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Topological data analysis has been acknowledged as one of the most successful
mathematical data analytic methodologies in many fields. Additionally, it has also
been gradually applied in financial time series analysis and proved effective in
exploring the topological features of such data. We select 100 stocks from China’s
markets and construct point cloud data for topological data analysis. We detect
critical dates from the Lp-norms of the persistence landscapes. Our results reveal
the dates are highly consistent with the transition time of somemajor events in the
sample period. We compare the correlations and statistical properties of stocks
before and during the events via complex networks to describe the markets’
situation. The strength and variation of links among stocks are clearly different
during the major events. We also investigate the neighborhood features of stocks
from topological perspectives. This helps identify the important stocks and
explore their situations under each event. Finally, we cluster the stocks based
on the neighborhood features, which exhibit the heterogeneity impact on stocks
of the different events. Our work demonstrates that topological data analysis has
strong applicability in the dynamic correlations of stocks.
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1 Introduction

In recent years, major public events have frequently occurred, and they can easily bring
substantial and negative impacts to the financial markets, leading to dramatic fluctuations in
stock prices. For example, the coronavirus disease 2019 (COVID-19) has swept across the
world, rapidly spreading to more than 200 countries and becoming a global public health and
economic catastrophe [1]. Under such situations, people are more cautious about investing,
resulting in a significant decrease in market liquidity [2]. Tracking the dynamic market
changes and identifying critical information is vital to prevent systemic financial risks.
Various methods and models have been applied to help identify the risks or identify early
warning signals.

Before 2008, the early warning indicator method was one of the most common for
measuring systemic financial risks, being simple, clear, practical, and effective. However, it
only investigates static conditions of financial systems. The risk contagion effect, negative
external characteristics, and system correlations remain unknown under this method [3].
The composite index method significantly compensates for this deficiency, helping to
dynamically reflect the comprehensive situation of the risks of the financial system.
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However, the various indicator levels are all artificially weighted,
which separates the dynamic evolution process and inevitably
generates prediction errors. After the advent of the 2008 global
financial crisis, scholars began to pay more attention to the
correlations and contagions of risks within the financial systems,
and financial risk spillover indices were widely used [4, 5]. The
related models and methods were gradually enriched [6–10].
Recently, multiple models have been commonly used to
comprehensively consider financial risk [11, 12]. However, most
of these studies often use a representative stock index for each
country. For example, the CSI 300 Index is most commonly used in
China. Most studies directly use the stock indices to measure risks
[13, 14]. However, the indices cannot describe the changes in the
stocks’ internal structures more comprehensively and accurately.
The components of the CSI 300 Index are adjusted every 6 months
in principle, and the weights are calculated based on the free float.
Although the weights change dynamically, it is not easy to extract
the internal structure of relatively similar stocks. For example, if two
components of a stock index have exactly the same weighting, and if
the rise of one is exactly as great as that of the other, then the change
in the index is hardly captured. Therefore, we focus on China’s
markets and attempt to identify a new indicator that can accurately
portray the dynamic evolution of financial risks and effectively
capture the risk changes in the financial system under major
events. This indicator can help obtain early warning signals of
systemic risks in China’s stock market.

We apply topological data analysis (TDA) by constructing point
clouds data of stock returns over the past 20 years and calculating Lp-
norms of the persistence landscapes of the data to obtain a new
indicator with a topological perspective. TDA provides an increasing
number of methods to explore topological features of multifarious
data [15, 16], especially for big data. Carlsson [16] systematically
introduces the theoretical basis of simple homology, persistent
homology, and complex shape; among which, the advantage of
persistent homology is that it can accurately describe the whole
picture of the data without dimension reduction and exhibit key
topological features such as the number of clusters and ring
structures in the data. Bubenik [17] adds the concept of
persistent landscapes to provide reasonable quantification of
persistent homology. Furthermore, the construction of the
persistence landscapes toolbox [18] provided important support
for the application. In their investigation of financial markets based
on persistent landscapes, Gidea [19] documents that Lp-norms
display a significant trend during market crashes. Guo et al. [20]
demonstrate that TDA works well in analyzing financial crises. With
the continuous deepening of research, topology is gradually
becoming widely used in financial markets [21, 22]. Therefore,
we conduct TDA on stocks chosen from China’s market to
investigate topological features, especially situations before and
during a major public event. We identify the critical dates when
Lp-norms decline significantly, which indicates an obvious increase
in the stocks’ overall correlations. We then construct complex
networks for individual stocks to provide reasonable explanations
of correlations within the stock market. We derive the neighborhood
norms for each stock and use K-means to cluster the stocks. We also
compare the changes in the classification of individual stocks before
and after the critical dates.

The procedure implemented in this study is illustrated in
Figure 1. We use TDA to analyze the topological features of the
stocks from a new perspective and provide new indicators to capture
the critical changes in the data. We creatively select 30 stocks with
the highest correlations of each stock as its neighborhood(s) and
calculate the Lp-norms of every such clique to investigate the
neighborhood feature(s) of each stock, which can reflect the
position and importance of each stock among the whole. We
consider the norm as a higher-order attribute for each stock and
cluster them accordingly. We then comprehensively analyze the
dynamic evolution of the correlations among stocks in various
industries during major public events.

