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Model predictive control (MPC) is a cutting-edge control technique, but its
susceptibility to inaccuracies in the model remains a challenge for embedded
systems. In this study, we propose a data-driven MPC framework to address this
issue and achieve robust and adaptable performance. Our framework involves
systematically identifying system dynamics and learning the MPC policy through
function approximations. Specifically, we introduce a system identification
method based on the Deep neural network (DNN) and integrate it with MPC.
The function approximation capability of DNN enables the controller to learn the
nonlinear dynamics of the system then the MPC policy is established based on the
identified model. Also, through an added control term the robustness and
convergence of the closed-loop system are guaranteed. Then the governing
equation of a non-local strain gradient (NSG) nano-beam is presented. Finally, the
proposed control scheme is used for vibration suppression in the NSG nano-
beam. To validate the effectiveness of our approach, the controller is applied to
the unknown system, meaning that solely during the training phase of the neural
state-space-based model we relied on the data extracted from the time history of
the beam’s deflection. The simulation results conclusively demonstrate the
remarkable performance of our proposed approach in effectively suppressing
vibrations.
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1 Introduction

Neural networks have brought about substantial changes in the handling of nonlinear
systems, holding immense potential to revolutionize the control field. Their unique ability to
model and interpret complex, high-dimensional dynamics positions them as key
contributors in areas where traditional mathematical models typically face challenges [1,
2]. State-space models based on neural networks are capable of mapping the intricate
relationships between the inputs, outputs, and internal states of nonlinear systems, using
their capacity to approximate any continuous function [3, 4]. They utilize past and current
data, learning the nonlinear dynamics, to predict the future states of a system based on the
present state and control inputs.

MPC is a highly effective control approach widely employed in diverse engineering
domains to achieve superior control performance compared to conventional methods [5, 6].
By utilizing a predictive model of the system, MPC optimizes control actions over a finite
time horizon. MPC enables the consideration of future system behavior and constraints,
allowing for more precise and robust control actions [7, 8]. Hence, to now, MPC has been
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widely used in various engineering domains to achieve superior
control performance compared to conventional methods [9–12].

Nanostructures, including nano-beams, have generated
considerable attention across a range of disciplines due to their
superior mechanical attributes and the profound potential they
possess for advancements in nanotechnology applications. Up to
this point, an expansive corpus of research has been established
within this particular field of study. Undeniably, it is of utmost
importance to sustain these scholarly pursuits. Doing so will not
only enhance our comprehension but will also enable us to leverage
these findings more effectively for the greater benefit. For example,
the study by Ohashi et al. [13] underscores the necessity for the
stable delivery of nano-beams in facilitating advanced nanoscale
analyses. However, the diminutive dimensions of these structures
pose unique challenges pertaining to their dynamic behavior,
notably when exposed to vibrational forces [14, 15].

Given the escalating demand for nanotechnology across diverse
sectors, frommedicine to information technology, it is clear that this
area of research requires continued exploration and development
[16–18]. However, the miniaturized scale of these structures brings
forth distinct challenges related to their dynamic behavior, especially
when exposed to vibrations. Consequently, the study and control of
nano-beams have emerged as an integral field of study, aiming to
ensure the reliability and operational efficacy of nano-devices. This
focus is evident in the comprehensive review by Roudbari et al. [19],
which emphasizes the significance of size-dependent continuum
mechanics models for micro and nano-structures. Similarly, the
research by Miandoab et al. [20] offers a nonlocal and strain
gradient-based model for electrostatically actuated silicon nano-
beams, thereby addressing specific control issues inherent in such
structures.

Sliding mode controllers [21, 22] and other robust controllers
[23] have been extensively investigated and suggested for nano and
microsystems. However, when it comes to control in nano and
microsystems, the application of MPC has not been adequately
proposed. The main reason behind this limitation is the substantial
amount of uncertainties present in these systems. Unlike other
control methods, MPC relies on having an accurate model of the
system, which is practically impossible to obtain in real-world nano
and microsystems. Therefore, despite the potential advantages of
MPC, its practical implementation in this domain remains
unfeasible. As researchers continue to explore novel control
approaches, finding ways to overcome these challenges and
devise MPC strategies for nano and microsystems will be essential.

The quest for optimally controlling nonlinear and uncertain
systems is a formidable challenge in modern control theory, where
traditional methods like MPC and robust control present significant
advantages but also face limitations. MPC’s high computational
costs and reliance on accurate system models make it less suited for
real-time applications and systems with complex, uncertain
dynamics. On the other hand, robust control handles
uncertainties [24, 25] but often leads to suboptimal performance
and does not directly account for state and control constraints. For
example, in [26], MPC was suggested as a method for atomic force
microscopy. However, this control strategy relies on the assumption
that a complete and perfectly accurate system model is available,
which is often not a reality in actual practice due to the
unpredictability and complexity inherent in real-world scenarios.

