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Surface nanostructures etch without chemicals; owing to this, their development
is a crucial technical process. Surface nanohillocks may be created by irradiating
yttrium iron garnet (YIG) with 30-MeV C60 cluster ions. The nanohillock creation
mechanism is disputed. In this study, we propose that the formationmechanism is
a plasma collective effect of charged particles that depends on localized rogue
waves. Rogue waves will explain YIG surface nanohillock creation using a
traditional hydrodynamic plasma model. Analytically solving hydrodynamic ion
fluid equations and Maxwellian electron distributions yields a non-linear
Schrödinger equation. Solving the latter gives us plausible rogue wave
domains. Rogue waves concentrate charged ions from the surroundings into a
small, confined zone, generating surface nanohillocks. The relevance of different
plasma parameters is highlighted in the rogue wave profile.
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Introduction

The formation of surface nanostructures is of high importance in today’s
nanotechnology applications. In particular, surface nanostructures created by single-ion
impact have garnered tremendous interest during the last 2 decades [1, 2]. The motivation for
forming nanostructures by single-ion impact is to create a nanostructure in an accurate way
without chemical treatment, as in traditional lithographic techniques. The nanostructure
formation is mainly located by the energy deposition of the incident ion and the material
sensitivity [3]. The incident ion needs to develop accelerator technology to make it possible to
produce a MeV cluster ion beam [4]. The criterion to obtain a MeV cluster beam is the ability to
produce high energy comparable to, and even higher than, those observed inmono-atomic single
highly charged ions. Furthermore, the volume of the impacted region where the kinetic energy is
deposited and the smallness of the velocity of the cluster ions could lead to a high electronic
energy density that may be enough to create nanostructures [5]. The creation mechanism of the
nanostructures is still ambiguous. One of these mechanisms is based on the creation of plasma by
highly charged ions. This mechanism suggests that the plasma is generated because of the strong
ion-induced agitation in a nanometer-sized area close to the surface. Different theoretical
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approaches in plasma physics were used to explain the formation
mechanisms of the nanostructures, such as plasma expansion and wake
field approaches [2, 6].

We suggest another approach based on the plasma collective effect
of the charged particles, which depends on the formation of rogue
waves. Actually, rogue waves are governed by a strongly compressed,
high number density coupled with a high energy content. The rogue
wave amplitude is more than two and less than five times higher than
the average wave crests. Rogue waves collect the wave energy with
amplitudes substantially taller than those present in the initial
conditions. Rogue waves have been explored in a variety of systems,
ranging from plasma, fluids, discrete lattices, optics, ultracold quantum
gases, lasers, and optical fibers [see, e.g., [7–9] and references therein].
Usually, rogue waves are created because the pulses of the system are
modulationally unstable. These unstable modes were investigated in
different plasma media. For example, Farokhi et al. [10] examined the
propagation of nonlinear dust lattice waves in a two-dimensional
hexagonal crystal. It is found that evidence is provided of
modulational instability and of the occurrence of bright-type
envelopes at shorter wavelengths. Shahmansouri et al. [11] examined
the excitation of breather structures in degenerate relativistic plasma
consisting of non-extensive electrons and cold ions. For this purpose,
the multiple-time-scale perturbation technique was used to obtain a
nonlinear Schrödinger equation to investigate the modulational
instability of the system. Alinejad and Shahmansouri [12] studied
the dissipative dust-ion acoustic (DIA) rogue waves in collisional
dusty plasma with superthermal electrons. Multiple-time-scale
reduction showed that the nonlinear dynamics of low-frequency
waves can be reduced to a modified nonlinear Schrödinger (mNLS)
equation. This equation captures the main features of modulated waves
and shows a criterion for determining the maximum time for the
occurrence of modulational instability.

In this context, the use of 30-MeV C60 cluster ions enables the
creation of nanohillocks in yttrium iron garnet (YIG) (Y3Fe5O12),
providing evidence for the nanostructures induced by MeV clusters
[13]. Understanding of such nanostructure formation was attained
through the plasma expansion approach in various physical
situations [14, 15]. On the other hand, the high kinetic energy
density deposited by C60 cluster ions into a small localized region
leads to strong electronic excitation. Thus, the temperature increases
in the impact region, which consequently leads to the creation of
nanoplasma. The plasma expansion approach used cannot explain
why the ion number density of the plasma accumulates in a very
small localized region, i.e., nanohillocks. It explains how the plasma
propagates above the surface. Thus, it is of interest to introduce
another approach that can elucidate the accumulation of the charged
ions in a tiny localized zone, forming nanohillocks.