2 Materials and methods

2.1 Data collection and processing

We focus our research on China’s stockmarkets. First, according
to the latest Standard Industrial Classification (SIC system), we
randomly selected 150 A-share stocks in various industries and
collected the closing prices of Shanghai and Shenzhen A-share
component stocks between 2005/01/01 and 2022/03/31 from the
Wind Financial Database. Considering factors such as long-term
suspension and delisting, we cleaned the data and derived a sample
of 100 stocks to examine their performance in terms of various stock
market indicators during typical major events in the sample period.

There is a small amount of missing data among the daily closing
price series of stocks. We interpolate the closing price and finally
obtain that of 4,189 trading days. We use their daily log returns; that
is, ri(t) = lnPi(t) − lnPi(t − 1), i ∈ 1, 2, . . ., 100, where Pi(t) is the
closing price of the index on trading day t.

We applied the sliding window method to process the data as
follows. For each trading day t, we selected the daily return series
(ri(t − ω + 1), ri(t − ω + 2), . . ., ri(t)) and (rj(t − ω + 1), rj(t − ω + 2),
. . ., rj(t)) for each pair of stocks (i, j) based on the sliding window size
ω (i.e., from trading day t −ω + 1 to trading day t). We then obtained
the corresponding correlation coefficients Ct(i, j) and transformed
into the distance measure dt(i, j) using dt(i, j) �

��������������(2(1 − Ct(i, j)))
√

.

2.2 Background of TDA

2.2.1 Persistent homology
To better understand persistent homology, imagine that we have

a point cloud. Furthermore, suppose there is a parameter that
defines the radius of a ball centered on each data point, and as
the parameter increases, each ball gradually comes into contact with
the other balls. These processes of ball contact enable the emergence
of unique topological features, thus providing a new perspective on
financial time series and other data. TDA is constructed as a filter of
complex shapes while calculating persistent homology with the
point cloud data to sort a certain resolution parameter. It is
characterized by the fact that the data is not only retained in the
original high-dimensional space, but also the number of clusters and
ring structures present is identified, and the whole process does not
require visualization of the data.
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2.2.2 Simplicial complexes
A simplex is defined on a finite vertex set. For example, a k-

simplex is a polyhedron with k + 1 vertices and k + 1 faces.
A simplicial complex K is a set of simplexes and satisfies
the following two conditions: (1) Any face of any simplex in K
still belongs to K. (2) The intersection of any two simplexes
κ1, κ2 in K is either the empty set or one of the common
surfaces of both. The most common simplicial complexes are
Vietoris—Rips, Čech, witness, and Alpha complexes, among
others. We use the Vietoris-Rips complexes because these
approximate the more exact Čech complexes but are more
efficient to calculate [22].

Suppose we have a point cloud A = {x1, x2, . . ., xn} in a
topological space X endowed with a metric d. Denote the ε-ball
of each point x ∈ X by Bε = {y ∈ X: d(y, x) < ε, y ≠ x} for any ε > 0. A
Vietoris–Rips complex VR(A, ε) w.r.t the positive value ε is the
simplicial complex whose vertices set is A and where
{xi0, xi1, . . . , xik} spans a k-simplex if and only if d(xij, xil)< ε for
any 0 ≤ j, l ≤ k. Note that in VR(A, ε), two points xi and xj are
connected when d(xi, xj) < ε. Moreover, it is not difficult to see that a
k-simplex may merge into a new higher dimensional simplex with
the increasing of the value ε. For the concepts of k-simplex and
simplicial complex, please refer to Munkres [23].

2.2.3 Barcodes and persistence diagrams
The persistence barcode is the most direct way to characterize a

complex and quantify its change with the increasing value ε. A barcode
[24] is a graphical representation of a collection of horizontal line
segments {Ij: j ∈ J} in a plane with each interval as the life of a topological
hole, that is, a homology class. For example, an interval Ij= [aj, bj] in a 0-
dim barcode corresponds to a connected component in the complex
with themeaning that the component emerges when ε= aj and vanishes
when ε = bj; an interval in a 1-dim barcode corresponds to an
independent loop in the complex with the endpoints as the value
when the loop emerges and vanishes. However, it is not sufficient to
analyze the shape of the data only by the barcodes; we need other ways
to convert the barcodes to computable properties. A natural
representation of a barcode called a persistence diagram (see Cohen-
Steiner et al. [25]) is the set {(aj, bj): j ∈ J}. Note that each (aj, bj) here is a
2-dim point, where aj and bj are the endpoints of the interval Ij in the
barcode. We can compare and calculate the difference between the
diagrams by bottleneck distance and degree pWasserstein distance (see
Cohen-Steiner et al. [25], Gidea and Katz [19], respectively). They
induce a metric on the space of persistence diagrams.