In practice, obtaining a fully accurate model of the system is
challenging due to inherent uncertainties and practical limitations.
Thus, the assumptions made in the design of the controller do not
hold true in practical applications. This emphasizes the need to
develop control strategies that can effectively handle the
uncertainties and limitations present in nano and microsystems
without relying on perfect system models.

Recently, data-driven methods, as presented in studies such as
[27–29] promise a more efficient and adaptive approach. These
methods leverage machine learning to learn system dynamics and
control policies, reduce the computational burden, and adapt to
system changes. For instance, Li and Tong [30] applied an encoder-
decoder neural network model for developing an MPC. Their focus
was on the efficient control of an HVAC system, and their results
showcased promising convergence. Also, in a more recent study,
Bonassi et al. [31] offered a comprehensive discussion on the
integration and evaluation of various recurrent neural network
structures within the framework of MPC.

Despite the aforementioned advancements, some problems
persist in the majority of studies within this field. Most notably,
there is a consistent lack of guaranteed convergence and stability,
which presents significant challenges for the advancement of
machine learning-based MPC solutions. Hence, more research is
needed to refine data-driven approaches for optimal control of
nonlinear and uncertain systems, focusing on their performance,
computational efficiency, robustness, convergence, generalizability,
and data requirements. This challenge has served as a significant
motivation for our current study. Recognizing the limitations of
existing control techniques, particularly in the context of nano and
microsystems, we are driven to explore innovative approaches that
can overcome the hurdles associated with uncertainties in these
systems. Through our study, we aspire to pave the way for practical
implementation and real-world applications of advanced control
methods in the realm of nano and microsystems.

We propose a neural state space-based model predictive control
by integration of DNN with MPC. DNNs have the remarkable
ability to learn complex patterns and capture intricate relationships
from data [32, 33]. Therefore, we utilize Deep Neural Networks
(DNNs) as neural state space models for the systems. Through
training on accessible data, DNNs can construct nonlinear models
that effectively approximate the system’s behavior, even when
uncertainties and disturbances are present. This provides a
valuable advantage when dealing with nano-beam vibrations,
where comprehensive knowledge of the system’s dynamics may
be elusive. The integration of DNNs with MPC enables the
development of an intelligent control framework that effectively
compensates for the limitations ofMPC and suppresses vibrations in
NSG nano-beams. In this study, we enhance the control strategy by
integrating an additional control term, ensuring the robustness of
the controller and promoting the convergence of the closed-loop
system to the desired value. This synergistic combination of DNNs
and MPC acts as a corrective component, elevating the stability and
performance of the control system.

The structure of this paper is as follows: Section 2 offers a
comprehensive introduction to the fundamental concepts and
principles, setting the groundwork for our proposed framework.
Subsequently, we present and validate our framework in subsequent
sections. Section 3 focuses on the governing equations of the NSG
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nano-beam, taking into account its unique characteristics. In Section
4, we apply the proposed controller to the nano-beam and
thoroughly investigate its performance through simulations.
Finally, in Section 5, we present the concluding remarks
summarizing the key findings and suggest areas for further
improvements.

2 The proposed control scheme

In this section, we present some preliminaries and our control
approach. Firstly, in Section 2.1 we describe the methodology used
to construct a neural state-space-based model that captures the
dynamics of the system accurately. Subsequently, in Section 2.2, we
delineate the MPC policy employed in our framework. We outline
the optimization problem formulation and the steps involved in
generating control actions over a finite time horizon. Furthermore,
in Section 2.3, we introduce the robustness term that is added to
enhance the controller’s stability and performance. Additionally, we
depict the control scheme, illustrating how the neural state-space-
based MPC policy and robustness term are integrated to form a
cohesive control framework.

2.1 Neural state-space models

Neural state-space models encompass a category of models that
employ neural networks to depict the functions that define the
nonlinear state-space representation of a system. In traditional
control theory, state-space models are used to describe the
behavior of dynamic systems by representing the relationship
between the system’s inputs, outputs, and internal states. Suppose
a general state-space form with the following mathematical
representation. The mathematical form of the system is given by

_x t( ) � fc x t( )( ) + hc x t( )( )u t( ) (1)
where x ∈ Rn is the state vector, and the input vector is represented
by u ∈ Rm. Also, fc and hc are two static non-linear mappings. The
discrete-time formulation is given by

x k + 1( ) � f x k( )( ) + h x k( )( )u k( ) (2)
in linear systems, these equations are typically represented by linear
functions.