Although the present experiment was conducted using low-energy
ions, we can explain this point below. One of the most important things
about the MeV cluster beam is that it can produce high energy per unit
volume, at least as high as single highly charged atoms (SHI). The small
velocity of the cluster ions and the volume of the region where the
kinetic energy is deposited result in a high electronic energy density,
which is enough to create nanostructures in various materials, even
those where the monatomic SHI failed. Multiplying the coefficients of
the non-linear term and dispersion term shows the condition for rogue
waves. After an external disruption, the amplitude-modulated envelope
becomes unstable. Plasma-charged particle concentrations (rogue

waves) can occur in the unstable area. For ion-acoustic waves to
develop, their phase velocity must be smaller than the electron
thermal speed and larger than the ion thermal speed.

Theoretical model

We suggest a newmechanism for explaining the observed results
of surface nanohillocks in YIG using a hydrodynamic fluid model.
We consider homogeneous and unmagnetized three-ion plasma, which
consists of two positive ions “Y″ and “Fe” (hereafter, we refer to them as
i and 1, respectively), one negative ion “O” (we refer to it as 2), and a
background of Boltzmann-distributed electrons. Note that in our
plasma model for YIG materials, the number density is high.
Typical experimental data are used, such as the unperturbed
electron number density of 2.91 × 1019 cm−3, the nanohillock height
of ≈ 10−7 cm, and the time of hillock formation occurring in
approximately a picosecond [14], to evaluate the electron relaxation
time (or electron collision rat), which corresponds to ≈ 10−13 second
[16]. Then, in such a brief time span, electrons have the possibility to
thermalize and can be represented by the Boltzmann distribution.
Actually, the heavier ion is yttrium. Since all three ions contribute to
the system’s inertia, the electrons are responsible for its restoring force.
Adopting a one-dimensional (1D) planar geometry, for simplicity, the
fluid model equations read

∂nj
∂t

+ ∂

∂x
njuj( ) � 0, (1)

mini
∂ui

∂t
+ ui

∂ui

∂x
( ) � −qini∂ϕ∂x, (2)

m1n1
∂u1

∂t
+ u1

∂u1

∂x
( ) � −q1n1∂ϕ∂x, (3)

m2n2
∂u2

∂t
+ u2

∂u2

∂x
( ) � +q2n2∂ϕ∂x, (4)

∂2ϕ

∂x2
� 1
ϵ0

ene − q1n1 + q2n2 − qini( ), (5)

where j = i, 1, 2, |qi| = zie, |q1| = z1e, and |q2| = z2e, e is the electronic
charge, mj is the mass of the j ion, nj is the number density of the j
ion, uj is the fluid velocity of the j ion, zj is the number of charges in
the j ion, ϵ0 is the vacuum permittivity, ϕ is the electrostatic
potential, and ne is the electron number density.

The model equations may be cast in a dimensionless form for
simplicity in algebraic manipulation. Adopting appropriate scales,
the normalized evolution equations become

∂nj
∂t

+ ∂

∂x
njuj( ) � 0, (6)

∂ui

∂t
+ ui

∂ui

∂x
� −∂ϕ

∂x
, (7)

∂u1

∂t
+ u1

∂u1

∂x
� − 1

μ1

∂ϕ

∂x
, (8)

∂u2

∂t
+ u2

∂u2

∂x
� 1
μ2

∂ϕ

∂x
, (9)

∂2ϕ

∂x2
� δene − δ1n1 + δ2n2 − ni. (10)

The re-scaled electron number density (ne) reads
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ne � eϕ ≈ 1 + ϕ + ϕ2/2 + ϕ3/6 +/ . (11)
We define the quantities μ1, μ2, δ1, δ2, and δe as

μ1 �
m1zi
z1mi

, μ2 �
m2zi
z2mi

, δ1 � z1n10
zini0

, δ2 � z2n20
zini0

, δe � ne0
zini0

, (12)

where ni0, n10, n20, and ne0 are the unperturbed number densities of
“Y,” “Fe,” “O” ions, and electrons, respectively.