2.2.4 Persistence landscapes and Lp-norms
To grasp the continual change of the data shapes, persistence

landscapes, and their Lp-norms introduced in Bubenik [17] improve
the method effectively. Applying them to the complexes, we can
observe the shapes’ continual change of the point cloud data.
Furthermore, persistence landscapes maintain robustness as
diagrams under perturbations of the data. Briefly, the persistent
landscapes are the piecewise functions corresponding to any point
(aj, bj) in the persistent graph as follows,

f aj,bj( ) X( ) �
x − aj, aj <x≤

aj + bj
2

;

−x + bj,
aj + bj

2
< x≤ bj;

0, else.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(1)

Then, we define

λk x( ) � kmax f aj,bj( ) X( ): j ∈ J( ), (2)

where kmax denotes the k-th largest element for k ∈ N+. According
to Bubenik [17], a persistence landscape is a sequence of functions
λ1, λ2,/: R → R, and λk is called the k-th persistence landscape
function. The critical points of λk are those values of x at which the
slope changes. The set of critical points of the persistence landscape
λ is the union of the sets of critical points of the functions λk.
Suppose a persistence diagram D = {(1, 9), (2, 8), (4, 12), (5, 7)}, we

FIGURE 1
Flowchart of the procedure implemented. There are two parts. The first part involves data collection, processing, and point cloud construction. The
second concerns TDA-related computations and empirical study.

FIGURE 2
Persistence landscapes of an example, i.e., images of the
functions λ1, λ2, λ3, and λ4 from top to bottom. We calculate them
using Eqs 1, 2. The critical points of the persistence landscape λ �
(λk)k�1,2,3,4 are (1, 0), (9, 0), (5, 4), (2, 0), (8, 0), (5, 3), (4, 0), (12, 0), (8,
4), (6.5, 2.5), (6, 2), (5, 0), (7, 0) and (6, 1).
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then have λk, (k = 1, 2, 3, 4) and present the corresponding broken
lines in Figure 2.

Persistence landscapes form a subset of the Banach space
Lp(N,R). For two persistence landscapes λ � (λk)k∈N+ and
η � (ηk)k∈N+, it is clear that (λ + η)k(x) = λk(x) + ηk(x) and
(c · λ)k(x) = c · λk(x) for all x ∈ R, and k ∈ N. It becomes
a Banach space when the Lp-norms of a persistence landscape
λ � (λk)k∈N+ are defined in the following way for 1 ≤ p ≤ ∞,

‖λ‖p � Σ∞
k�1‖λk‖pp( )1/p, (3)

where ‖λk‖p denotes the Lp-norms of λk, that is, ‖λk‖p � (∫
R
|λk|p)1/p

with respect to the Lebesgue measure. In summary, the Lp-norms are
based on the simplicial complex of high-dimensional point clouds, and
the values are calculated based on distances and the structures of the
point clouds. The smaller the Lp-norms correspond, the closer the
distances. Note that a barcode corresponds to an interval Ij = [aj, bj], and
an interval corresponds to a broken line (i.e., the f(aj,bj) function) in
persistence landscapes. In other words, there are as many barcodes as
there are f(aj,bj) functions. Additionally, the number of λk is always less
than or equal to the number of f(aj,bj) function.

2.3 Background and topological measures of
complex networks

To establish a threshold network, we first construct an adjacency
matrix A = (A(u, v)) based on the distance matrix D = (d(u, v)).
When d(u, v) is less than or equal to a given threshold θ, the
corresponding element A(u, v) = 1 in the adjacency matrix, and then
the vertices u and v are connected by an edge (also called correlated);
otherwise, A(u, v) = 0, and thus there is no edge connecting u and v
directly. Considering the importance of the adjacency matrix, we
present its definition below,

A u, v( ) � 0, dt u, v( )> θ
1, dt u, v( )≤ θ.

{ (4)

Note that the edges in the network have neither direction nor
weight, and we refer to it as a non-directional and unweighted
network. Such a complex network constructed in the above way is
called a threshold network. To observe the features of such networks,
we introduce four topological properties, including degree, density,
clustering coefficient, and average path length.

Suppose the network containsN vertices. The degree of a vertex u is
the number of edges connected to that vertex. The average degree of a
network is the average of degrees for all vertices in the network [26],
referred to as the degree of the network. Denote byM the actual number
of edges. Themaximumpossible number of edges is obviouslyN(N−1)

2 in
the network. Hence, the network density is defined and denoted by

ρ � M
N N−1( )

2

� 2M
N N − 1( ). (5)

Denote by ku the degree of the vertex u, that is, there are ku
vertices connecting the vertex u. Eu is the number of edges between
these ku vertices. The clustering coefficient of vertex u, denoted by Cu,
is then defined in the following way when ku ≥ 2,

Cu � Eu
1
2ku ku − 1( ) �

2Eu

ku ku − 1( ). (6)

When ku is equal to 0 or 1, the clustering coefficientCu of vertex u is
specified as 0. The clustering coefficient of the network is the average
clustering coefficient of all vertices in the network, that is, C � 1

NΣCu.
In the network, the number of edges contained in the shortest

path from the vertex u to the vertex v is referred to as the shortest
path length between u and v, denoted byDuv. The average path length
of the network, denoted by L, is defined as the average of the shortest
path length between each pair of vertices in the network, that is,

L � Σu≥vDuv
1
2N N − 1( ) �

2Σu≥vDuv

N N − 1( ). (7)

By the definitions of the above four topological properties, we
know that the larger they are, the closer the vertices in the network
are connected, except for the average path length. By contrast, for the
average path length of a network, the smaller it is, the more closely
the vertices are connected.