Assumption 1. The system dynamics functions f(x) and h(x)
are assumed to be Lipschitz continuous, indicating that there exists a
Lipschitz constant that governs the behavior of f(x) and h(x) as
follows

‖ f �x k( )( ) + h �x k( )( )�u k( ) − f x k( )( ) + h x k( )( )u k( ) ‖ ≤ εx ‖ �x − x

‖ +εu ‖ �u − u ‖
(3)

in which εx, εu ≥ 0 are constants values.
However, in many real-world scenarios, systems exhibit

nonlinear behavior that cannot be accurately captured by linear
models. Neural networks offer a powerful framework for
representing and learning nonlinear relationships [34] making
them well-suited for constructing state-space models for such

systems. Here, we introduce a neural state-space model, where
the state equation is represented by neural networks. The neural
network represents the function that describes the behavior of the
system’s states, although here we used DNN, these networks can be
designed as recurrent neural networks (such as LSTM or GRU), or
other types of architectures depending on the characteristics of the
system being modeled.

The DNN in the neural state-space model is trained using data
from the system. This training involves optimizing the network
parameters to minimize the discrepancy between the model’s
predictions and the observed behavior of the system. Various
techniques, such as gradient descent or backpropagation, can be
employed for this purpose. Once trained, the neural state-space
model is used to simulate the behavior of the system, estimate its
internal states based on available inputs and outputs, and predict
future system responses. The mathematical form of the learned state
space is given by

x̂ k + 1( ) � f̂ x̂ k( )( ) + ĥ x̂ k( )( )u k( ) (4)
where the variables x̂(k) and u(k) correspond to the baseline state
and control input, respectively, for the baseline model. The function
f̂(x̂(k)) represents the baseline model dynamics (here is the neural
network).

It is noteworthy that the learned state space model as
represented in Eq. 4 can be backpropagated, and its derivatives
are computable through the application of automatic differentiation.
Here we assume f̂ and ĥ satisfy the conditions of Lipschitz
continuity and general continuity. This assumption of Lipschitz
continuity and general continuity for the dynamic functions is
widely recognized in the field. The current study also
acknowledges and incorporates this fundamental premise.

2.2 Nonlinear MPC for the baseline model

By data-driven NMPC we refer to establishing MPC policies
based on the learned neural state space-based model.

The cost function of MPC associated with the neural state space
model 4) is defined as follows

JN � ∑N−1

k�0
Q x̂ k( ), u k( )( ) + T x̂ N( )( ), (5)

The cost function for plant 1) is determined by considering
several factors. It incorporates the stage cost, represented by
Q(x̂(k), u(k)), which takes into account the current state x and
control input u at each stage. Additionally, there is a terminal cost
component denoted by T(x̂(N)), which captures the cost associated
with the final state. In the current study, the terminal cost was not
applied, despite its mention within the theoretical formulations. This
was intended to preserve the generality of the presentation. Also,
The cost function is defined over a prediction horizon N,
encompassing the control inputs u(0, 1, . . . , N − 1), state
variables x̂(0, 1, . . . , N). Eq. 5 illustrates the system in its general
form; however, the controller proposed in this study has been
specifically designed for affine systems. By employing the baseline
model 4) and initiating from an initial state x̂(0) � x̂0, the data-
driven NMPC is introduced. This approach aims to minimize the
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cost function 5) with respect to the baseline model 4) which ius
given by

x̂o, uo( ) � argmin
�x,�u

JN x̂, u( )
s.t. x̂ k + 1( ) � f̂ x̂ k( )( ) + ĥ x̂ k( )( )u k( )

x̂ 0( ) � x̂0.

(6)

the augmented cost function, denoted as J, expands the original cost
function 5) to include the constraints and Lagrange multipliers. It is
obtained by integrating the Hamiltonian function across the
prediction horizon N. Therefore, the augmented cost function
can be expressed as:

C k( ) � Q x̂ k( ), u k( )( ) + λT k + 1( ) f̂ x̂ k( )( ) + ĥ x̂ k( )( )u k( )[ ]
�JN � ∑N−1

k�0
C k( ) − λT k + 1( )x̂ k + 1( )( ) + T x̂ N( )( ), (7)

In this context, λ(k + 1) represents the Lagrange multiplier
associated with the dynamics of the baseline model 4). It is
worth noting that these Lagrange multipliers, also known as co-
states, play a significant role. By solving the NMPC problem (Eq. 6),
we obtain the optimal trajectories for the baseline denoted as x̂o(k)
and uo(k). During this optimization process, the Karush-Kuhn-
Tucker (KKT) conditions are employed to derive the necessary
optimality conditions, ensuring that the augmented cost function 7)
is effectively minimized. These optimality conditions can be
expressed as follows:

Cu k( ) � 0, k � 0, 1, . . . , N − 1 (8 − a)
λ k( ) � Cx̂ k( ), k � 0, 1, . . . , N − 1 (8 − b)

λ N( ) � Tx̂ x̂ N( )( ), k � 0, 1, . . . , N − 1 (8 − c)
By utilizing the KKT conditions and the Lagrange multipliers

λ(k + 1) as well as the baseline optimal solution x̂o(k) and uo(k) can
be computed online. Taking into account the KKT conditions, we
have the following expressions:

C�u k( ) � Q�u x̂o k( ), uo k( )( ) + λT k + 1( )
f̂u xo k( )( ) + ĥu x̂o k( )( )uo k( )[ ] � 0 (9 − a)

λ k( ) � Qx̂ x̂o k( ), uo k( )( ) + λT k + 1( ) f̂x̂ xo k( )( ) + ĥx̂ x̂o k( )( )uo k( )[ ],
(9 − b)

λ N( ) � Tx̂ x̂o N( )( ). (9 − c)
By considering Eqs 8, 9, the Lagrange multipliers λ(k + 1) can be

obtained through the following calculations:

λ k + 1( ) � Qx̂ k( ) + λT k + 1( )f̂x̂ k( ), (10)
Additionally, the Lagrange multipliers (10) are considered

to be the baseline optimal Lagrange multipliers denoted as
λo(k).

Consider the scenario involving system 1), baseline model 4),
and data-driven NMPC 6). The data-driven NMPC yields an
optimal solution denoted by x̂o(k) and uo(k), which serves as
the baseline solution. However, due to an error between the real
systems and the baseline systems a perturbation ~N(x, t)may arise as
a result. If this perturbation does not affect the status of the
constraints, the optimal solution for system 1) can be adjusted as
u � uδ(k) + uo(k). The focus now lies on devising a robust NMPC
framework capable of effectively addressing the challenges arising

from unknown bounded disturbances and errors in the neural state
space model. This objective is explicitly articulated in the
following part.

2.3 Robust NMPC with guaranteed
convergence

We define the error of the system as e � x − xd, where xd

represents the desired reference trajectory. The robust control
tracking control law can be expressed as follows:

uδ � − ur

ĥ x( ) � − ur

h x( ) + ~M
ur � f̂c x̂ t( )( ) + _xd + δe + μ sign e( ) (11)
~M � ĥ x( ) − h x( )

Here, δ and μ are user-defined parameters that need to be
positive.

Theorem 1. Assuming that the compound uncertainty remains
within established boundaries, the proposed control law, as described in
Eq. 12, in conjunction with the MPC defined in Eq. 6 and derived from
the neural state-space model in Eq. 4 handles residual errors in the
tracking control, and guarantees the convergence of the states in the
state-space model 1) towards the desired values.

Proof. Suppose that the error arising from the estimation of
the system’s dynamics and the error in the baseline initial
condition can be combined into a single term denoted as
~N � fc(x) + hc(x)uo − f̂(x̂) + ĥ(x̂)uo. By substituting Eq. 11
and Eq. 1 in the time derivative of the defined error, we achieve:

_e � _x − _xd � fc x t( )( ) + hc x t( )( )u t( ) − _yd

� fc x t( )( ) + hc x t( )( ) uδ + uo( ) − _xd

� fc x t( )( ) + hc x t( )( )uδ + f̂ x̂( ) + ĥ x̂( )uo + ~N − _xd (12)

Now due to the optimality of uo we know after a shoer period of
time f̂(x̂) + ĥ(x̂)uo � 0, also we know h(x) ur

h(x)+ ~M
� ur − ~M

h(x)+ ~M
ur.

Therefore we have

_e � _x − _xd

� fc x t( )( ) − f̂c x̂ t( )( ) + ~M

h x( ) + ~M
ur − δe − μ sign e( ) + ~N

(13)
We define fc(x(t)) − f̂c(x̂(t)) + ~M

h(x)+ ~M
ur � ~Md and substitute

in Eq. 13 which results in

_e � _x − _xd � ~Md − δe − μ sign e( ) + ~N (14)
Now, let us consider a Lyapunov function candidate denoted as

V(x), which is expressed as:

V � 1
2
e2 ≥ 0 (15)

The derivative of the Lyapunov function V(x) with respect to
time is expressed as

_V � e _e � e ~Md − δe − μ sign e( ) + ~N( )≤ − δe2 + ~Md + ~N( )e − μ e| |
(16)

parameters μ should be selected in a way that μ> | ~Md + ~N|, as a
result, we have
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_V � e _e � e ~Md − ϑe − μ sign e( ) + ~N( )≤ − δe2 (17)

By utilizing Eq. 17, we can validate that the convergence of the
states of the closed-loop system towards the equilibrium point is
assured, in accordance with the Lyapunov stability theorem. This
result completes the proof.

Remark 1. The parameters δ and μ, defined by the user, must
adhere to predefined constraints in order to ensure the validity of the
results and the stability of the model. Specifically, the parameter δ is
required to maintain a positive value. Furthermore, the parameter μ,
besides being positive, should satisfy an additional condition,
namely, that μ> | ~Md + ~N|. This criterion is of paramount
importance for maintaining Lyapunov stability, as elucidated in
Eq. 17.

