Theorem4.3.We consider a CIPGG having the number of vertices,
edges, and faces ofG asV, E, and F, respectively. Take the dual graph
G′ ofGwith the number of vertices, edges, and faces asV′,E′, and F′,
respectively, then

1. E′ � E,
2. F′ � F,
3. V′ � V.

5 Application to the airline system

In the past, individuals had to take a ship or a land vehicle, which
was exhausting and time-consuming. The likelihood of becoming lost

or getting into an accident increases as a result. The emergence of the
airline system, a quick mode of transportation that is especially helpful
when on a strict timetable, has all but eliminated this issue. Airline
routes occasionally cross paths (intersection) which can either be
eliminated or not depending on the degree of planarity.

The airline route system is represented in Figure 5. The vertices
of this diagram denote the countries, and its edges stand in for the air
routes that link them. Here, the vertices have values 〈[0.5, 0.5][0.5,
0.5](0.5, 0.5)〉, or in other words, have half degrees of membership
and non-membership. Now, we select the level of membership and
non-membership for edges, which depends on a range of variables
including the ticket prices, the frequency of flights, festivals, and
more. There may be more flights on that route and more passengers
traveling by the plane if the ticket price is affordable, increasing the
likelihood of an encounter. There will be more travel as a result. The
major issue, which is the crowd of people or the number of flights, is
connected to all of these elements in some manner. As a result,
chosen from the closed interval [0,1], the degree of membership and
non-membership among edges will be vague or unclear.

A CIPG is connected to both a continuous and a particular
operation. Although a fuzzy interval denotes a continuous process, a
fuzzy number denotes a discrete process. So using the present as a
number and the future as an interval, we examine the path’s intersection
at both the current and future dates. There is a possibility that there is a
crossover that is currently unavailable will be required some other day;
similarly, therewould be a situation that a currently blocked intersection
due to a festival or other circumstance may be needed in future. Table 4

TABLE 2 Value of the vertices.

S l s e r

V [0.4, 0.5][0.2, 0.3](0.2, 0.7) [0.1, 0.2][0.2, 0.3](0.7, 0.1) [0.1, 0.2][0.4, 0.6](0.7, 0.3) [0.2, 0.3][0.4, 0.5](0.1, 0.7)

TABLE 3 Value of the edges.

E ls se er lr sr

B [0.1, 0.2][0.2, 0.3](0.2, 0.7) [0.1, 0.2][0.4, 0.6](0.7, 0.3) [0.1, 0.2][0.4, 0.6](0.1, 0.7) [0.2, 0.3][0.4, 0.5](0.1, 0.7) [0.1, 0.2][0.4, 0.5](0.1, 0.7)

FIGURE 4
Example of the CIDG.

Frontiers in Physics frontiersin.org08

Fang et al. 10.3389/fphy.2023.1254647

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://doi.org/10.3389/fphy.2023.1254647


demonstrates the edge membership and non-membership
degree.Because the intersection might increase with the number of
aircraft every day, there is a direct correlation between the crowd and
the intersection. We utilize the approach in Table 5 to determine the
degree of planarity.From Figure 5, it is evident that p1, p2 and p3 are
points of intersection due to the edges (fk, gl), (fk, lh), and (kg, lh). The
strength of edges is computed as follows:

Mqn � 〈 H−
qn

min J+
q ,J

+
q( ),

H+
qn

min J+
q ,J

+
q( )⎡⎢⎣ ⎤⎥⎦, Hqn*

min Jq*,Jq*( )〉
� 〈 0.3

0.5
,
0.4
0.5

[ ], 0.1
0.5
〉 � 0.6, 0.8[ ], 0.2( ),

Nqn � 〈 L−
qn

max A+
q ,A

+
q( ),

L+
qn

max A+
q ,A

+
q( )⎡⎢⎣ ⎤⎥⎦, Lqn*

max Aq*,Aq*( )〉
� 〈 0.4

0.5
,
0.5
0.5

[ ], 0.5
0.5
〉 � 0.8, 1[ ], 1( ).

So Iqn = 〈[0.6, 0.8], [0.8, 1](0.2, 1)〉.
Similarly, the strength of the other edges is determined as follows:

Imo � 〈 0.6, 1[ ] 0.6, 0.8[ ] 1, 0.6( )〉,
Iqo � 〈 0.4, 1[ ] 0.2, 0.4[ ] 0.8, 0.4( )〉,
Imp � 〈 0.6, 0.8[ ] 0.2, 0.8[ ] 1, 0.2( )〉.

Thus, P1 is computed as

MP1 � M−
qn +M−

mo

2
,
M+

qn +M+
mo

2
[ ], Mqn* +Mmo*

2
( )

� 0.6 + 0.6
2

,
0.8 + 1

2
[ ], 0.2 + 1

2
( ) � 0.6, 0.9[ ], 0.6( ),

NP1 � N−
qn +M−

mo

2
,
N+

qn +M+
mo

2
[ ], Nqn* +Nmo*

2
( )

� 0.6 + 0.6
2

,
1 + 0.8

2
[ ], 1 + 0.6

2
( ) � 0.6, 0.9[ ], 0.8( ).