2.4 K-means clustering algorithm and elbow
method

Suppose that data can be divided into K classes (K is known).
The data are a set of n observations, that is, {x1, . . ., xn}. The
observations are divided into K non-intersecting sets {C1, . . ., CK},
and all clusters are concatenated for the whole sample. i ∈ Ck means
that the i-th observation xi belongs to the k-th cluster. We want the
“in-group variation” of each cluster to be as small as possible, and
the mean or center position of cluster k is given by:

ck ≡
1

|Ck| ∑i∈Ck

xi, (8)

where |Ck| denotes the number of observations in cluster k. There
are K means in the sample, so we refer to the algorithm as K-means
clustering. For an observation xi(i ∈ Ck) in cluster k, the deviation
(xi − ck) from the center of the cluster is called the “error.” The sum
of squares of all the errors in cluster k is the sum of squares error
(SSE) of cluster k:

SSEk ≡ ∑
i∈Ck

‖xi − ck‖2, (9)

where ‖xi − ck‖ is the Euclidean distance. The SSE of all clusters is
summed to obtain the SSE of the full sample; the objective is to find a
division C1, . . ., CK for the set of sample subscripts 1, . . ., n that
minimizes the SSE of:

min
C1 ,...,CK

SSE ≡ ∑K
k�1

∑
i∈Ck

‖xi − ck‖2. (10)

Because it is difficult to determine the global minimum solution
to the problem, K-means clustering generally uses an iterative
algorithm to find the local minimum solution. The results
obtained will depend on the initial (random) cluster assignment
of each observation. For this reason, it is important to run
the algorithm multiple times from different random initial
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configurations. Another key issue in using K-means clustering is
how the number of clusters K should be chosen.

The elbow method as a heuristic is a commonly used cluster
analysis method, which helps determine the optimum number K of
clusters. The method can improve the accuracy and reliability of
cluster analysis. The basic principle of the elbow method is to
determine the optimal number of clusters by calculating the sum
of SSE for different numbers of clusters. When the number of
clusters increases, the SSE decreases, but the rate of decrease
slows. When the number of clusters increases to a certain point,
the decrease in SSE slows rapidly, forming an elbow. This elbow is
the key to the K-means elbow rule, which indicates the optimal
number of clusters.

3 TDA-based systemic financial risk
analysis

3.1 Construction of point clouds data and
persistence landscapes

For each trading day t, we consider all stocks as points to
construct the point cloud data and carry out TDA on the
complexes, mainly based on the persistence landscapes. We
consider the 0- and 1-dim barcodes and calculate the Lp-

norms of the persistence landscapes both together. We first
choose the length of the sliding window to obtain reasonable
parameters for subsequent analysis. After comparison, the Lp-
norms clearly exhibit better results with a sliding window
ω = 100.

In Figure 3, we present an overall description of 100 stocks
and want to compare the general indicators with the Lp-norms to
illustrate the significance of using the TDA measure. We plot the
average of 100 stocks’ return series and the average of their
standard deviations in Figures 3A,B, respectively. The standard
deviation, a common method for calculating volatility, measures
the degree of volatility of a particular return series. Thus, the
average standard deviation of the 100 stocks in Figure 3B can
approximately depict the state of our stock market and also
capture the turbulence in the market (manifested as an
increase in the standard deviation).

The L1-and L2-norms of persistence landscapes of the point
cloud data are depicted in Figure 3C. In detail, the norms are based
on the simplicial complex of high-dimensional point clouds, so the
values of the norms are closely related to the distances and the
structures of the point clouds. The smaller the norms correspond,
the closer the distances; that is, the stronger the correlation between
the stocks. We can observe the following phenomenon. Compared
to the norms we obtained, the valleys of the norms are significantly
less than the peaks of the standard deviation. This is because if the

FIGURE 3
Common indicators and corresponding norms series of the 100 stocks over the full sample period. (A) Average daily log returns of 100 stocks. (B)
Average standard deviations of 100 stocks. Our aim is to document the fluctuations of the market approximately. (C) L1- and L2-norms of persistent
landscapes are calculated using both 0- and 1-dim barcodes; the period is from 2005/06/09 to 2022/03/31.
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log return persists at a high level of volatility for a long period, its
corresponding norms are small. Conversely, if the log return is very
high in volatility at a time point or sits at a high level of volatility for a
short period, its corresponding norms are at normal levels. This
illustrates that the norms calculated from the topological perspective
are very robust to outliers.