Remark 2. The deployment of the sign function in the
controller design can give rise to non-smooth control
inputs, leading to undesirable chattering. A prevalent and
efficacious strategy to counteract such instances involves
employing a continuous approximation instead of the sign
function. In this context, the arctangent (atan) function
emerges as a fitting option and can be used to result in
smooth control inputs.

The block diagram presented in Figure 1 illustrates the proposed
control technique. It incorporates robust control in Eq. 11, allowing
for the inclusion of disturbances in the model. This design choice
ensures that the controller is well-suited and resilient for controlling
nanobeams.

3 NSG nano-beams

The Euler-Bernoulli displacement components of a hinged-
hinged nanobeam are expressed as follows:

ux � da x, t( ) − z
∂dt x, t( )

∂x
uy � 0 (18)
uz � dt x, t( )

The nanobeam’s x, y, and z displacements are symbolized by
ux, uy, and uz correspondingly. The axial and transverse deflections
of any point on the neutral axis are represented by da and dt,
respectively. The independent spatial and time variables are denoted
by x and t, respectively.

Here we use the NSG theorem to present the governing
equation of nanobeam. Strain gradients refer to the variation
of strain within a material [35, 36]. In traditional continuum
mechanics, the strain is assumed to be constant throughout the
material. However, at small scales, such as in microstructures or
near material boundaries, the strain may vary significantly. Strain
gradients take into account this variation and introduce
additional terms to the constitutive equations to capture the
effect. Nonlocal effects refer to the fact that the behavior of a
material at a particular point depends not only on its immediate
surroundings but also on a larger region. In other words, the
material’s response is influenced by the overall deformation state
of the neighboring points. Nonlocal effects are particularly
important in materials with characteristic length scales, such
as granular materials or materials with microstructural features.
When both strain gradients and nonlocal effects are considered
together, the resulting theory is referred to as NSG theory. It
provides a more accurate description of the mechanical behavior
of materials at small scales and can be used to analyze phenomena
such as size-dependent plasticity, fracture, and creep in
microstructures [37, 38]. The formulation for the strain
energy (U) of an isotropic linear elastic material, as provided
by the NSG theory, can be expressed in the following manner:

U � 1
2
∫
V

σ11ε11( + σ11
1( )∇ε11)dV (19)

FIGURE 1
The proposed neural state-space-based model MPC.
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where σ11 denotes the classical stress, σ11(1) and ε11 represent the
stress and the normal strain. The differential operator is denoted by
∇ which is equivalent to the partial derivative with respect to x.
Additionally, σ11 and σ11(1) are defined as follows.

σ11 � ∫L
0

Eξ0ε
′
11 x′( )dx′ (20 − a)

σ11
1( ) � ls

2∫L
0

Eξ1ε
′
11 x′( )dx′ (20 − b)

t11 � σ11 − ∇σ11
1( ) (20 − c)

where the length of the nanobeam is symbolized by L and ξ0
represent the principal attenuation kernel function, which
combines the constitutive equations describing the nonlocal
effects. ls is the strain gradient length scale parameter, Alongside,
we have ξ1, an additional kernel function that relates specifically to
the nonlocal effect. Young’s modulus, denoted as E, is also a key
factor in the equation. The underlying assumption of nonlocal
elasticity theory is that the stress at a point in a body does not
only depend on the strain at that point but also depends on the strain
at other points. The use of the integral in Eq. 20 represents this
nonlocal behavior. The integral sums up the contributions of the
strain at all points (from 0 to L, the length of the nanobeam) in the
body to the stress at a particular point.

The constitutive behavior of NSG can be described by the
following general equation:

1
E

1 − θ0
2∇2[ ] 1 − θ1

2∇2[ ]t11 � 1 − θ1
2∇2[ ]ε11 − ls

2 1 − θ0
2∇2[ ]∇2ε11

(21)
where ∇2 is Laplacian operator and the nonlocal parameters θ0 and
θ1 are incorporated to acknowledge the significance of the nonlocal
elastic stress field. These nonlocal parameters, modulate the
influence of the stress field at distant points. They are typically
chosen based on experimental observations or are calibrated using
numerical methods to match the predictions of the nonlocal theory
with the observed material behavior. Let θ0 � θ1 � θ (this is a valid
assumption, for more detailed information and clarification, see
[39], Eq. 21 can be reformulated as

1
E

1 − θ2∇2[ ]t11 � 1 − l2S∇
2( )ε11 (22)

Assuming ls � 0, it leads to the formulation of local elasticity
theory as follows:

1
E

1 − θ2∇2[ ]t11 � ε11 (23)

By setting θ � 0 to zero, the strain gradient theory can be
represented as follows:

t11 � E 1 − ls
2∇2( )ε11 (24)