Time t is normalized by the “Y” positive ion plasma frequency
(ωpi), where ωpi � (z2i e2ni0/ϵ0m1)1/2. The space x is normalized by
the positive ion Debye length (λDi), where λDi � (ϵ0kBTe/zie2ni0)1/2.
The electrostatic potential ϕ is normalized by kBTe/e, where kB is the
Boltzmann constant and Te is the electron temperature.

Neutrality at equilibrium imposes the following condition:

1 � δe − δ1 + δ2. (13)

Multiscale perturbative analysis

Let S be the state (column) vector (ni, ui, n1, u1, n2, u2, and ϕ)T,
describing the system’s state at a given position x and instant t. We
shall consider small deviations from the equilibrium state S(0) =
(1,0,1,0,1,0,0)T by taking

S � S 0( ) + ϵS 1( ) + ϵ2S 2( ) +/ � S 0( ) +∑∞
n�1

ϵnS n( ), (14)

where ϵ ≪ 1 is a small (real) parameter. Following the standard
multiple-scale technique (see e.g., in Ref. [17] for details), we shall
consider a set of stretched space and time variables: Tr = ϵrt and Xr =
ϵrx (for r = 0, 1, 2, 3, . . . ). Furthermore, the variables are expanded
around their equilibrium values as

nj � 1 + ϵnj1 + ϵ2nj2 + ϵ3nj3 +/ ,
uj � ϵuj1 + ϵ2uj2 + ϵ3uj3 +/ ,
ϕ � ϵϕ1 + ϵ2ϕ2 + ϵ3ϕ3 +/ ,

(15)

for j = i, 1, 2.
We will assume that all of the perturbed states

S n( ) � ∑∞
l�−∞

S n( )
l Xj, Tj( ) eil kx−ωt( ) (16)

depend on the fast scales via the phase θ = kx − ωt only, while the
slow scales enter the argument of the l − th harmonic amplitude S(n)l ,
which is allowed to vary in {Xj, Tj}. The reality condition S(n)−l � S(n)′l

is met by all state variables. According to these considerations, the
derivative operators are treated as follows:

∂t � ∂0 + ϵ∂1 + ϵ2∂2 + ϵ3∂3 + ··,
∇ � ∇0 + ϵ∇1 + ϵ2∇2 + ϵ3∇3 +/ ,

(17)

i.e., defining the operators ∂j = ∂/∂Tj and ∇j = ∂/∂Xj. The stretched
variables are treated as independent variables. Substituting the above
information into the evolution Eqs 6–10, a set of polynomial
equations in ϵ is obtained. Since ϵ is a free parameter, the
coefficients of ϵ must vanish. Solving at successive orders
provides a solution for the state variables, in terms of their
harmonic amplitudes.

First order in ϵ: fundamental harmonics and linear dispersion
relation. The equations in the first order of ϵ can be expressed in the
form of a linear algebraic equation (a Cramer system). In order for
non-trivial solutions to exist, a compatibility condition must be
satisfied, leading to the dispersion relation (DR):

ω2 � 1 + δ1
μ1

+ δ2
μ2

( ) k2

k2 + δe
, (18)

where

n 1( )
i1

u 1( )
i1

n 1( )
11

u 1( )
11

n 1( )
21

u 1( )
21

ϕ 1( )
2
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ϕ 1( )
1 . (19)

Second order in ϵ.
For zero harmonic, i.e., l = 0:

ϕ 0( )
2 � 1

δe
∑
j

Sjδjn
0( )
j2 − δe|ϕ 1( )

1 |2⎛⎝ ⎞⎠. (20)

The second-order corrections to the first harmonic (i.e., l = 1)
amplitudes are now obtained as the vector S(1)2 , say, given by
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12
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22
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2
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The compatibility requirement for the first-harmonic
component system of equations imposes the following condition:

∂1ϕ
1( )

1 � −vg∇1ϕ
1( )
1 , (22)

where we have defined the group velocity:

vg � dω

dk
� δe

1 + δ1
μ1
+ δ2

μ2

⎛⎝ ⎞⎠ω3

k3
. (23)
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Qualitatively speaking, imposing this constraint reflects the
physical fact that the dominant harmonic envelope moves at the
group velocity at this order, i.e., ϕ(1)1 � ϕ(1)1 (X1 − vgT1, X2, T2, . . .).