Obviously, the L1-and L2-norms were low and recovering
from 2005, influenced by the SARS epidemic in 2003. Beginning
at the end of October 2007, the return fluctuated rapidly and
sharply, and the norms hit bottom in 2008 owing to the U.S.
Subprime Lending Crisis along with the Wenchuan earthquake
in China. The standard deviation continued to be at a high level
for a long period of time and the L1-and L2-norms declined
significantly. The link among the stocks became closer, and the
situation was severe. From December 2014 to May 2015, there
was a fast-rising bull market in China’s stock market, during
which the Shanghai and Shenzhen stock indices rose in turn
(the Shanghai Composite Index and Shenzhen Stock Index
accumulated 53.17% and 57.13%, respectively). Subsequently,
the China Securities Regulatory Commission began to rectify
illegal allocation and forced deleveraging in the short term,
leading to a continuous decline in the A-share market. From
June to September, the Shanghai Composite Index cumulatively
declined −42.26% and the Shenzhen Composite Index
declined −48.74%. The standard deviation rose to a record
peak. This, in turn, led to successive plunges in various stock
market-style assets. Hence, China’s 2015 stock market crash led
to an unstable economic situation, and the norms rapidly fell to
record valleys. The connections among stocks became
increasingly close during the crisis period. Since 2018,
China’s stock market has no longer been stable and flat due
to the trade war between China and the U.S. and the COVID-19
pandemic. In general, when major events occur, the average
standard deviation rises gradually. L1-and L2-norms exhibit
obvious drops and are at a low level, indicating that the
structure of the data changes and the connections among
stocks becomes close. Whenever there is a sudden structural
change, our persistence landscapes change. This leads to
changes in Lp-norms. This is especially evident when the
structure shifts to tighter situations. The use of persistence

TABLE 1 Critical dates detected on different values of parameters.

Parameters Critical dates

L1-norm α = 0.9,
β = 0.78

2007/03/08,2008/04/02,2008/04/07,2008/04/28,2008/05/
20,2008/06/10,2008/06/18,2015/08/20,2015/08/28,2015/
11/02,2018/11/07,2018/12/03,2020/02/03,2020/04/01

L1-norm α = 0.88,
β = 0.8

2008/04/02,2008/06/10,2018/12/03,2019/01/07,2020/02/
03,2020/04/01,2022/03/29

L2-norm α = 0.93,
β = 0.86

2008/04/02,2008/06/10,2018/12/03,2020/02/03,2020/04/
01,2022/03/29

L2-norm α = 0.95,
β = 0.85

2007/03/08,2008/02/26,2008/04/02,2008/04/07,2008/04/
28,2008/05/20,2008/06/10,2008/06/18,2015/06/30,2015/

0727,2015/08/20,2015/08/28,2015/11/02,2015/11/
05,2018/11/07,2018/12/03,2020/02/03,2020/02/05,2020/

04/01

FIGURE 4
Persistent landscapes on 2008/01/16, 2008/04/02, 2019/11/14,
and 2020/02/03 from (A–D), respectively. The figures contain many
f(aj ,bj ) functions (i.e., triangles). The triangles with left vertices starting
from 0 are calculated from 0-dim barcodes, and the others are
from 1-dim barcodes. (A) Persistance landscapes on 2008/01/16.
There are 132 f(aj, bj) functions. (B) Persistance landscapes on 2008/04/
02. There are 94 f(aj, bj) functions. (C) Persistance landscapes on 2019/
11/14. There are 97 f(aj, bj) functions. (D) Persistance landscapes on
2020/02/03. There are 81 f(aj, bj) functions.
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landscapes and Lp-norms as barometers of shocks enables
timely information to be detected.

3.2 Critical dates detection and analysis

We want to extract the feature of the returns using the
aforementioned data processing method. Guo et al. [20] used
TDA and detected the early warning signal of the 2008 crisis in
the first half of 2007. The TDA model provides a better definition of
market signals, especially during financial meltdown cycles [21]. The
trend of the L1-norms is similar to that of L2-norms, but the L1-
norms change more frequently. We predict that using the L1-norms
can detect more critical dates than the L2-norms with the same other
parameters and validate it through multiple tests.

We built a system to detect dates with sharp changes in point
cloud data by referring to Guo et al. [20]. For every trading day t, we
calculated and denoted by N(t) the Lp-norms of the persistence
landscape of the complex (we calculated the Lp-norms of trading
day t based on the sliding window from the point cloud data of
trading day t − ω + 1 to trading day t), and by A(t) the Lp-norms’
mean value of m consecutive trading days before day t. If the
following two conditions are satisfied, we take trading day t as
the critical date for a financial crisis or risk: i) The ratio N(t)/
N(t − 1) ≤ α for a fixed α < 1. ii) The ratioN(t)/A(t) ≤ β for a fixed β <
1. For simplicity, let m = 100.

The first condition indicates the presence of risk on trading
day t, whereas the second ensures that it is a true crisis-critical date.
It is possible to identify multiple dates, which indicate significant
stock market shocks, but some may be only brief declines caused by
coincidental events that are not representative. Under the L1-and L2-
norms, some of the critical dates detected for the parameters at
different values are list in Table 1.

From Table 1, the highest number of critical dates were detected
for 2007–2008, with 2008/04/02 and 2008/06/10 appearing most
frequently, followed by critical dates detected under different
combinations of parameters for 2015 (2015/08/20, 2015/08/28,
and 2015/11/02). The critical date in 2018 is 2018/12/03, those in
2020 are 2020/02/03 and 2020/04/01, and for 2022 is 2022/03/29.
Considering that some events last longer and even had multiple

rounds of shocks, we used the first identified dates in the critical
years as representative critical dates for comparability: 2008/04/02,
2015/08/20, 2018/12/03, 2020/02/03,4 and 2022/03/29.