Remark 3: It should be underscored that the assumptions of ls �
0 and θ � 0 are not adopted in the present study. Their inclusion
here is merely illustrative, employed with the explicit intent of
elucidating the interconnections between nonlocal strain
gradients, strain gradients, and local elasticity. When analyzing a

straight Euler-Bernoulli nanobeam under the assumptions of large
deflection and small slope, the nonlinear strain relationship derived
from Von Karman’s theory can be represented in the following
manner:

ε11 � ∂da x, t( )
∂x

+ 1
2

∂dt x, t( )
∂x

( )2

− z
∂2dt x, t( )

∂x2
(25)

where ε11 represents the longitudinal strain, consequently one can
achieve:

δ∫t
0

Udt � ∫t
0

∫L
0

Nc
∂δda

∂x
+ ∂dt

∂x
∂δdt

∂x
( ) −Mc

∂2δdt

∂x2
[ ]dxdt

+∫t

0
Nnc

∂δda

∂x
+ ∂dt

∂x
∂δdt

∂x
( ) −Mnc

∂2δdt

∂x2
[ ]∣∣∣∣∣∣∣∣L

0

dt (26)

in which Nnc, Mnc,Nc, and Mc are given by

Nnc � ∫
A

σ11
1( )dA,Mnc � ∫

A

zσ11
1( )dA,Nc � ∫

A

t11dA,Mc

� ∫
A

zt11dA, (27)

where Mc represents the classical normal moment, Nc

represents the classical force, Mnc represents the non-
classical normal moment, and Nnc represents the non-
classical force. Furthermore, the work of the applied external
forces is given by

δ∫t
0

Wdt � ∫t
0

∫
L

faδd + ftδdt( )dxdt (28)

In the provided equation, fa and ft denote the distributed axial
and transverse loads, respectively. Additionally, the expression for
the first variation of kinetic energy (Ke) is given as follows:

δ∫t
0

Kedt � ∫t
0

∫L
0

IA
∂da

∂t
∂δda

∂t
+ ∂dt

∂t
∂δdt

∂t
( )dxdt (29)

where IA � 1
12 bh

3. Note that this formulation is based on several
common assumptions, which include: 1) The principle of virtual
work holds true, which means that the virtual work done by the
applied forces is equal to the change in kinetic and potential energy
2) The quantities da and dt are assumed to be differentiable
functions of time. 3) The moment of inertia IA is constant across
the length of the system. This would imply a uniform mass
distribution along the system.

The given expression for Hamilton’s principle, which is
employed to derive the equations of motion, is as follows:

δ∫t
0

Ke − U −W( )[ ]dt � 0 (30)

By applying Hamilton’s principle (30) and considering the
rotational inertia of the beam to be negligible, we obtain the
governing equation for the nanobeam according to the NSG
theory. The aforementioned equation can be represented in the
following manner:
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D11l2m
∂6dt

∂x6 −D11
∂4dt

∂x4 + [A11

2L
∫L

0

∂dt

∂x
( )2

dx − A11l2m
L

∫L

0

∂dt

∂x
∂3dt

∂x3(
+ ∂2dt

∂x2
( )2)dx] ×

∂2dt

∂x2 − θ2
∂4dt

∂x4[ ] + IA
∂2

∂t2
θ( )2∂

2dt

∂x2 − dt[ ]
� θ2

∂2qt
∂x2 − ft

(31)
To render Eq. 31 in a dimensionless manner, the subsequent

variables are introduced:

�x � x

L
, �dt � dt

r
, �z � z

h
, �t � t

�����
EI

ρAL4

√
, ] � θ

L
, κ � lm

L
(32)

By substituting t r �
�
I
A

√
, the resulting equation becomes

dimensionless, and the governing equation can be expressed as
follows.

β2 �D11
∂6 �dt

∂�x6 − �D11
∂4 �dt

∂�x4 +
�A11

2
∫1

0

∂ �dt

∂�x
( )2

d�x − κ2 �A11∫1

0

∂�d

∂�x

∂3 �dt

∂�x3 + ∂2 �dt

∂�x2( )2⎛⎝ ⎞⎠d�x⎡⎢⎢⎣ ⎤⎥⎥⎦ ∂2 �dt

∂�x2

− α2 �A11

2
∫1

0

∂ �dt

∂�x
( )2

d�x − v2κ2 �A11∫1

0

∂ �dt

∂�x

∂3 �dt

∂�x3 + ∂2 �dt

∂�x2( )2⎛⎝ ⎞⎠d�x⎡⎢⎢⎣ ⎤⎥⎥⎦ ∂4 �dt

∂�x4

+v2�IA ∂4�dt

∂�x2∂�t2
− �IA

∂2�dt

∂�t2
� v2

∂2�q

∂�x2 − τ

(33)
Given that we are dealing with a homogeneous nanobeam, it

can be demonstrated that �A11 � 1, �D11 � 1, and �IA � 1 (see [40]
for detailed information). Now, we can employ the Galerkin
approach to convert the partial differential equation into a
nonlinear ordinary differential equation. This procedure
entails separating the temporal and spatial components of
�dt(�x, �t) as outlined in [41].