So the cutting value at P1 is

IP1 � 〈 0.6, 0.9[ ], 0.6, 0.9[ ], 0.6, 0.8( )〉.
Similarly, P2 and P3 are calculated by repeating the process.

IP2 � 〈 0.6, 0.8[ ], 0.5, 0.45[ ], 0.6, 0.6( )〉,
IP3 � 〈 0.5, 0.9[ ], 0.2, 0.6[ ], 0.9, 0.3( )〉.

The membership and non-membership degrees are finally
determined as

FM � 〈 1
1 + 0.9 + 0.8 + 0.9

,
1

1 + 0.6 + 0.6 + 0.5
[ ], 1

1 + 0.6 + 0.6 + 0.9
〉

� 〈 0.27, 0.37[ ], 0.32〉,

FIGURE 5
Network of an airline.

TABLE 4 Membership and non-membership values of edges.

Airline route Mn Nq mo oq mp

Crowd [0.1, 0.2][0.3, 0.4](0.5, 0.3) [0.3, 0.4][0.4, 0.5](0.1, 0.5) [0.3, 0.5][0.3, 0.4](0.5, 0.3) [0.2, 0.5][0.1, 0.2](0.4, 0.2) [0.3, 0.4][0.1, 0.4](0.5, 0.1)

TABLE 5 Algorithm to determine intersecting routes.

Algorithm Howtodeterminewhetheranintersectingrouteinanairlinesystemisplanarornot

Step 1 Taking a rough airline route system

Step 2 Considering the nations that have airline flights between them

Step 3 Identifying the airline system’s having a cutting point

Step 4 Determining the degree of planarity after calculating the value of the cutting point
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FN � 〈 1
1 + 0.9 + 0.45 + 0.6

,
1

1 + 0.6 + 0.5 + 0.2
[ ], 1

1 + 0.8 + 0.6 + 0.3
〉

� 〈 0.33, 0.43[ ], 0.37〉.

Clearly, the planarity value is F � 〈[0.27, 0.37], [0.33, 0.43],
(0.32, 0.37)〉. We can see FM ≤ ([0.67, 0.67], 0.67) and FN ≥
([0.33, 0.33], 0.33), which demonstrates that intersections
between airline routes are essential and cannot be avoided. Here,
we observe that the airline route is currently congested, and it is
imperative to promptly clear the airline route before the arrival of
the next plane, or else we might face a potential collapse. Therefore,
it is recommended that either the airline adjusts its time schedule, or
alternatively, the plane may need to remain in the air if the route is
not available. It is also noted that the intersection of two routes is
irrelevant if FM ≥ ([0.67, 0.67], 0.67) and FN ≤ ([0.33, 0.33], 0.33).
Thus, the intersection of airline routes will be required at both times
(in the future and also at present time).

6 Comparison with already existing
methods

There are already existing methods, such as the intuitionistic
fuzzy planar graph and interval-valued intuitionistic planar graph,
which can be used to determine if a discrete process is planar or if an
interval representing a continuous process is planar, respectively.
However, CIPGs combine the strengths of both these methods. An
intuitionistic graph may be planar, but interval-valued intuitionistic
graphs may not always be so. To avoid redundant discussions, we
use both of them in this research article to thoroughly inspect
planarity.

In cubic planar graphs, interval-valued planar graphs and fuzzy
planar graphs are considered simultaneously [45]. However, we use
a more sophisticated technique that involves the use of two intervals
and two fuzzy numbers, where one interval indicates the
membership value and the other indicates the non-membership
value, and similarly for the fuzzy numbers.

7 Conclusion

Graph theory is applied in system analysis, transportation
difficulties, and a variety of other fields including computer
science (algorithms and computations) and electrical engineering
(communication networks and coding theory) . However, because
some features of graph theory problems are ambiguous and unclear,
we can answer them utilizing fuzzy graph theory. We introduced the
concept of CIPGs, which are a hybrid of interval-valued
intuitionistic planar graphs and intuitionistic fuzzy planar graphs.
We proposed the terms CIMS and CIMG. We gained knowledge
about how to determine the edge strength. We also talk about
CIPG’s planarity. Using a cubic intuitionistic cubic valued number,
we were able to construct the formula for the degree of planarity. We
also showed how, if the degree of planarity is more than or equal to
0.67, the CIPG can be transformed into the CIDG. We also

discovered the CIDG faces’ strength. There are several graph
networks in which crossing between edges causes a difficulty and
avoiding this overlap can be challenging at times. We can deal
with such problems using a planar graph. Planar graphs can be
used to build circuits and road networks. We gave an example of
the airline system to check crossing between edges by finding the
planarity value. After determining the values, we have concluded
that either the airline adjusts its time schedule, or alternatively,
the plane may need to remain in the air if the route is not
available.

A limitation to our technique lies in its applicability solely to
undirected graphs. A cubic Pythagorean fuzzy planar network is our
future direction.
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