We use the same method to obtain the log return of the CSI
300 Index. Using the financial crisis-critical date detection system
for its log returns, there are many sudden change dates, and it does
not focus on identifying the real crisis-critical dates. In contrast, the
norm series can better focus on and capture the critical dates of a real
crisis, so it will be more effective to use this to perform region
transformation in the future.

We analyze the stocks’ relevance for all critical dates and the
50th days before. To save space, Figure 4A–D present only the
persistent landscapes composed of point clouds before and at the
time of two major events, depicting the evolution of data shapes
before and during each critical date. Two endpoints of the
intersection of each layer with the horizontal axis correspond to
the left and right endpoints of each interval of the 1-dim barcode,
respectively. The highest layer corresponds to the longest interval of
the barcode. The comparison indicates different degrees of change in
persistent landscapes before and after the first outbreak of the two
events. Those in Figure 4B tend to become smaller in most triangles
compared with those in Figure 4A; that is, the norms are
significantly lower. Compared to Figure 4C, the persistent
landscapes in Figure 4D exhibit a significant decrease in the
highest layer, and the right side of the triangle is no longer
concentrated in 0.6–1.1 but is more scattered in 0.4–1, thus
limiting the total area of the inner layers to decrease. This
reflects the decrease in the norm. Moreover, pre-crisis to crisis
norms decrease more. We obtain good evidence that the stock
market links strengthen when a crisis occurs.

We plotted threshold networks for each of the five pairs of
critical dates identified. To obtain a reasonably uniform threshold θ,
we calculated and compared the degrees of networks of the
10 aforementioned dates, and separately differed the degrees of
networks of the critical dates from their corresponding previous
50th days. When θ = 1.1, the average difference of the network
average degrees for the five pairs of critical dates reaches the
maximum level. The comparison of the topological indicators of
the return threshold network is presented in Table 2. Our stock
market moved the most during the financial crisis triggered by the

TABLE 2 The comparison of the topological indicators of the return threshold network.

Date Degree Density Clustering coefficient Average path length

2008/01/16 26.58 0.268 0.61 1.85

2008/04/02 87.52 0.884 0.945 1.098

2015/06/10 41.68 0.421 0.749 1.602

2015/08/20 82.88 0.837 0.931 1.146

2018/09/14 45.96 0.464 0.800 1.580

2018/12/03 75.90 0.767 0.891 1.234

2019/11/14 35.12 0.355 0.748 1.777

2020/02/03 60.76 0.614 0.84 1.447

2022/01/11 6.32 0.064 0.550 3.541

2022/03/29 27.64 0.279 0.679 1.931
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U.S. Subprime Lending Crisis in 2008 and the stock market crash in
2015, followed by the trade war between China and the U.S. in
2018 and the COVID-19 pandemic in 2020 and 2022. Before and
after the U.S. Subprime Lending Crisis in 2008 and the stock market
crash in 2015, the degree of the network increased from 26.58 to
41.68 to 87.52 and 82.88, the network density increased from
0.268 to 0.421 to 0.884 and 0.837, the clustering coefficient of the
network changed from 0.61 to 0.749 to 0.945 and 0.931, and the
average path length of the network from 1.85 to 1.602 to 1.098 and
1.146, respectively. Hence, the connection between stocks became
stronger. The return threshold networks for 2015/06/10 and 2015/
08/20 are presented in Figure 5. The number of connected edges in

the network increases significantly before and after the event,
indicating that the stock market is closely linked under major
event shocks. This result is consistent with previous findings.

The correlation coefficients and corresponding frequent dynamic
distribution, calculated from the daily log returns with a rolling window
of 100 trading days, are illustrated in Figure 6. The correlation
coefficients among stocks at normal times are mostly distributed in
the interval of −0.25 to 0.50, and the corresponding probability
distributions are between 0 and 0.1, which are approximately
normal. This indicates that the correlations among stocks are not
significant, and the clustering effect is not obvious. However, the peaks
of the cross-sectional graphs of the frequency distribution of
correlation coefficients in 2008 and 2015 are higher. Therefore, we
think the correlation coefficients among stocks generally tend to rise
and cluster during a sudden event. The changes in 2018 and 2020 are
smaller than the previous two systemic risks, confirming that
differences exist in the degree of impact of each major event on
China. The following section analyzes the evolution of heterogeneity
in the structure of the stock market under different events using the
higher-order characteristics of stocks (i.e., neighborhoods).

4 Comparison and mechanisms of
neighborhood norms before and
during the events

4.1 Overall neighborhood norms and their
applications

After obtaining the distance between stocks in the overall sample
interval, we first select the 30 stocks with the closest distance in the
neighborhood for each stock to construct new 31 × 31 distance
matrices Di,total. The subscript i = 1, . . ., 100 represents one stock,
and total represents the distance matrix we used for the full sample
interval. Second, we consider 31 stocks as points to construct the

FIGURE 5
Comparison of the return networks for 2015/06/10 and 2015/08/
20. For example, in 2015, we find a significant increase in the number
of connected edges in the network when an event occurs. (A) Return
network on 2015/06/10. (B) Return network on 2015/08/20.