�dt �x, �t( ) � ϱ �x( )ψ �t( )
ϱ �x( ) � sin π�x( ) (34)

Within the provided context, ψ(�t) signifies the temporal
component that is yet to be determined, whereas ϱ(�x) represents
the spatial component of the transverse deflection. Note that the
mode shape ϱ(�x) � sin(π�x), is a common choice for a beam that is
hinged, or simply supported, at both ends. The primary rationale
behind this selection is based on the boundary conditions of a simply
supported beam and the mathematical properties of the sine
function. Additionally, the concentrated force �q(�x,�t) is defined
as follows.

�q �x,�t( ) � ft �t( )δ �x − 1
2

( ), (35)

By combining Eqs 32, 33 with Eq. 38, and subsequently
multiplying both sides of Eq. 38 by the spatial component
ϱ(�x), and integrating over the length of the beam, an
intriguing transformation is obtained. This transformation
leads us to an ordinary differential equation as follows

€ψ �t( ) + β1ψ �t( ) + β2ψ
3 �t( ) � bτ �t( ) (36)

while the coefficients β1 and β2 are determined by the following
expressions

β1 �
β2 �D11∫1

0
ϱ 6( )ϱd�x − �D11∫1

0
ϱ 4( )ϱd�x

α2∫1

0
ϱ″ϱd�x − ∫1

0
ϱ( )2d�x

β2 � −

�A11

2
∫1

0
ϱ′( )2d�x.∫1

0
ϱ″ϱd�x − κ2 �A11∫1

0
ϱ‴ϱ′d�x.∫1

0
ϱ″ϱd�x

−κ2 �A11∫1

0
ϱ″( )2d�x.∫1

0
ϱ″ϱd�x

]2∫1

0
ϱ″ϱd�x − ∫1

0
ϱ( )2d�x

−

]2 �A11

2
∫1

0
ϱ′( )2d�x.∫1

0
ϱ 4( )ϱd�x − ]2κ2 �A11∫1

0
ϱ‴ϱ′d�x.

∫1

0
ϱ 4( )ϱd�x − ]2κ2 �A11∫1

0
ϱ″( )2d�x.∫1

0
ϱ 4( )ϱd�x

]2∫1

0
ϱ″ϱd�x − ∫1

0
ϱ( )2d�x

b � − ]2π2 + 1( ) (37)
In the given context, ϱ(i) represent the ith derivative of ϱ with

respect to time. On the other hand, ϱ′ refers to the first derivative of ϱ
with respect to �x. Taking into account that
ψ(�t) � x1, _ψ(�t) � _x1 � x2, we derive the following non-
dimensional state-space equation of motion:

_x1 � x2

_x2 � −β1x1 − β2 x1( )3 − bτ �t( ){ (38)

where x1 denotes the non-dimensional deflection of the beam and
x2 represents its derivative.

4 Numerical results

Herein, we present the numerical simulation showcasing the
stabilization of a nanobeam through the implementation of the
proposed control scheme. The parameters used for the simulation of
the nanobeam are ] � κ � 0.1. Considering the formulation in
Appendix, we obtain the corresponding values of β1 � 97.4,
β2 � −19.97, and b � 1.09, based on the given ] and κ values.
The criteria for the design parameters of the controller are
detailed in Remark 1. For the numerical simulations here, we
have chosen the parameters such that μ equals 10 and δ equals 1.

To generate training data, we employed random inputs to
stimulate the system, measuring and recording both the
deflection and its derivative. Subsequently, the collected training
data was used to train the neural network offline. For training, we
employed 200-time histories of deflection and its corresponding
derivative. An example of this 200-time history samples used in the
training phase can be seen in Figure 2. In this study, random inputs
have been utilized to facilitate the learning of the neural state space
representation of the model. The core rationale behind this selection
pertains to the enhancement of the model’s generalization
capabilities. By deploying random inputs, we can expose the
model to a more extensive and varied spectrum of data, thereby
augmenting the robustness of the learning process. This strategy
ensures that the model experiences a wide variety of situations
during the training phase, equipping it with the ability to better
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adapt to unforeseen scenarios when it is subsequently implemented
in a real-world context. Utilizing a specific or limited type of input
data for training could lead to the development of a bias in the model
towards this data. This bias could adversely affect the model’s
performance when presented with diverse data or scenarios. To
circumvent this potential bias and guarantee the broad
generalizability of our model, we have chosen to employ random
inputs.

The software used for the simulations is MATLAB 2022a. In
the initial phase of model learning, the computational cost is
primarily dependent on the number of training samples.
However, considering the low-dimensional nature of the
system, these costs are relatively moderate compared to

typical regression and classification problems tackled by
feed-forward neural networks. Once the state-space model
has been learned, the computational expenditure for
implementing the controller aligns with that of a typical
MPC application. Hence, while the pre-training phase causes
additional computational costs, the operational costs of the
controller do not significantly deviate from conventional MPC
approaches.