In an analogous way, the equations for n = l = 2 for the
second-order harmonic amplitudes lead to the vector S(2)2 ,
given by
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where we have defined the quantity:

A �
3k4 1 + δ1

μ21
− δ2

μ22
( ) − δeω4

2ω2 ω2 4k2 + δe( ) − k2 1 + δ1
μ1
+ δ2

μ2
( )( ). (25)

Third order in ϵ: derivation of a non-linear Schrödinger
(NLS) equation. Non-linear self-interaction of the carrier wave
also results in the creation of zeroth-order harmonics, which are
obtained by the second-order equations, in combination with
their third-order counterparts, for l = 0. The “vector” S(0)2 thus
obtained reads
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where
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+ δ2
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For the first harmonic, i.e., l = 1, in third order (n = 3), an
analytical constraint is obtained, bearing the form of a partial
differential equation for the electrostatic potential envelope
(amplitude), say, ϕ(1)1 � Ψ:

i
∂Ψ
∂τ

+ P
∂2Ψ
∂ζ2

+ Q|Ψ|2 Ψ � 0, (28)

where we have defined the stretched variables ζ � ϵ(x − vgt) �
X1 − vgT1 � 1

ϵ (X2 − vgT2) and τ = ϵ2t = ϵT1 = T2. The dispersion
coefficient P is related to the curvature of the dispersion curve as P =
(d2ω/dk2)/2. The exact form of P in our case reads

P � −3
2

δe

1 + δ1
μ1
+ δ2

μ2
( )2

ω5

k4
. (29)

The nonlinearity coefficient Q arises due to the carrier wave self-
interaction. The exact form of Q reads
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2

⎛⎝ ⎞⎠⎫⎪⎬⎪⎭.

(30)
The solution of the NLS Eq. 28 is [18] as follows:

FIGURE 1
The product PQ is plotted versus the carrier wavenumber k,
varying δ1, as indicated. Other parameters are δ2=0.9, μ1=0.62, and
μ2=0.27.
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Ψ ζ , τ( ) � eiQτ 1 − 4 1 + 2iQτ( )
1 + 2Q

P ζ
2 + 4Q2τ2

⎡⎣ ⎤⎦. (31)

Another solution in the form of breather is obtained by
Akhmediev’s breather, and it is given by [19]

Ψ ζ , τ( ) � eiQτ
cosh Qsin 2ϕ( )τ − 2iϕ( ) − cos ϕ( )cos 2sin ϕ( ) ��

Q
2P

√
ζ( )

cosh Qsin 2ϕ( )τ( ) − cos ϕ( )cos 2sin ϕ( ) ��
Q
2P

√
ζ( ) ,

(32)
where ϕ is the phase angle.

Results and discussion

The NLS Eq. 28 modulates the amplitude of the electrostatic
envelope wave packet Ψ. Thus, the envelope wave packet’s
propagation and stability depend on the dispersion coefficient
P and the nonlinear coefficient Q. The modulation instability
analysis of the NLS Eq. 28 can show how the envelope wave
packet propagation stability changes over time [20]. If PQ < 0, the
amplitude-modulated envelope remains constant, regardless of
external perturbations. However, if PQ > 0, external
perturbations make the amplitude-modulated envelope
unstable. The unstable region allows accumulation of plasma-
charged particles (rogue waves). Studying these regions and their
physical characteristics is essential.

Starting with the fact that this is the first perturbation-based
attempt to explain the genesis of surface nanohillocks in YIG

FIGURE 2
(A, B) The Peregrine soliton and (C, D) the Akhmediev breather are depicted for δ1=0.3, δ2=0.5, μ1=0.62, μ2=0.27, p =−0.559, Q =−10.73, τ =0,
and ϕ =10.

FIGURE 3
The Peregrine soliton is depicted for different values for δ1. The
values of the other parameters are δ2=0.9, μ1=0.62, μ2=0.27,
p =−0.558, Q =−9.43, τ =0, and ϕ =10.
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materials, we used a typical data ratio from an experiment to
interpret our qualitative description. In the future, we will use
quantitative descriptions to improve models. Figure 1 clearly
depicts the positive or negative PQ area. For wave numbers larger
than 0.3, the unstable area PQ > 0 dominates, except when
positive iron ions are minimal and unstable pulses remain for
wave numbers > 0.4. A stable region cannot have localized charge
concentrations or rogue waves. This phenomenon can be
explained physically: for small values of δ1 (specifically, low
iron concentration), there is a high likelihood of the presence
of rogue waves at high wave numbers. This occurrence may be
attributed to the sufficient concentration of charged ions in a
specific region. At high values of δ1 (i.e., iron concentration), the
localized concentration of charged ions is high at low wave
numbers, which means that enough energy can be
concentrated at lower wave numbers to concentrate a
considerable amount of charged ions in a localized region.
The existence of stable pulses at low values of wave number is
undoubtedly due to the fact that the plasma at lower δ1 (i.e., iron
concentration) turns into approximately positive–negative ion
plasma, which becomes relatively stable at high wave numbers.
When δ1 increases, the plasma converts to multi-component
plasma, which is relatively unstable plasma.