FIGURE 6
Correlation coefficients and corresponding frequent dynamic
distribution of 100 stocks. The lateral axis represents time, the
longitudinal axis represents the correlation coefficient values, and the
vertical axis represents the frequency of the correlation
coefficients appearing in a certain interval at a specific time point.
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point cloud data and conduct TDA on the complexes, mainly based
on the persistence landscapes. Finally, we use the same method to
calculate the Lp-norms of the persistence landscapes, called
neighborhood norms. To explore the dynamic evolution of the
stock market structure before and during the event, after
determining the number of clusters using the elbow method, we
performed a cluster analysis using the K-means on the
neighborhood norms. The elbow plot of the neighborhood norms
during the full-time interval is illustrated in Figure 7. When the
number of clusters gradually increases from one to four, the SSE
decreases in a decreasing trend with a larger magnitude, and when
the number of clusters continues to increase from four to five or
more, the decrease in SSE becomes small. Using the elbow method,
we selected the elbow corner of SSE in figure K = 4 for the number of
clusters. Therefore, we obtained the Lp-norms contained in each
category, denoted Lpij-norms. The subscript j = 1, . . ., 4 denotes the
category of clustering from the smallest to the largest based on the
norms. To quantify the changes in the norms, let p = 1, that is, the L1-
norms are considered as an example in the following.

The industry segmentation is determined by the main business of
the listed company, which in turn influences the price through
fundamental factors; therefore, so the volatility of stock prices in
the same industry is more similar. Therefore, according to the
latest SIC, we conduct in-depth research on 100 stocks by industry.
Owing to the large number of industries involved, we represent them

by industry codes1. We can draw the following conclusions from
Table 3. In general, the distribution of stocks inmost industries is more
uniform and scattered, and the owning industries of several mass
organizations, including stock structures, are rich. This is due to the
influence of financial market psychology, such as the herd effect and
market expectations, which are benign and reflect the normal
characteristics of China’s stock markets. The first category is closely
related to other stocks; it basically covers the representative stocks in
each industry, such as wholesale and retail. Financial sector stocks are
distributed in the second and third categories, which indicates that
most are at the midstream level with surrounding connections because
these play a role in stabilizing the stock markets. The manufacturing
industry and so on dominate in all categories.

4.2 Stock correlation changes around
critical dates and their mechanisms

Whether it is a complementary or a collaborative relationship,
there are certain connections between industries. We want to
provide a more accurate characterization of how the industry is
changing and influenced by major events. Therefore, we use each of
the aforementioned critical dates and the 50th day before them as
the scope for the industry analysis. We then apply TDA to calculate
the neighborhood norms separately for all stocks on a day t and use
the K-means to cluster the norms, respectively. According to each
elbow graph, K = 4 is always the optimal cluster number, and finally
obtain the neighborhood norms Lpij,t of each category under critical
dates. The subscript t = 1, . . ., 10 denotes the dates in order.

We present the changes in the neighborhood norms for the
100 stocks for each pair of dates in Figure 8. Although the L1-norms
before and during events are different, they generally display a
synchronous trend, that is, the neighborhood norms before events
are always greater than those during events. This illustrates that
when the event occurs, each stock is influenced by other stocks in all
industries. It is more consistent with the norms of the overall sample
interval, which indicates that there is risk linkage among stocks in
various industries, and also demonstrates the stability and
applicability of the norms and categorization.

We use K-means to cluster the neighborhood norms before and
during events (Tables 4, 5, respectively). There are some industries
where stocks are distributed and dispersed, both before and during
events. For example, the manufacturing industry is in almost every
category. This illustrates that China’s stocks in the manufacturing
industry are in a relatively stable state before and during events.
There are also some industries whose stocks have relatively
significant changes in their distribution. For example, the mining
and real estate industries have large changes in their categories in
response to different shocks; that is, there is an increase in
correlation of different magnitudes.

FIGURE 7
Elbow plot of the neighborhood norms for the overall sample
interval. The lateral axis represents the number of clusters K, and the
vertical axis represents the sum of squared errors (SSE) of the full
sample. The bend in the line, the point where the SSE descent
becomes slower, is evident.

TABLE 3 The categorization of neighborhood norms and industry distribution
of the full sample.

Each category L
ij
p Industry codes (From large to small in

proportion)

Category 1 C, A, B, F, I, D, G, H, K

Category 2 J, C, G, N, K, D, B, F, I

Category 3 C,J, B, G, K, D, I, A

Category 4 C, D

1 Farming, forestry, animal husbandry, and fishery industry-A, mining
industry-B, manufacturing industry-C, electrical, heat, gas, and water
production and supply-D, wholesale and retail trade-F, transportation,
warehousing, and postal services-G, hotel and catering sectors-H,
information transmission, software, and information technology
services-I, finance-J, real estate-K, water conservancy, environment,
and public facilities management industry-N.
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In 2008, the Subprime Lending Crisis caused significant changes
in the stock markets. The stock correlation of building materials and
furniture industries strengthened, indicating that the crisis had a
very severe impact on export-dependent industries. There is also a
significant increase in stock correlations in the mining industry. The
crash in China’s stock markets in 2015 led to a significant increase in
stock correlations in the farming, forestry, animal husbandry, and
fishery industry and wholesale and retail trade, and so on. In 2018,

industries were affected by the trade war between China and the
U.S.; the changes in correlations are more consistent, and a few
stocks have smaller changes. The COVID-19 pandemic in 2020 has
dealt an irretrievable blow to the global real economy. Electrical,
heat, gas, water production and supply industry, and so on. are
mainly located in the first two categories, and wholesale and retail
trade are mainly located in the first category; the correlation of all of
them has increased significantly. In 2022, the COVID-19 outbreak