Figure 3 illustrates the loss function of the neural network
training for the neural state-space model representation of the
system. This loss function provides insight into the optimization
process of the neural network. By monitoring the loss function, we
can assess the progress and convergence of the training process,

FIGURE 2
A training time history used for training of state space neural network.

FIGURE 3
The loss function of neural state space model during training.
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ensuring that the neural network captures the essential dynamics of
the system accurately.

In what follows, two distinct situations have been taken into
account, and the proposed controller has been implemented for
each. The reasoning behind having chosen two different initial
conditions — [x1 (0), x2(0)] � [[0.5, 0] and [x1 (0), x2 (0)] �
[−0.5, 0.1] — has been to accommodate a wide range of
situations. By selecting these initial conditions, we have been able
to comprehensively explore both positive and negative initial
positions. Furthermore, these conditions have also allowed us to
investigate the impact of zero and non-zero speeds at the starting
point.

Figure 4 display the outcomes of the stabilization process for the
nanobeam, employing the suggested control technique with the
initial states of the system set as [x1(0), x2(0)] � [0.5, 0]. These
figures vividly exhibit the remarkable capability of the proposed
robust adaptive controller to effectively counteract and completely
reject disturbances. Additionally, Figure 5 showcases the temporal
evolution of the nanobeam’s deflection when utilizing the proposed
control scheme. The figures demonstrate that the controller, which
integrates a neural state-space model equipped with a robust term
estimator, adeptly addresses control problems of the unknown
system. This particular ability to handle uncertainties plays a
crucial role in controlling nano systems.

FIGURE 4
Time history of states and control input of the system while [x1(0), x2(0)] � [0.5,0].

FIGURE 5
The deflection of NSG nano-beam while [x1(0), x2(0)] � [0.5,0].
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To evaluate the effectiveness of our proposed controller, we
performed an additional test by varying the initial values of the
system’s states. Specifically, we selected [x1, x2] � [−0.5, 0.1].
Figure 6 illustrates the controller’s performance in achieving
system stabilization under these modified conditions. The
figure demonstrates that the proposed controller operates
within an acceptable range, ensuring feasible control
signal values. Notably, despite the system’s dynamics being
completely unknown, the proposed controller
exhibits outstanding performance, achieving state
stabilization in less than 2 time units. Figure 7 illustrates
the deflection of the system, clearly indicating that the
suggested controller facilitates rapid vibration suppression
in the nano beam.

To facilitate a more in-depth assessment of the proposed
controller’s efficacy, Table 1 outlines the settling time, as well as
the maximum and norm of control signals for both numerical
instances illustrated in this section.

In summary, the simulations and numerical results presented in
Table 1 clearly demonstrate that the proposed control scheme excels
in vibration suppression in the nanobeamwith completely unknown
dynamics, ensuring the stability and robustness of the system.
Compared to conventional MPC and robust controls [42, 43],
our method provides significant advantages in handling nano-
beam vibrations, especially when full knowledge of the system’s
dynamics is not readily available. By combining DNNs with MPC,
we develop an intelligent control framework that effectively
mitigates MPC’s limitations and reduces vibrations in NSG nano-

FIGURE 6
Time history of states and control input of the system while [x1(0), x2(0)] � [−0.5,0.1].

FIGURE 7
The deflection of NSG nano-beam while [x1(0), x2(0)] � [−0.5,0.1].
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beams. We further enhance the control strategy by introducing an
extra control term for robustness and improved system convergence.
However, it is important to note that our method requires pre-
processing and data collection for training the model before real-
world deployment, unlike traditional approaches.

5 Conclusion

The present study introduced a neural state-space-based
MPC framework with guaranteed convergence. The framework
entailed a systematic identification of system dynamics and the
learning of the MPC policy through function approximations.
Specifically, the system dynamics were captured utilizing DNN,
and the MPC policy was established based on the identified
model. Additionally, the robustness and convergence of the
closed-loop system were guaranteed by incorporating an
additional control term. Subsequently, the governing
equation of motion for NSG nano-beams was presented and
derived. Then, the proposed control technique was validated by
applying it to NSG nano-beams. The obtained results exhibited
exceptional performance, confirming the efficacy of the
proposed method. In this study, the robust control term has
been consistently applied in conjunction with the optimal
control term at all stages. Nevertheless, there are ways to
further streamline the system without compromising
accuracy. Incorporating event-triggered approaches could be
beneficial in this regard. These strategies would enable the
controller to be deployed only as required and then
deactivated afterward, creating a more optimal control.
Therefore, a potential area for future research in this domain

would be to enhance the proposed controller’s efficiency
through the integration of event-trigger mechanisms.
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