Figure 2 displays the contour plot and two-dimensional
profile of the normalized rogue wave as a function of distance
and time. The solution (29) is shown in Figure 2A. Rogue pulses
can be intense in a limited, confined region. The rogue pulse is a
high peak that concentrates many ions in a tiny area, forming
surface nanohillocks. The contour map of the normalized rogue
wave as a function of distance and time is shown in Figure 2B.
The peak of charged ions correlates with nanohillocks in [14],
highlighting the impact of ion-induced modifications on
electronic energy deposition by 30-MeV C60 cluster ions in
creating energetic plasma. Upon collision, 30-MeV C60 cluster
ions deposit high energy and form plasma ions on the surface of
the YIG material. Explosions caused by excess energy concentrate
charged ions in a concentrated location, creating plasma
components outward from the surface. A periodic rogue wave
solution (30) is Akhmediev’s breather. Figures 2C,D show the
result. Undoubtedly, a periodic pattern can concentrate many
ions in periodic confined locations.

Figure 3 displays the two-dimensional rogue wave profile
reflecting the fluctuation of δ1 (iron concentration). Increasing
δ1 decreases the rogue wave profile amplitude. In general,
lowering the amplitude causes wave energy to escape from the
system and prevents the plasma from concentrating charged ions.
In our scenario, increasing δ1 (iron content) wastes energy
through a large number of charged ions. This might lower
pulse amplitude and shorten nanohillocks.

The Peregrine soliton (PS) is a type of solitary wave that can
occur in dispersive nonlinear systems. It is characterized by its
sharp peak and rapid decay, and it is known to be highly
localized in both space and time. PS was first discovered in
the context of water waves, but it has since been shown to exist in
a variety of other systems, including plasma [21]. In the context
of plasma physics, PS is a solution of the nonlinear Schrödinger
equation (NLSE), which describes the propagation of ion-
acoustic waves in a plasma. NLSE is a dispersive equation,

which means that the phase velocity of a wave depends on its
frequency. This dispersion can cause waves to steepen and
eventually break, leading to the formation of rogue waves. PS
is a type of rogue wave that is particularly well-suited for study in
plasma. This is because PS is a localized wave, which means that
it can be isolated from other waves in the system. This isolation
allows for a more detailed study of the PS’s properties, such as its
stability and its interaction with other waves. PS has been
experimentally observed in plasma, and it has also been
studied extensively in simulations [22, 23]. These studies
have shown that PS is a stable wave that can propagate for
long distances without breaking. However, PS is also known to
be very sensitive to perturbations, which can cause it to break. PS
is a fascinating wave that has many potential applications in
plasma physics. For example, it could be used to study the
propagation of ion-acoustic waves in plasma, or it could be
used to develop new methods for controlling plasma waves [24].
PS is also a potential source of rogue waves in plasma, which
could have implications for spacecraft operations and other
applications. As for the question of whether PS is a true
soliton, there is some debate. Solitons are typically defined as
waves that can propagate without distortion for long distances.
PS is a localized wave that can propagate for long distances, but
it is also known to be sensitive to perturbations, which can cause
it to break. This suggests that PS may not be a true soliton in the
strictest sense of the word [25].

Summary

Our study introduces a hydrodynamic fluid model to explain
the production of surface nanohillocks caused by 30-MeV C60

cluster ions hitting YIG. Our study gives a new technique to
describe surface nanohillocks using a plasma collective effect of
charged particles and rogue waves. We are continuing studying
this region and expect to validate the plasma collective impact of
the charged particle generation process. Analytically solving
hydrodynamic multi-ion fluid equations with background
electrons yields a nonlinear Schrödinger equation. Solving the
latter gives us feasible regions for localized ion concentration.
When rogue waves in this location concentrate charged ions in a
very small region, surface nanohillocks occur. As the density
ratio δ1 increases, the rogue wave amplitude decreases due to
energy distribution among charged ions. Thus, nanohillocks
shorten.
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