FIGURE 8
Comparison of neighborhood norms before and during events from (A–E), respectively. (A)Neighborhood norms of 100 stocks on 2008/01/16 and
2008/04/02. (B) Neighborhood norms of 100 stocks on 2015/06/10 and 2015/08/20. (C) Neighborhood norms of 100 stocks on 2018/09/14 and 2018/
12/03. (D) Neighborhood norms of 100 stocks on 2019/11/14 and 2020/02/03. (E) Neighborhood norms of 100 stocks on 2022/01/11 and 2022/03/29.
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was concentrated in Shanghai. The correlation between stocks in the
electrician, heat, gas, and water production and supply industry and
the real estate industry all increased significantly.

5 Conclusion

We use TDA and K-means to examine the variation in China’s
stocks under major events. The main conclusions are as follows. First,
according to the TDA and norms, when the financial crisis occurred,
stocks were closely linked. During a major public event, the norms are
obviously at a lower level, which reveals the strong correlations among
the stocks. The norms can reasonably and effectively depict the
volatility of the stock markets and accurately identify critical
information. Second, the threshold network and its topological
measures indicate that, with the arrival of the financial crisis, the
correlation among sample stocks became increasingly close in the
short term, but the heterogeneity of systemic risks caused by major
events led to different changes in the degree of correlation between
stock returns. Third, before an event, stocks in most industries were
evenly distributed, and those in each community structure belonged
to various industries. During an event, the stocks of each industry had
a greater impact on the other stocks. Consistency and agglomeration
reveal a risk linkage between the stocks of each industry. The impact of
an event is systematic, with rapid risk and complex transmission
paths. From another perspective, different industries were affected by
different events with different direct and indirect impacts. When we
examine some asset-specific issues or different countries’ stock
markets, their persistence landscapes and norms change with the
structure of stock prices, thus identifying the critical dates. Our
methodology is generalizable and can be extended to other
countries, where information about changes in other countries is

closely linked to major events in their countries, and also to identify
mutation dates and thus investigate market changes.

Based on our results, we propose the following suggestions. First,
strengthen the target of financial coordination regulation.
Furthermore, various industries should be divided into multiple
levels of policy assistance and supervision according to the degree
of correlation and the strength of impact to improve the efficiency of
resource allocation in the vulnerable period of the financial markets.
Second, the double effects of supply and demand have a profound
effect on each industry, particularly when major events occur. The
interdependence of each industry’s economy is evident, and a chain
reaction is in effect. Therefore, we must provide risk protection for
enterprises while simultaneously improving the efficiency of capital
use and the fiscal deficit ratio to ensure sustainable financial
development. We also believe that our methods have a guiding
role in capturing market variability. In addition, as the world’s
second-largest economy, frequent changes in China’s stock market
are bound to affect other economic markets, even the global economy.
We aim to conduct a deeper study on the stock markets, financial
markets, and even the macroeconomy by adding more stock data,
indicators, or statistical information and continue to expand the scope
of research to explore the changes in global stock markets, financial
markets, and even themacroeconomy. In future research, the use of Lp

distance metrics matrix [27] can be attempted to classify and evaluate
crises and risks based on TDA and machine learning to realize risk
warning more effectively.
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TABLE 4 Comparison and industry distribution of neighborhood norms before events.

Date
Category

1 2 3 4

2008/01/16 C,G,I,D,A C,K,B,D,J,N,A,G,F J,C,G,B,D,A,K,H,I,F C,J,F,G,I,D,B,K

2015/06/10 J,D,C,B,K,G,N C,G,F,A,B,D,K,N C,I,B,G,K,A I,H,C,J

2018/09/14 C,J,B,K,I,G,D,N,F,H C,G,I,K,B,F,D,A C,A,G,J,D C,G

2019/11/14 C,J,D,K,B,F,G,H,I C,G,J,I,K,N,A,F C,G,B,A C,D,A,G,B,J

2022/01/11 J,C,K,B,N,D G,C,D,J,B,A,K,H,I,F C,B,G,K,F,N,A,I,J C,I,D,G,A,B,F

TABLE 5 Comparison and industry distribution of neighborhood norms during events.

Date
Category

1 2 3 4

2008/04/02 C,G,I,D,F,B C,A,N,I,D,B,J,K,H,G J,K,C,G,A,B,D J,C,F,D

2015/08/20 C,G,K,F,D,B,A,I,J C,G,A,D,B,N,F,I J,C,K,D,I,B,G,H J

2018/12/03 C,J,B,D,K,F,H,G,A,I G,C,J,I,N,F,D,A,K,B C,J,I,K,B,A C,G,A,B,K,D

2020/02/03 C,J,K,F,D,B,G,N,H,A G,C,J,D,I,A,B,K C,I,B,A,J C

2022/03/29 J,C,K,B,D,G G,D,C,I,J,B,N,H,K C,F,I,B,A,N C,G,A,J
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